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Radiation of relativistic charged particles in a system with one-dimensional randomness
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Radiation of relativistic charged particles in a system of randomly spaced plates is considered in the paper.
It is shown that for a large number of platd$x 1), in the wavelength range<|<L (wherel is the photon
mean free path andl is the system characteristic sjizand for anglescosé>(\/2xl)Y3, pseudophoton
diffusion represents the major mechanism of radiation. The total intensity of radiation is investigated and its
strong dependence on the particle energy and plate number is obt81€63-651X98)03702-1

PACS numbeis): 42.65.Wi, 34.50.Bw

I. INTRODUCTION permittivity of the system may be represented in the form

Charged-particle radiation in layered media has been con- _ _
sidered in many paperssee, e.g.,[1,2] and references S(Z'w)_SO(wHZ [b{w)=eo(w)]
therein. The interest in these systems is caused by the pos-
sibility of their use as high-energy particle detecti@h De- X[|0(z—z—-a2)-0(z—z+a2)[], (1
tecting properties of these systems are based on the transitioq1 . . : .
radiation. Transition radiation originating in such systems’ iereeo(w) andb(w) are, respectively, dielectric permit-
can be explained in the following wagee[1,2]). A charge tvities of the h_omogeneous m_ed|um and of the plate_s@nd_
moving in a medium creates an electromagnetic figld is a s_te.p.functlon. It is convenient to represent the dielectric
pseudophoton which is scattered by the inhomogeneities of permittivity as a sum of average and fluctuating parts
dielectric permittivity and converted into radiation. The key
problem is to account correctly for the scattering of
pseudophotons on the inhomogeneities. wheree =(g(z,0)), &,<e, and averaging over the random
In earlier articlegsee, for exampld?2]) that addressed the coordinates of plates is determined as
problem of radiation of relativistic charged particles in a sys-

tem of plates embedded in a homogeneous medium the re- dz

flection of the electromagnetic field by an individual plate is (f(z-w»:f H . fzz,0), ()
neglected. However, from experience with three-dimensional ‘

random medid3,4] we know that the multiple scattering of whereL, is the system size in the direction. In the fre-

electromagnetic fields plays an essential role. This role igyency domain, Maxwell’'s equations have the form
particularly important in the optical region.

In the present paper we consider multiple-scattering ef- L iw -
fects (taking into account also reflectipwhen a charged VXE(F,w)= s B(F,w),
particle radiates passing through a one-dimensional random
medium. Such media can be in particular those systems in Ame i _ o -
which the plates are randomly spaced in a homogeneous me- VXB(f,w)= 0 8(x)8(y)e' v — = D(F,w),
dium.

It turns out that multiple scattering of the pseudophoton @
leading to its diffusion is dominant in the medium and this ﬁ-ﬁ(r” w)= Aie 8(x) 8(y)e @7
diffusion contributes to the radiation intensity. The diffusion ' v '
contribution leads to a strong dependence of the radiation
intensity on particle energy and plate number, a fact that is V.B(f,w)=0, D(F,0)=¢(z,0)E(l,0).
important for the detecting properties of the system. Note
that the diffusion contribution is absent in an ordered stackerev|z is the velocity of the particle. For convenience we

e(z,w)=¢e+e(z,w), (&(z,w))=0, 2

of plates. introduce the potentials of electromagnetic field
- iw - -
Il. FORMULATION OF THE PROBLEM E(f,w)= < A(F,0)—Vo(F,v). (5)

The system considered in the paper consists of a stack of

plates randomly spaced in a homogeneous medium. Let thgsing Egs.(4) and (5), we obtain the equation fok(f, ),

plates fill the regiong;—a/l2<z<z+al2 (wherea is the )

late thickness anz| are random coordinatgsThe dielectric s W7 S o s o
P : ‘ V2A+ 7 Af,0)e(f,0) V| V- A= e(f,0)¢(F,0)
*Electronic address: ananikia@uniphi.yerphi.am =f( r ), (6)
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where | (F,w) is the Fourier transform of the current of the Of plates, we express the radiation poten#ialin terms of

