
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Heliconic band structure of one-dimensional periodic metallic composites
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~Received 29 July 1997; revised manuscript received 8 October 1997!

We study the propagation modes of right circularly polarized electromagnetic waves traveling parallel to an
external static magnetic fieldHex in one-dimensional~1D! periodic metallic composites, i.e.,the heliconic band
structure. Although the dielectric function of metal in this case depends on frequencyv, the characteristics of
the heliconic band structures are very similar to those of the photonic band structures of 1D periodic dielectric
composites. The heliconic band structure can be easily controlled byHex. Thus it is possible to control the
defect modes of helicons and the coupling modes of the helicon-transverse sound wave in 1D periodic metallic
composites usingHex. We also discuss the localization of helicons in 1D disordered metallic composites.
@S1063-651X~98!00802-2#

PACS number~s!: 42.70.Qs, 78.66.Sq, 52.35.Hr
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I. INTRODUCTION

It is well known that periodic dielectric structures~photo-
nic crystals! can give rise to photonic band gaps~PBG’s!,
frequency regions where electromagnetic~EM! waves cannot
propagate@1,2#. Such PBG’s can affect radiation-matter i
teractions in photonic crystals. That is, the dipole-dipole
teraction between two atoms can be suppressed and a q
tum electrodynamic photon-atom bound state can exist@3,4#.
Photonic crystals can be used in high-efficiency semicond
tor lasers, optical diodes, solar cells, optical switches,
high-Q resonant cavities. Recently, metallic photonic cry
tals have attracted much attention among photonic crys
because they have new PBG’s that extend from zero
quency to the cutoff frequencync @5–7#.

The photonic band structure depends on the dielec
constant, the shape, and the volume fraction of an artifi
dielectric atom with which dielectric photonic crystals a
made. Since they are almost unchanged by such exte
parameters as temperatures, pressure, electric fields,
magnetic fields, it is nearly impossible to control the size a
position of PBG’s of dielectric photonic crystals using exte
nal parameters. However, it may be possible to control
PBG’s of metallic photonic crystals using external para
eters. For instance, the presence of a magnetic field
greatly change the dielectric response of a free electron
to the low frequency EM wave ofv,vc , wherevc is the
cyclotron frequency. In the absence of a static magnetic fi
the dielectric function of a metal can be assumed to be
free electron gas form in the long wavelength limit,

e~v!512vp
2/v2, ~1!

where vp is the plasma frequency of the conduction ele
trons. Whenv,vp , e(v) is negative, so that EM wave
cannot propagate in this kind of media, but are totally
flected. This explains the high reflectivity of most metals
the visible, infrared, and microwave ranges. In the prese
of a large static magnetic field, the effective long wavelen
dielectric response of an electron gas for circularly polariz
EM waves traveling parallel to the external static magne
field Hex is
571063-651X/98/57~2!/2327~4!/$15.00
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e~v!512vp
2/v~v7vc!. ~2!

The sign in front ofvc refers to the sense of circularly po
larized EM waves. We only consider right circularly pola
ized EM waves, the negative sign. In the frequency region
v,vc , e(v) is positive. For a magnetic field of the order o
1 kG andm* .m, vc lies in the microwave region, i.e.,vc
.1010 Hz, whilevp.1015 Hz. We thus anticipate a dramati
phenomenon that opens a window for the propagation
right circularly polarized EM waves in the frequency regio
where EM waves are normally forbidden to propagate. Th
propagating EM waves are well known asheliconsin solid
state plasma physics@8#. In the limit of v!vc , the dielectric
function of metals for right circulary polarized EM wave
traveling parallel toHex can be approximated as

e~v!5vp
2/vcv54pNeec/Hexv, ~3!

whereNe is the electron density,e the charge of an electron
c the vacuum velocity of EM waves, andHex the magnitude
of an external static magnetic field in cgs units. This in
cates that the dispersion relation ofv to k for helicons is
parabolic. Sincee(v) depends on the external parame
Hex, it is possible to control the propagation modes of t
right circularly polarized EM waves traveling parallel t
Hex.

Similar effects can appear in two-dimensional meta
photonic crystals. WithHex applied to the direction of the
axes of metallic rods, the dielectric function of the metal
rods is not changed when the electric field of the incid
EM waves is parallel to the rods~TE modes!. However,
when the magnetic field of the incident EM waves is para
to the rods~TM modes!, external fieldHex affects the value
of the dielectric function of the metallic rods. Therefore, it
also possible to control the propagation of TM modes us
Hex, whenHex is parallel to the axes of metallic rods.

In this paper, we only investigate the propagation mod
of right circularly polarized EM waves propagating paral
to Hex in one-dimensional~1D! periodic metallic composites
~PMC’s!, i.e., the heliconic band structures. We also discuss
the defect modes of helicons and the helicon-transve
2327 © 1998 The American Physical Society
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sound wave interaction in 1D PMC’s and the localization
helicons in 1D disordered metallic composites.

II. MODEL AND METHOD

We consider right circularly polarized EM waves of fr
quencyv propagating in thez direction, which is normal to
1D PMC’s. In this situation, a vector equation for the elect
field of the EM wave is

¹2E1e~v!
v2

c2
E50. ~4!

