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From kinks to compactonlike kinks
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We show that, in the continuum limit, the generalizedour or double-well model with nonlinear coupling
can exhibit compactonlike kink solutions for some specific velocity regimes and when the nonlinear coupling
between pendulums is dominant. Our numerical simulations point out that the static compacton is stable and
the dynamic compacton is unstable. Our study is extended to other topological systems where compacton
solutions can also be found. A nice feature is that a mechanical analog of the double-well system can be
constructed in the form of an experimental lattice of coupled pendulums, which, in the strong coupling limit,
allows the observation of these entitig§1063-651X98)00502-9

PACS numbeis): 03.40.Kf, 46.30.My

I. INTRODUCTION linear only is interesting because of the presence of nonlinear
dispersion. Recently it was shown by Rosenau and Hyman
Solitary waves and solitons play a significant role in vari-[10] that solitary-wave solutions may compactify under the
ous physical problems. In this context kinks in one-influence of nonlinear dispersion, which is capable of caus-
dimensional systems have been used to describe various phHeg deep qualitative changes in the nature of genuinely non-
nomena such as ferromagndiic2] or ferroelectric domains linear phenomena. Such robust solitonlike solutions, charac-
walls [3], dislocations[4], dynamics of base pairs in DNA terized by the absence of the infinite tail, have been called
macromoleculef5], polymer chain twistingg6] and Joseph- compactong10,11]. They have been obtained for a special
son junctiong7]. The basic models are generalized Klein- class of the Korteweg—de Vrig&dV)-type equations with
Gordon models where the particles may be considered amonlinear dispersion. In this paper we would like to show
coupled to nearest neighbors only, via an interaction poterthat compactonlike kinks, or compactons for short, can exist
tial U(6,.1—6,) and subjected to a nonlinear on-site or for specific velocities in physical systems modeled by a non-
substrate potentia¥(6,,), whered,(t) is the on-site degree linear Klein-Gordon equation with anharmonic coupling.
of freedom, which represents the influence of the surroundPart of the motivation of this work finds its origin in the
ing lattice atoms and external effects. The lattice Hamil-possibility of observing kinks in “real systems” with a

2

tonian is double-well potential. In this regard, a nice feature is that a
mechanical analog can be constructed, allowing one to ob-
1/(dée,
H:; {5 (H +U(On+2= 0n) +V(0n) |- (1) The paper is organized as follows. In Sec. I, we show
that a generalizedb-four model with nonlinear coupling

serve compactons.
The corresponding equations of motion can be written in thén@y exhibit compacton solutions. We then investigate nu-

standard form merically the existenC(_a anq stability of these compact enti-
ties. Such compactonlike kink solutions can be obtained for

d?6, other nonlinear topological systems, as presented in Sec. Ill.
gz LY (On+17=0n) =V (01— 0n)1+V'(6,) =0. In Sec. IV we present an experimental lattice of coupled

) pendulums which allows us to observe kink solitary waves
and compactons. Section V is devoted to concluding re-

Depending on the shape of the on-site potential, a nonlinedharks.
lattice with the Hamiltoniar(1) may sustain different kinds
of nonlinear excitations. ¥/(6,,) has two degenerate minima
(a double-well shape like in thé-four mode) or multiple
degenerate minimda periodic shape like in the Frenkel- A. Analytical results
Kontorova model topological kink excitations, which con-
nect two equivalent ground states, can exist. If interparticl%
interactionsU’ are linear, the kink solutions can be calcu-
lated exactly, in the continuum limit3]; for the discrete
equations(2) the kink solutions can be obtained either by V(6,)=
perturbation approachd8] or by numerical techniques. If
U’ also includes anharmonic interactions, specific kink in-
ternal modes may be creatf®]. The case whert’ is non-  and interaction potential

II. GENERALIZED @&-FOUR MODEL

Consider the generalize®-four lattice with on-site po-
ntial

- (1= 6)? ®
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Y » Cai . I =]
U(bh1— 9n)—?(9n+1_ tn) +T(0n+l_0n) : (a)
(4) 0.5
Here,Vy, C;, andC,, are constants that control the potential 0 o
barrier height of the double well potential and the strength of
the linear and nonlinear couplings, respectively. In this case, 05
the equation of motioii2) of the nth particle becomes )
2 —qpnneeee-
d-é, 3
cml(em—l—'— On-1—260,)+Crl(On+1— 0n) -2 -1 g 1 2
+(Op—1— 00)°]+2Vo(0,— 67). (5) ———=
b
For 2Vy,>C, and C,,, 6, varies slowly from one site to 05 (b)
another, and one can use the standard continuum approxima- '
tion 6,(t)— 6(x,t) and expandd,.,. Under these condi- 0 o
tions, settingX=x/a (that is, measuring the distanaein
units of lattice spacing), Eq. (5) is reduced to 0.5
0 C,+3C AR 2Vo(6—6%=0. (6
atZ | nl (9X (9X2 0( )_ . ( ) —_12 """ = 5 : >
Equation (6) was obtained by assuming that S
3C (961 9X)?(%01 9X?)>(C,/12) (9% 01 9X*), as will be the I
case in the following. Note thaE, represents the square of (c)
the velocity of linear waves in the chain. FGp=0, Eq.(6) 05
reduces to the standard continusbfour model with linear
coupling, which admits tanh-shaped kink solutions. 0 o
We then look for localized waves of permanent profile of
the form 6(s)= 6(X—ut), such asf— =1 anddé/ds—0, ~05
whens— =, wheres is a single independent variable de- '
pending onu which is an arbitrary velocity of propagation. Y SO
Integrating Eq.(6) and taking account of these conditions, 5 9 0 ] >
we obtain s
2(u?~Cy) 63— 3Cy 02+ 2Vo(1- 6%)2=0. (7 FIG. 1. Representation of field (dimensionlessas a function