Charged partic|e the Green’s function of EC(].O),
- 2
) 4me v | AR)=— 25 | e/(F)AL(F)G(R.FF
(L) == = 8(x) a(y)e . @) r oz | er(DAMNGRNT,
2
I_mposing the Lorentz gauge condition on the potentials, we V24 K2+ 22_ e.(2)|G(F,F)=8(F—F), (12)
finally obtain c
. . e wherek=w/¢/c.
V-A-—e(fo)e(f,w)=0,
8 IV. GREEN'S FUNCTION
2
V2A + “’_2 e(F,0)A(F,0)=] (o) The bare Green'’s function of E@¢12) satisfies the equa-
c ’ ' o tion
It follows from the symmetry of the problem that the vector [V24 K2+ 8]Go(F—F)=8(F—F), (13)

potentialA is directed in thez direction: A; = 85A(F, ).
wherei é, as usual, is an infinitesimal imaginary term. The
IIl. RADIATION TENSOR solution in the momentum representation has the form

As usual, we decompose the electric field into two parts

E=Ey+E,. HereE, is the electric field of the charged par-
ticle moving in the homogeneous medium with dielectric ) _
permittivity £ andE, is the radiation field caused by fluctua- N the coordinate representation, one has
tions in the dielectric permittivity. We define the radiation

1
tensor as Go(N==7— elkr. (15)

- 1
Go(a)= = +is (14

(R)=E..(R)E* (R
i (R =Ed(RE(R). ©) To perform the averaging, we use the impurity-diagram

= . . . .. method[5]. Summing the diagrams in the ladder approxima-
HereR is the radius vector to the observanon'po!nt, which iStion, we obtain Dyson’s equation for the average Green's
far from the systenR>L. The vector potential is decom- ¢ ction

posed in a similar wayA=A,+A,, whereA, andA,, as

follows from Eq.(8), satisfy the equations P
2 / AN
=5 w T _ / \
\Y AO+_28A0—J(r,(1)), - - 4 - - -
c g g g—p g

R w? . (16)
VA + —5 eA+ — g,A,.=— — g/A,. (10 _ _ _

c C c The dotted line denotes the correlation function of the one-

. . L o dimensional random field
It is convenient to express the radiation |nten5|ty in terms of

the radiation potentiah, , ---=3(5)=(2W)25(5p)5(|pz|),
N w? N 2 w?
1y (R)= 27 6353 A (RIS (R0) B(lz-2'))= ¢ (e (e (2)) 7
S5 R 92 R - -
+= <Ar(R,w) — A;*(R,w)> wherep,, is the transverse component pf The solution of
& dR;oz Eq. (16) can be represented in the form
2 ) 2 ah 1
= | AT(R©) 222 AR 0) G(q)= " . (19
- P - - -
o2 P e 72 (R Gol(q)—f WB(D)Go(q—D)
7 \ Rz MR GRig (R |-

Using expressior{14), we obtain for the averaged Green's

(11 function the expression

In obtaining Eq.(11) we assumed that the fluctuations of

dielectric permittivity are much smaller than its mean value G(a)= _
i i 2_ 424 '

e,<e. To carry out averaging over the random coordinates ke—qg+i Im 2(q)

(19
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in which the imaginary part In&, of the self-energy is deter- . w® o ) )
mined by Ward’s identity lij(R)= 8503 & J dr dr’ Ag(M)AG (')

S d» g > > r G ﬁ AG* (F' ﬁ
™ E(Q)ZJ %B(p)lm Go(d—p) X(er(Ne(MGRNG(I,R))
w_2_2 f dr di’ Ag(F)AG (F")

=2 k2 [B(qu VK2 =q?))

92 . 92 .
) ><<sr<r*>sr<r*'> G(R.F) G*(r',R>>
+B(|g,+ sz—qa)], a,/<k. (20 IRz IRz

The decay length of the pseudophoton in thdirection is + 8 J dr di’Ag(MAG (')
determined by the imaginary part of the Green'’s function as

(see, e.g.[6]) . 2
X{ &,(F)e (F")G*(F,R) G(R,r)
k2—q2 JR;9z
I(g)= ——=". (21) ot
Im X(q) + 85 o f dr df’' Ag()AG (F')
As expected, the decay length depends on the pseudophoton R 2 R
momentum direction. In the case where the momentum is X<sr(F)s,(F’)G(R,F) R G'*(F,R)>. (26)
directed in thez direction, one obtains from Eq$§21) and z
(20 In the single-scattering approximation, we substitute the
K2 Green’s functions appearing irl E¢R6) by bare functions
1(#=0)= BOTB2K) " (22 (15). Since the observation poiRtis far from radiating sys-
(0)+B(2k) tem, one finds, using Eq15), the useful relations
We shall call this quantity the pseudophoton mean free path. R 1 o
Using Egs.(1), (2), and (17) one finds for correlation GO(R,F)~—ﬁ glk(R=n-1),
function & 27)
4(b—8)2n Sln2 qza/Z w4 5260(§,F) » kzninz ik(R—n-r)
B(a,) = &z = (23 Raz ~ 4nR © , R>r.

