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Heliconic band structure of one-dimensional periodic metallic composites
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We study the propagation modes of right circularly polarized electromagnetic waves traveling parallel to an
external static magnetic field,, in one-dimensionallD) periodic metallic composites, i.g¢he heliconic band
structure Although the dielectric function of metal in this case depends on frequentye characteristics of
the heliconic band structures are very similar to those of the photonic band structures of 1D periodic dielectric
composites. The heliconic band structure can be easily controllgd.py Thus it is possible to control the
defect modes of helicons and the coupling modes of the helicon-transverse sound wave in 1D periodic metallic
composites usindd.,. We also discuss the localization of helicons in 1D disordered metallic composites.
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PACS numbdrs): 42.70.Qs, 78.66.Sq, 52.35.Hr

. INTRODUCTION e(0)=1- 0 o(0F v,). @)
It is well known that periodic dielectric structur@shoto-

nic crystalg can give rise to photonic band gaf3BG'’s),

frequency regions where electromagnéidl) waves cannot

The sign in front ofw. refers to the sense of circularly po-
larized EM waves. We only consider right circularly polar-

X S - ized EM waves, the negative sign. In the frequency region of
propagate 1,2]. Such PBG's can affect radiation-matter in- <w., €(w) is positive. For a magnetic field of the order of

teractions in photonic crystals. That is, the dipole-dipole in-;\ ~" 4% 1 o lies in the microwave region, i.ew
teraction between two atoms can be suppressed and a quan $e e

tum electrodynamic photon-atom bound state can ¢3igi. 10" Hz, while “p 10" Hz. We thus anticipate a dramatic

: L o : henomenon that opens a window for the propagation of
Photonic crystals can be used in high-efficiency semlconduér—)ight circularly polarized EM waves in the frequency region

tor lasers, optical digples, solar cells, optipal switches, angvhere EM waves are normally forbidden to propagate. These
high-Q resonant cavities. Recently, metallic photonic Crys'gropagating EM waves are well known hsliconsin solid

tals have attracted much attention among photonic crystal tate plasma physi¢8]. In the limit of o< . , the dielectric

because they have new PBG's that extend from zero fref'unction of metals for right circulary polarized EM waves
guency to the cutoff frequency, [5-7].

) . .travelin rallel t n roximat
The photonic band structure depends on the dlelectrlca eling parallel tcHe, can be approximated as

constant, the shape, and the volume fraction of an atrtificial
dielectric atom with which dielectric photonic crystals are
made. Since they are almost unchanged by such external
parameters as temperatures, pressure, electric fields, amdhereN, is the electron density the charge of an electron,
magnetic fields, it is nearly impossible to control the size andt the vacuum velocity of EM waves, andl,, the magnitude
position of PBG's of dielectric photonic crystals using exter-of an external static magnetic field in cgs units. This indi-
nal parameters. However, it may be possible to control theates that the dispersion relation @fto k for helicons is
PBG’s of metallic photonic crystals using external param-parabolic. Sincee(w) depends on the external parameter
eters. For instance, the presence of a magnetic field cad,,, it is possible to control the propagation modes of the
greatly change the dielectric response of a free electron gafght circularly polarized EM waves traveling parallel to
to the low frequency EM wave ab<w., wherew, is the  H,.

cyclotron frequency. In the absence of a static magnetic field, Similar effects can appear in two-dimensional metallic
the dielectric function of a metal can be assumed to be thghotonic crystals. WitiH,, applied to the direction of the

f(w)ZwS/wa=47TNeedHeXw, 3

free electron gas form in the long wavelength limit, axes of metallic rods, the dielectric function of the metallic
rods is not changed when the electric field of the incident
€(w)=1-wjw?, (1) EM waves is parallel to the rodéTE mode$. However,

when the magnetic field of the incident EM waves is parallel
where w, is the plasma frequency of the conduction elec-to the rods(TM modes, external fieldH,, affects the value
trons. Whenw<w,, €(w) is negative, so that EM waves of the dielectric function of the metallic rods. Therefore, it is
cannot propagate in this kind of media, but are totally re-also possible to control the propagation of TM modes using
flected. This explains the high reflectivity of most metals inH,,, whenH,, is parallel to the axes of metallic rods.
the visible, infrared, and microwave ranges. In the presence In this paper, we only investigate the propagation modes
of a large static magnetic field, the effective long wavelengttof right circularly polarized EM waves propagating parallel
dielectric response of an electron gas for circularly polarizedo He, in one-dimensionallD) periodic metallic composites
EM waves traveling parallel to the external static magnetigdPMC’s), i.e.,the heliconic band structure$Ve also discuss
field Hg, is the defect modes of helicons and the helicon-transverse
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sound wave interaction in 1D PMC'’s and the localization of
helicons in 1D disordered metallic composites.