WhenHex5Hexẑ, the dielectric function can be assumed
be vp

2/vcv. We define a dimensionless function,Q(z),

Q~z!5H 1 if
d

2
,uzu<

a

2

S vpb

vph
D 2

if uzu<
d

2
,

~5!

wherevpb is the plasma frequency of the background me
vph the plasma frequency of the host metal,d the width of
the host metal, anda the lattice constant. UsingQ(z), the
vector equation becomes

Q~z!¹2E1
vpb

2

vcc
2
vE50. ~6!

Because of the periodicity ofQ(z), we can use the Bloch
theorem to expand E in plane waves, i.e., E
5 ĉ(K8EK8e

2 i (K8•r ), whereK 85k1G8; k is a wave vector
in the first Brillouin zone of the 1D lattice,G8 a 1D recip-
rocal lattice vector, andĉ a polarization vector of a righ
circularly polarized EM wave. Substituting this into Eq.~6!,
we obtain the matrix equation

2(
K8

Q~K2K 8!uK uuK 8uFK81
LFK

c2
50, ~7!

whereFK5EKuK u, L5(vpb
2 /vc)v, andQ(K2K 8) the Fou-

rier transform ofQ(z).
We solved Eq.~7! using the standard matrix diagonaliz

tion method. The number of plane waves used in obtain
our results was 501. When 1001 plane waves were used
difference was less than 0.3%. Thus, we believe that
results are well converged within at least 1% of their tr
values.

III. RESULTS AND DISCUSSION

SinceQ(K2K 8) depends on the filling fractionf and the
ratio (vpb/vph)

2, the eigenvalues ofL in Eq. ~7! can be
solved as a function ofk for each value off and (vpb/vph)

2.
Then, we can obtain the dispersion relation ofv to k for the
parameters off , (vpb/vph)

2 and Hex from the definition of
L. Figure 1 shows the heliconic band structure of 1
PMC’s, when the filling fractionf is 0.8 and the ratio
(vpb/vph)

2 16. The normalized frequencyV is given by
f

l,

g
he
e

La2/(2pc)25a(va/2pc), where a5(vpba/2pc)2/
(vca/2pc). The shaded areas represent the heliconic b
gaps. Althoughe(v) depends onv as Eq.~3!, the heliconic
band structure of 1D PMC’s in Fig. 1 is similar to the ph
tonic band structure of 1D periodic dielectric composit
~PDC’s!. It has been suggested that flat bands are a com
feature in systems with frequency-dependent dielectric fu
tions @9#. However, flatbands do not appear in the helic
band structure, as shown in Fig. 1. There is no cutoff f
quencync , either, below which no EM waves can propaga
whenHex50. This can be easily understood from the eige
value equation for helicons, Eq.~7!. This is very similar to
that for 1D PDC’s; the dispersion relation ofV to k for
helicons is identical to that ofeb(va/2pc)2 to k for the EM
waves in 1D PDC’s wheneb /eh5(vpb/vph)

2. Hereeb and
eh are the dielectric constants of the background material
the host material in 1D PDC’s, respectively. This means t
all the interesting phenomena of EM waves in 1D PDC’s c
be applicable to helicons in 1D PMC’s. Furthermore, t
localization of EM waves in 1D disordered dielectric com
posites should appear as the localization of helicons in
PMC’s @10#.

The midgap frequency of the heliconic band gap is giv
by vmid5pcHexVmid /Nbea2, where Nb and Vmid are the
electron density of the background metal and the normali
midgap frequency, respectively. SinceVmid is independent
of Hex, vmid depends linearly onHex. Furthermore, the
width of the gap normalized to vmid , Dv/vmid
5DV/Vmid , does not depend onHex, but the absolute size
of the gapDv depends linearly onHex. This means that we
can control both the position and the size of the helico
band gap using the external static magnetic field. It is a

FIG. 1. Heliconic band structure of right circularly polarize
EM waves in 1D periodic metallic composites forf 50.8 and
(vpb/vph)

2516. The normalized frequencyV is a(va/2pc),
where a5(vpba/2pc)2/(vca/2pc). The heliconic band gaps ar
shaded.
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possible to control the defect modes of helicons in
PMC’s, and the localization of helicons in 1D disorder
metallic composites using this external magnetic field.

In typical metals or heavily doped semiconductors,
electron density is 1018/cm3–1023/cm3. For example, when
the values of the parameters areNb51020/cm3, a50.05 mm,
and Hex51 kG in Fig. 1, the first gap position i
7.853107–4.473108 Hz and vc51.731010 Hz. This fre-
quency region satisfies the conditionv!vc . The frequency
of a defect mode can be positioned at the center of the
bidden frequency range by designing the width or thevp of
the defect layer@11#. If we increaseHex from 1 to 10 kG, the
first gap position is 7.853108–4.473109 Hz and vd5
1.843109 Hz, wherevd is the frequency of the defect mod
Sincevc is also ten times the previous value, the conditi
v!vc is still satisfied.