. ) . ) of positions (dimensionless with s,=0 (compacton centgrand
This equation can be integrated fof— C,=0, that is, for the =1, corresponding to the wave forms of the compactons for dif-
two particular casesC;=0 (zero linear coupling: linear ferent kinds of on-site potentiala) -four potential: solutior(17).
waves cannot exisandu=0, andu= +/C,, which corre- (b) Sinusoidal potential: solutiond9g and(19b). (c) Double qua-
spond to kinks with a compact suppg@see Sec. I)lor com-  dratic potential: solution§21g and (21b). For each potential the

pactons. One obtains S-shaped wave forrfcontinuous ling represents the compact part
which connects the two constant pafts= =1, horizontal dotted
0.(X)= *sin (2Vo/3C ) Y 4(X—X0) 1, (8) lines of the solution.

when|X—X|<1, andd= =1 otherwise. As usual, the con-
stant of integration X,) defines the position of the center of
the compacton. For the second case we have

From the continuum approximation of E@.,), using Egs.
(3) and(4), one can calculate the totdinetic plus potential
energy localized in the compacton traveling at velog/t;.
B(X,t)=£sin (2V,/3C) (s 5p)], (9)  One has

when|X—/Ct|<1, andf= +1 otherwise. Here one has
=(X—+/Cit). From Egs(8) and(9) we can calculate the full _ J”’zy
width of the compactons, which in both cases is equdl to tot™
=m(3C,/2Vo)Y%. Consequently, when there is no linear
coupling one has a static compact@nticompacton solu-
tion, and, when both linear and nonlinear coupling are
present, a dynamic compact@mnticompactopsolution trav-
eling at particular velocity,/C, (or —+/C,) may exist. The
shape of the dynamic compacton is identical to the shape ofhere 6 is given by Eq. (8), and we have sety
the static one; it is represented in Figallfor s,=0. =(2V,/3C,,) Y. After simple calculations, we obtain

1&02+1C a02+1c aa)“
20at) T2 7Nox) T4 ox

1
+5 Vo(1- 6?)2

— a2y

a dX, (10
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Vo
Ci+ 5

o
Eo=ay 5 : (12) 1@

In the casau=+/C,=0, one has

T
Eo—ayVo 2 (12) 100 10
500 0

which represents the “mass” of a static compacton. Note (b)
that the energy is strictly localized and contrary to a standard 1
(tanh-shapedkink, which possessdgxponentigl wings and
can interact with an antikink, a compacton, and an anticom- 0o
pacton, will not interact unless they come into contact in a
way similar to the contact between two hard spheres. Such a
result should be interesting for the modeling of static domain
walls in condensed matter physics. 100 300 10
B 500 0 t

20

B. Numerical results FIG. 2. (a) Inelastic head-on collisiofsee text between a com-

In order to check the validity of our analytical approach pacton traveling initially at velocity/C,=14.4 and an anticompac-
and the stability of our solutions, we performed numericalton travelling initially at velocity— y/C,. 6, n, andt are dimension-
simulations of the equation of motio(b) which, in the less.(b) Inelastic head-on collisiofsee text between a compacton
strong coupling'continuous$ limit, reduces to Eq(6). It has  traveling initially at velocity /C,=14.4 and an antikink traveling
been integrated with a fourth-order Runge-Kutta schemenitially at velocity —0.3\/C|. 6, n, andt are dimensionless.
with a time step chosen to preserve the total energy of the
system to an accuracy better than ¥@ver a complete run. ll. GENERALIZATION TO OTHER MODELS