Heren=N/L, is concentration of plates in the system. FromHeren is the unit vector in the direction of observation point
Eq. (23 it follows that B(0)=w"/c*(b—¢)?na’. On the R Inserting Eq(27) into Eq.(26) and using Eq(17), for the
other hand, wherka>1, B(2k)/B(O)~1/(ka)2< 1. There- radiation tensor we find

fore, the photon mean free path is

w2

4k%/B(0), ka>1 10 (R)=

o o KR (F=T)
2k2/B(0), ka<1 (24) & 16’ f arare
s a<<l.

I=I(6=0)~
XB(|z=2'[)Ao(NAG ()
The calculation carried out above is correct only in the weak-

scattering regime, when 13(q)/(k*—c?)<1. Using Eq.(20) X[ 358 = dany,— dzmin izl (28)

we obtain By solving Eq.(10), we easily obtain
B(0)+B(2k|cos 4|) 872 5(q,—
- g,— wlv)
2K cos O° 25 Ao(d)= == g2 29

From Eq. (25 it follows that at 6~ /2 the condition of Using Eq.(29) in Eq. (28) and integrating, we find the radia-
weak scattering is not satisfied. This is natural because in this

case the pseudophoton moves parallel to the plates. Taklrjghgn |n’genst|_tyI(n)_(c/Z)R2|“(R) in the single-scattering
6=m/2— & and using EQgs.(22) and (25), one hasd proximation

> 1/3.
(D) o = € B(lko—kn,|)n? w2
P=="00 ez =z (9
V. RADIATION INTENSITY IN THE SINGLE 2~ Ko

SCATTERING APPROXIMATION Here ko= w/v, while the &type singularity of Eq.(30) is

Substitution of Eq(12) into Eq.(11) gives the following caused by the infinite path of the charged particle in the
expression for the radiation tensor: medium. If one takes into account the finite size of the sys-
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tem, &0) must be replaced bly,/27. To analyze the angular
dependence of Eq30), it is convenient to represent it in the
form

e? L,B(|ko—k cos8|)sir? 6 w?
[y 2+sirPok?/k3]?>  kgc?

196)= 5 @Y

Here y=(1—ev?/c?) Y2 is the Lorentz factor of the par-
ticle. Note some features of expressi@i): For relativistic

energieg y>1, ko—k), the radiation intensity in the forward
direction, for short waveka>1, is significantly higher than

in the backward direction. The maximum lies in the range o
anglesé~ y~ 1. This result is consistent with the results of

[1,2]. SinceB~n, the radiation intensity in this approxima-
tion, as expected, is proportional to the total numbieof
plates in the system.

VI. DIFFUSION CONTRIBUTION TO THE RADIATION
INTENSITY

In the diffusion approximation, the averages appearing in

Eq. (26) are determined by the diagrams

R & & 7
— ’ f = = /
< G(R,?)G*(7',R) >P= Z
R & 7 o7
R & 7 7
3 0? (= D D /
<G(R,F)WG (T‘ 7R)> = R /
52 2R j
3Ra: 2 T4 T
82
PRz T4 Ta T
»* D (= D D é %
<mG(R,F)G T‘,R)> = Z
R 7 7 v
32
PR@z Ty T3 T
62 = 62 = é =
Vo (7' R D_ ~ =
< gma: (N gR5, O R >N 5
alg,zaz T2 T4 v

(32

Here the filled rectangle corresponds to the diffusion propa-

gator

P(F17F23F3’ F4) =

Using Egs.(26), (32), and(33), we obtain the expression for
the diffusion contribution
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>

k2
DR)= Tzrz | A7 AFB(—1) AGAS ()

XJdFlddefgdF4e“kﬁ'<F1‘F2>P(F1,FZ,Fg,F4)
I IR 2
X G(F3,1N)G*(I",F4)[ 853+ ninjn;— 8z njn,

— &ning]. (34)