Il. MODEL AND METHOD

We consider right circularly polarized EM waves of fre-
guencyw propagating in the direction, which is normal to
1D PMC's. In this situation, a vector equation for the electric
field of the EM wave is

2

V2E+ e(0) —E=0 4
() E=0. @

WhenHg,=H,z, the dielectric function can be assumed to
be wf)/wcw. We define a dimensionless functidb(z),

1 if d< <a
7<l2=3

0(z)= 5

2
ﬂ’) =,
wph 2
wherewy, is the plasma frequency of the background metal
wpn the plasma frequency of the host metlthe width of
the host metal, and the lattice constant. Usin®(z), the
vector equation becomes

2

w
0(2)VE+ —2 wE
wCC2

=0. (6)

Because of the periodicity db(z), we can use the Bloch
theorem to expand E in plane waves, i.e., E
=S Exe ' whereK’=k+G’; k is a wave vector
in the first Brillouin zone of the 1D latticeG’ a 1D recip-
rocal lattice vector, and a polarization vector of a right
circularly polarized EM wave. Substituting this into E6),
we obtain the matrix equation

AF
— > O(K—K")[K|[K'[Fy+ 7K=o, (7
K!
whereF = Ex K|, A= (wh)/ 0w, and® (K —K') the Fou-
rier transform of®(z).
We solved Eq(7) using the standard matrix diagonaliza-
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FIG. 1. Heliconic band structure of right circularly polarized
EM waves in 1D periodic metallic composites fée=0.8 and
(wpb/wph)2:16. The normalized frequency) is «a(wal/2wc),
where az(wpba/ch)Z/(wca/ZWC). The heliconic band gaps are
shaded.

Aa?/(2mc)?= a(wal2mc),  where  a=(wya/2mc)?/
(wcal2mwc). The shaded areas represent the heliconic band
gaps. Althoughe(w) depends omw as Eq.(3), the heliconic
band structure of 1D PMC'’s in Fig. 1 is similar to the pho-
tonic band structure of 1D periodic dielectric composites
(PDC'’s). It has been suggested that flat bands are a common
feature in systems with frequency-dependent dielectric func-
tions [9]. However, flatbands do not appear in the helicon
band structure, as shown in Fig. 1. There is no cutoff fre-
quencywv., either, below which no EM waves can propagate
whenH,,=0. This can be easily understood from the eigen-
value equation for helicons, E{7). This is very similar to
that for 1D PDC's; the dispersion relation 6f to k for
helicons is identical to that of,(wa/27c)? to k for the EM
waves in 1D PDC’s Whererbleh:(wpb/wph)z. Heree, and

€y, are the dielectric constants of the background material and

tion method. The number of plane waves used in obtaininghe host material in 1D PDC's, respectively. This means that
our results was 501. When 1001 plane waves were used, tiedl the interesting phenomena of EM waves in 1D PDC’s can
difference was less than 0.3%. Thus, we believe that the applicable to helicons in 1D PMC's. Furthermore, the
results are well converged within at least 1% of their truelocalization of EM waves in 1D disordered dielectric com-

values. posites should appear as the localization of helicons in 1D
PMC’s[10].

The midgap frequency of the heliconic band gap is given
by @mig=mCHeQmia/Nped?, whereN, and Q,,q are the
electron density of the background metal and the normalized
midgap frequency, respectively. Sin€k,,y is independent
of Hey, omig depends linearly orH.,. Furthermore, the
Then, we can obtain the dispersion relatiornwofo k for the  width of the gap normalized t0wqg, Aw/wng
parameters of, (wpb/wph)2 andH, from the definition of =AQ/Q,,q, does not depend od,, but the absolute size
A. Figure 1 shows the heliconic band structure of 1Dof the gapA» depends linearly oil.,. This means that we
PMC'’s, when the filling fractionf is 0.8 and the ratio can control both the position and the size of the heliconic
(wpb/w,[,h)2 16. The normalized frequenc@ is given by band gap using the external static magnetic field. It is also

Ill. RESULTS AND DISCUSSION

Since® (K —K") depends on the filling fractioh and the
ratio (wpb/wph)z, the eigenvalues ofA in Eq. (7) can be
solved as a function d€ for each value of and (wpb/wph)z.
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) ) FIG. 3. Aw/wng as a function of the filling fraction for
filling fraction (wpp/ wp)?=16. The numbersiE1,2, . . . ,6)denote theth gap.
The normalized midgap frequency and the filling fraction at the
FIG. 2. Gap map as a function of the filling fraction for maximum of Aw/wyy are Qqgm=(0.25+0.25n,/n,)? and
(wpp/ wpr)?=16. The heliconic band gaps are shaded. thegap  f,,=p(p+qn,/ny), respectively, wherg andq are odd positive
implies the gap between théth and the {(+1)th bands { integers.Q g m andf, of theith gap satisfyp+q=2i.
=1,2,...,6).Q, and f, of the nodes are (0.850.29n,/n;)?

gnd [/(I+kn,/ny), respectively, wheré and k are positiveev_en wpal2me=(kny,+Iny)/4nyng. (20
integers, andh, /np= wp,/ wpn=4. Q, andf, of theith gap satisfy
I+k=2i.