Figure 2 shows the gap map of helicons as a function
the filling fraction f for (vpb/vph)

2516. The heliconic band
gaps are shaded. Thei th gap implies the gap that occu
between thei th and the (i 11)th bands for helicons. It is
interesting that (i 21) nodes exist in thei th gap. We can
easily understand this by the theory of dielectric multilay
optics. When the optical path difference of layers is a m
tiple of pc/v, EM waves ofv give nodes in the gap map. I
our case,

nhd5 lpc/2v, ~8!

nb~a2d!5kpc/2v, ~9!

wherel andk are positiveevenintegers, andnh andnb , the
refraction index of the host metal and the background me
respectively. The frequency of nodes,vn , can be derived
from Eqs.~8! and ~9!,

FIG. 2. Gap map as a function of the filling fraction fo
(vpb/vph)

2516. The heliconic band gaps are shaded. Thei th gap
implies the gap between thei th and the (i 11)th bands (i
51,2, . . . ,6).Vn and f n of the nodes are (0.25k10.25lnb /nh)2

and l /( l 1knh /nb), respectively, wherel and k are positiveeven
integers, andnb /nh5vpb/vph54. Vn and f n of the i th gap satisfy
l 1k52i .
e

r-

f

r
l-

l,

vna/2pc5~knh1 lnb!/4nhnb . ~10!

The normalized frequencies and the filling fractions of nod
are

Vn5~0.25k10.25lnb /nh!2 ~11!

and

f n5 lpc/2nhvna5 l /~ l 1knh /nb!, ~12!

respectively. nh /nb is independent ofv, and equal to
vpb/vph. When l 1k52i , f n and Vn give the filling frac-
tions and the normalized frequencies of nodes of thei th gap.

Figure 3 shows the normalized gap widthDv/vmid as a
function of the filling fraction. SinceDv/vmid is independent
of Hex, Fig. 3 holds for all values ofHex that satisfy the
conditionv!vc . The maximum values ofDv/vmid of the
i th gap are larger than those of the (i 11)th gap.Dv/vmid of
the first gap reaches the maximum value 140.3% atf 50.8,
and Vmid5(1.25)2. The normalized gap width vanishes
f n . There arei maxima ofDv/vmid in the i th gap. Using the
theory of dielectric multilayer optics,vmid,m and f m , where
the normalized gap width reaches a maximum, can be
tained fromv andd/a, satisfying

nhd5ppc/2v, ~13!

nb~a2d!5qpc/2v, ~14!

wherep andq are positiveodd integers. The results are

Vmid,m5~0.25q10.25pnb /nh!2 ~15!

and

f m5p/~p1qnh /nb!. ~16!

FIG. 3. Dv/vmid as a function of the filling fraction for
(vpb/vph)

2516. The numbers (i 51,2, . . . ,6)denote thei th gap.
The normalized midgap frequency and the filling fraction at t
maximum of Dv/vmid are Vmid,m5(0.25q10.25pnb /nh)2 and
f m5p(p1qnh /nb), respectively, wherep and q are odd positive
integers.Vmid,m and f m of the i th gap satisfyp1q52i .
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Whenp1q52i , Vmid,m and f m give the normalized midgap
frequencies and the filling fractions, respectively, where
i th gap reaches the maximum values.

Dv/vmid of helicons is much larger than that of EM
waves in 1D PDC’s. From the similarity of the eigenval
equation for helicons to that for EM waves in 1D PDC’s, w
can derive the relation betweenDv/vmid for helicons and
that for EM waves in 1D PDC’s foreb /eh5(vpb/vph)

2;

~Dv/vmid!h58~Dv/vmid!d /@41~Dv/vmid!d
2#, ~17!

where (Dv/vmid)h is the normalized gap width of helicon
and (Dv/vmid)d that of EM waves in 1D PDC’s.
(Dv/vmid)h is always larger than (Dv/vmid)d when
(Dv/vmid)d,200%. In most cases, (Dv/vmid)d is saturated
to a value below 200% aseb /eh is increased.

Since the helicons are extremely slow EM waves, th
can interact with transverse sound waves in metals@12#. This
is analogous to the interaction of transverse EM waves w
transverse optical phonons in ionic crystals. It has b
known that the propagation modes of transverse so
waves in two-dimensional periodic elastic composites h
forbidden frequency ranges,the phononic band gap@13#.
Therefore, it may be interesting to study the coupling mo
between helicon and transverse sound waves in 1D PM
tt.

v.
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The coupling modes of the helicon-transverse sound w
can be controlled by an external static magnetic field,
well.

IV. CONCLUSION

In conclusion, we investigated the heliconic band stru
ture of 1D PMC’s. Although the dielectric function of th
metal for helicons depends on frequencyv, the characteris-
tics of the heliconic band structure are very similar to tho
of the photonic band structure of 1D PDC’s. The helicon
band structure can easily be controlled by an external st
magnetic field. It is also possible to control the defect mod
of helicons, the coupling modes of helicon-transverse so
wave in 1D PMC’s, and the localization of helicons in 1
disordered metallic composites uisng this external magn
field. The normalized gap width of helicons is larger th
that of EM waves in 1D PDC’s, in most cases.
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