The diffusion propagatoP that appears in Eq34) is found
fsimilarly to the three-dimensional café|. It follows from

Eq. (33) thatP(r,r,,l3,I4) can be represented in form

P(F1,F2,F3,Fg) =B(F1—)B(F3—r,)

> > =

XP(R',F1—F,,F3—F,), (35

3 +rF,—F1—F5) andP satisfies the equation

dp dg - | -
(27)3[1—] Wf(q,K)B(IO—Q) P(K,p.q")
=f(q',K) (36)
Here
£(G,K)=G(G+K/2)G* (G—K/2). (37)

As it will be seen further, one has to kndwhenK—0. In
this limit, the diffusion propagator has the ford|

Im G(p)Im G(d)

P(K—0,,4)= Im S(q) A(K), (38
where
[ @k?me@ dg |’
AKI=3] s (@) (277)3} 39
Choosingﬁlli and using Eq(20), we obtain
N 6K k> fl dx x* -1 40
(K= L B Bp? 40

Here we have changed variables while integrating over the
angles. It follows from the form of the correlation function
(23) that the main contribution into the integr@O) is given

by the values ok close to unity(the corresponding angles
are close to zeno Taking into account this fact, foA(K),

we have approximately

AK)= 2 20T 41

( )_ E S_Kzl_z- ( )
wherel = 4k?/B(0) is the pseudophoton’s mean free path. In
the expression for radiation intensity it is convenient to turn
to new variables of integration
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R = L(Fyt Fym Fi—Fy) )zl_r»l F, the valuesqf—>0 Taking into account this fact and the fact
2 ' ' (420 that wheny“>ak the functionB, as well as Eq(41), varies

which gives
k2

|ﬁ(§): 16:-°R% (83 8+ nininZ— 8n;n,— 83;mn,)D,
(43

whereD is given by the expression
sz df di’ dR’ dx,dX,d7,Aq(F)
XB(F—")AF (F")e M1 1B(X) B(Xp) P(R’ Xy, X)
X G(Xp+ Fs—F)G* (F' —Fy). (44)
In the Fourier representation E@l4) has the form
:J dqd;dg,dqgzdd,
(277)12
X P(K'—0,~ G3—kn,d; + Gy+G4)|G(d,+G2) |2
(45)

| Ag(d1)|?B(d2)B(Gs) B(Ga)

Substituting Eq(38) into Eq.(45) and integratingusing the
Ward identity(20)], we obtain

=A(K)Im 3(kn)

dg B(|Vk?—a5—q,))+B(|Vk*~a;+a,])
(2m)° B(0)+B(2yk’—q?)

X[ Ao(G)]%. (46)

slowly, we find

e? 20m?  B(0)+B(2k|n,) 1 »?
T cZ3KY? k2 In,] K2

(48)

Substituting Eq.(48) into Eq. (43) for the diffusion contri-
bution into the radiation intensity, we obtain finally

5e292( L, \31—n?
6 ¢ \l(w) In,| -

In deriving Eq.(49) we substitute H? at K—0 by L2 as
usual(and also assume thiay<L,,L,). Note some peculari-
ties of the diffusion contribution. It is easy to verify that
IP/1°~L2%/1?>1. This means that fok|cosé]I>1 and |
<L, the diffusion contribution is the major one. As one
should expect, the backward and forward intensities are
equal to each other. Note that with an accuracy of unimpor-
tant numerical coefficients formul@9) is correct both for
shortka>1 and for longka<1 waves. All information on
randomness is contained in the mean free pédl). In the
next section we shall specify the form kfw) in particular
cases.

IP(ny)= = (49)

VIl. PSEUDOPHOTON MEAN FREE PATH

The pseudophoton mean free path in our theory is de-
scribed by expressio(®24). In the impurity diagram method
[5], as usual, we do not take into account the diagrams that
correspond to the situation of three or more plates at the
same point. This is valid provided that/b/e —1|ka<1,
which means that for scattering of a photon on a plate, the
Born approximation is fulfilled. However, it is well known
[5] that the formulas are also correct in the general case

Finally, we evaluate the integral over the momentum remainprovided one employs the exact scattering amplitude instead

ing in Eq. (46). Using Egs.(20) and (29) in Eq. (46), we
have

dg, 1
(2m)? (K*—kg—03)?

B(|ko+ Vk*— a,1)+B(lko— Vk?— qp|)

B(0)+B(2k?*~0q?)