The normalized frequencies and the filling fractions of nodes

possible to control the defect modes of helicons in 1D3€
PMC's, and the localization of helicons in 1D disordered
metallic composites using this external magnetic field.

In typical metals or heavily doped semiconductors, thean d
electron density is T6/cm*~107%cm®. For example, when
the values of the parameters &tg=10"%cm?, a=0.05 mm, _ _
and He,=1 kG in Fig. 1, the first gap position is fa=lmei2npona=1/(1+knm/ny), (12

\/ _ 0 H
7L18e5;<clore_Aif(.)Arf17>s< aﬁiﬁ?jﬁgig’;gﬁ&ﬁ 10* T|_r|lze. f-rrehlie]::li_ respectively. n,/n, is independent ofw, and equal to
gf a dgfec? mode can be positioned at the centerqof thgfor(-upb/wph' Whenl +k=21, f, and {1, give the filling frac-
bidden frequency range by designing the width or ¢ tions and the normalized frequencies of nodes ofitheyap.
; dheo Figure 3 shows the normalized gap widtho/w,q as a
';ir;:tdS;eF)Ct :)?é?t%i]' ig V\;eglgclrggasﬂ%jrlogg"n i'tzo igde’ the  function of the filling fraction. Since w/w,q is independent
. —4&, (OF

. of Hey, Fig. 3 holds for all values oH, that satisfy the
1'.84X 109.HZ’ wherew'd is the frequgncy of the defect mo.d.e. condition w<w.. The maximum values oA w/ w4 Of the
Sincew, is also ten times the previous value, the condition

i< still satisfied ith gap are larger than those of tHe-(1)th gap.A w/ g of
“’i‘;écu'rzszt'sﬁg\s\'/z Ifhe: gap map of helicons as a function o he first gap reaches the maximum value 140.3%=20.8,
dQ.,iq=(1.25¥. Th lized idth ish t
the filling fractionf for (w/w.y)?=16. The heliconic band o geme—¢ F. The normalized gap width vanishes a

gaps are shaded. Ttiéh gap implies the gap that occurs f,. There aré maxima ofA w/ w,q in theith gap. Using the

. . . -~ theory of dielectric multilayer opticsymig , andf,, where
between theth and the {+1)th bands for helicons. It is e normalized gap width reaches a maximum, can be ob-
interesting that i(—1) nodes exist in théth gap. We can

: ¢ o
easily understand this by the theory of dielectric muItiIayertamed fome andd/a, satisfying

Q,=(0.2%+0.29n,/ny,)? (11

optics. When the optical path difference of layers is a mul- nd=pmc/2w (13)

tiple of wc/w, EM waves ofw give nodes in the gap map. In '

our case, np(a—d)=qmc/2w, (14
nyd=Imc/2w, (8)

wherep andq are positiveodd integers. The results are
np(a—d)=kmc/2w, 9
Qmid’m=(0.25:1+0.25)nb/nh)2 (15)
wherel andk are positiveevenintegers, andh, andny,, the
refraction index of the host metal and the background metakand
respectively. The frequency of nodes,, can be derived
from Egs.(8) and(9), fmn=p/(p+agny/ny). (16)
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Whenp+q=2i, Qniqm andf, give the normalized midgap The coupling modes of the helicon-transverse sound wave
frequencies and the filling fractions, respectively, where thecan be controlled by an external static magnetic field, as
ith gap reaches the maximum values. well.
Awl/wmg Of helicons is much larger than that of EM
waves in 1D PDC'’s. From the similarity of the eigenvalue
equation for helicons to that for EM waves in 1D PDC's, we IV. CONCLUSION
can derive the relation betweeNiw/wpg for hellcong and In conclusion, we investigated the heliconic band struc-
that for EM waves in 1D PDC's foey,/ €4 = (wpn/ @pn)*; ture of 1D PMC's. Although the dielectric function of the
_ 2 metal for helicons depends on frequenaythe characteris-
(Aw/omigh=8(Aw/wmigla/[4+ (Aw/oma)al. (17D ies ot the heliconic band structure are very similar to those
of the photonic band structure of 1D PDC's. The heliconic
band structure can easily be controlled by an external static
magnetic field. It is also possible to control the defect modes
of helicons, the coupling modes of helicon-transverse sound
wave in 1D PMC's, and the localization of helicons in 1D
Since the helicons are extremely slow EM waves, the)pisordered metallic composites uisng this external magnetic

can interact with transverse sound waves in mgtes This f'hEId' ;I'ET\Anormallz_edlgagDv(\élgth_ of helicons is larger than
is analogous to the interaction of transverse EM waves witfinat © waves in $, In most cases.
transverse optical phonons in ionic crystals. It has been

where A w/wmig)n iS the normalized gap width of helicons
and Aw/wyngg that of EM waves in 1D PDC's.
(Aw/wygn is always larger than Xw/wqgng)q when
(A 0/ 01ig) g<200%. In most casesAw/ wyg)q IS Saturated
to a value below 200% as, /€, is increased.
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