N . 167%€?
=A(K)Im Z(kn) 2 sz

(47)

It follows from Eq. (47) that for relativistic energiek,
—k, the main contribution to the integréd?7) is given by

of the Born scattering amplitude. In our case this means that
formula(49) is correct in the general case provided a suitable
expression is used for pseudophoton mean free Ifath

The photon mean free path in the medium is related to the
photon transmission coefficient through a plate

(@)= [1-Ret(w)]?

N (50

wheret(w) is the photon transmission coefficient through a
plate with photon momentum normal to the plf&g

[b(w)
2i —) exp(—ika)

t(w)=

{b(w)
+1

e(w)

/b (@) \/bm) \/b(w)
sin +2i ka
g(w) g(w)

(51
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It follows from Egs. (49) and (50) that the maximum of It follows from Eq. (53) that in this case the dependence of

spectral radiation intensity lies in the frequency region whereadiation intensity on the plate number is weakerN.
the transmission coefficient is minimal. It follows from Eq.

(50) that the minimal value of(w) is 1/n. Now we shall

clarify the conditions under which this value is achieved. In VIIl. CONCLUSIONS
the Born approximatiorjb/s —1|ka<1, using Egs.(51)
and (50), we obtain We have considered the diffusion contribution for radia-

tion intensity of a relativistic particle passing through a stack
of randomly spaced plates. It was shown that for a large
b 2 , (52 number of plates\>1, in the wavelength region<I| and
n( \ﬁ_l) K282 for the anglegcosg>(1/kl)3 the diffusion contribution is
€ the dominant one. Note that the backward and forward inten-
sities of relativistic charged-particle radiation intensity are
equal, whereas in the regular stack case relativistic particle
radiates mainly in the forward direction.

2

l(w)=

which agrees with Eq(24). More interesting for us is the
geometrical optics regiopyb/e —1|ka> 1. Substituting Eq.
(51) into Eq. (50) and neglectlng the strongly _oscnlat!ng Now let us discuss the possible experimental realizations
terms, we havé(w)~1/n. Thus, in the geometrical optics

region the photon mean free path does not depend on th%]fc ohur .theory.l.l':or aplpllcabllhtyLof .the theory the fulfillment
frequency and radiation intensity is maximal. Integrating the’ the '”eq“‘?‘.'“eM. ().‘)< in»Lz IS Necessary. _ _
The transition radiation of relativistic charged particles in

spectral intensity over angles and frequencies in this region stack of plates has been investigated experimentally in
we find that the total intensity depends on the particle energ P 9 pern y
asl'~ y2. In contrast, the energy dependence of the radiatio any papergsee, for example[,8]). Unfortunately, n these.
intensity in typical transition radiation from a single interface papers only the x-ray region was studied. In th? X-ray region
the above-mentioned inequalities are not satisfied. Optical

Ior]rctj:ﬁ t?) p;[ilr?gl trheeglc;)en ';lggggéh;?Itcshgi’ag;,ﬁéirrngg’?t' Ign th éransition radiation of relativistic particles has been investi-
P y gated in experimental worl®]. However, in this experiment

number of plates, note that,=N/n and from Eq.(49) one only one or two parallel plates were used. Sample$9in

hasl'~N2. One of the important conditions for the applica- - ; .
bility of the theory is thepconditiori<LZ. SubstitutingEZ were prepared by vacuum deposition of various metalic
=N/n andl = 1/n into this condition, we find a condition for coatings(Al, Ag, Au, and C on Mylar foils 3.5m thick.
’ Note that these samples are optimal for our goals. They en-
the plate numbeN_>1. . . ure minimal transmission due to metallic coatings and
Note that_ we d'd. not ta_ke Into account the absorption o eakness of absorption due to Mylar foils. So it will be
photons. This is valid provideld<l;, (wherel;, is the photon interesting to investigate experimentally the optical transition

Ljn;afla;tlc mean fr(ie p?gh N thlf 'Eedm,?hn the the(t)ri of radiation of relativistic electrons passing through a stack of
diffusive propagation the weax absorp ioh<y) is taken such samples randomly spaced in the vacuum.
into account in the following waysee, for exampld,7]). If

the absorption is so weak that<(Il,,)*? then expression

(49) remains unchanged. Whén> (11;,)"2 one must substi-
tute L2 by I1;, in Eq. (49), ACKNOWLEDGMENTS
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