We first verified the validity of the static compacto@,(
=0) solution 6. given by Eq.(8). If this solution(with pa-
rametersVy,=2, L=32a, andC,;= 14 500 is chosen as an
initial condition of the system, and allowed to evolve in the
presence of a weak additional dissipation, it relaxesfto
=60:.+A0, whereAB_are vyeak spgtial sinugaidal deviations sidered in Sec. )l V=(1- 62, the sinusoidal (sine-
A arbirary tanh-shaped iital Kink also relaxes toward thSOTSOT-YPe) potential V- i(1.+cos). and the double
came profi)I/ee proving thate, is a good solution to order guadratic potential \#(1—.|0|)2..The.equilibrium positions
104, This de,viationAa fromcthe exact solution can be re- & 9=_tl, and the barrier height is equal to 1. Wlth. an
duce.d if we choose a compacton with larger witlthwhich mteraquon poten.t|aIU OT fprm (4) and on-site pqtentlal
indicates that the closer to the continuum limit we are, th V(6), in the continuum limit, £q(2) may be approximated

better the solution is. Actually, this result points out that the

As we shall see now, compactonlike solutions can be ob-
tained with interaction potentig¥), but with different on-
site potentialsV(#). These potentials have two or multiple
degenerate minima. We consider three specific potentials:
the ¢-four potential (normalized form of the potential con-

static compacton is an exact solution of the continuous sys- . 2] 520
tem. ——|C,+3C (—) —+V'(6)=0. (13

) [ [ 2

For C,#0, a dynamic compactowith parametersC, ot " Lax] | aXx

=208,V,=2,L=32a, andC,=14 500 launched at initial ) ) ) ]
velocity \/C, emits small radiations. Consequently, its veloc-Proceeding as in Sec. Il instead of E@) we obtain

ity decreases and we no longer have a dynamic compacton as ) ) .

described by solutiorf9), but rather a kink wave form. It 2(u=C) #5—3Cp 05 +4V(6) =0, (14
turns out that as soon as they are launched and propagate,

dynamic compactons, as described by solut@nlose their ~ As in Sec. Il we assume®—C;=0. Under this, condition
compact shape; they cannot exist. Then, with the same pal4) becomes

rameters as above, we have analyzed the head-on collision of

a compactorinitial velocity v; = /C) and an anticompacton 0s=[4V(0)/a]™, (19
(initial velocity v;= —+/C,). Our results, represented in Fig.

2(a), show that the collision is inelastic: the two kinks that Wherea=3C,.

emerge from the collision are deformed; they radiate oscilla- We now examine what happens féclose to 1(or —1).
tions and propagate at velocities lower th&®,. In Fig. 2b) ~ Let #=1+¢, with |¢|<1, <0, andes>0; Eqg.(15) can be
we represent the collision between a dynamic compactofXpanded in terms of to give

(initial velocity v;=+/C,) and a kink (initial velocity v;=
—0.3\/6,). Again, two deformed kinks emerge from the col-

lision. (16

E5—

2 dZV} 1/4
—g,

adi?



57 FROM KINKS TO COMPACTONLIKE KINKS

where the second derivative is consideredatl. Equation
(16) can be integrated easily to give

1/2

(s—5sp)?,

dﬁz_}(zﬁv

4\a d?

heres; is a constant of integration. F&r=s;, one hase
=0, which is equivalent t®9=1. Thus foru?’—C,=0 the

solution is a kink with a compact support or a compacton.
Now Eq.(15) can be integrated for the three specific poten-

tials. The results are summarized hereafter.
(i) ¢-four potential

r{ 4
o(s)=si

. (17)

1/4
Z) (s—$p)

For a=3C,,, this normalized solutiofwheresy is a con-
stant of integratiohis identical to Eq.(9). It was included
here for comparison with the two other potentials.

(ii) Sinusoidal(sine-Gordon typepotential

With this potential, from Eq(15) one obtains

4 1/4 w0 1/2
032 (;) ( COS?) , (18)
When integrating Eq(18), we consider two caseg=0 and
<0, i.e., s=sy and s<sy. Then (from tables of elliptic
functiong we obtain

2 - 1/4
0(s)=;arcco\lrcn2 5 (;) (s—sp),k ] for s=s,
(193
2 a1 1/4
0(s)=— p arcco% cr? > (;) (S—So),k” for s<sy.
(19b

where cn is a Jacobi elliptic function with parameter
1

2.
(iii) Double quadratic potential
In this case, one has
0s=(4la) (1] 6]%)"2 (20

which is integrated to give

2

1/4
1-3 (5> (s—sp)| for s=s0, (218

0(s)=1—

2

0(s)=—1+|1+ = for s<s;.

2

1/4
Z) (s—Sp)

(21b
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FIG. 3. Sketch of the pendulum lattice apparatus. Here only two
pendulums,n and n+1, coupled to each other by a spring and
attached to the steel ribba (parallel tox axis), are represented
with their respective angular displacemeftsand 6, .. The pen-
dulums are at equilibrium in one of the two equivalent potential
wells. The motion can occur in a plane perpendicular to the chain
(x axig); see also Fig. @).

IV. MECHANICAL ANALOG
A. Analysis

Analog mechanical systems, such as the experimental me-
chanical transmission line first introduced by S¢ag], play
an important role in the study of kink solitoh3] and their
remarkable properties. Thus, in order to observe kinks and
compactons, we constructed a mechanical analog which con-
sists of an experimental chain of identical pendulums, as
sketched in Fig. 3. Each basic unit is similar to the pendulum
recently studied by Petef44]: it can oscillate with a motion
whose character is determined by the forces of torsion and
gravity in opposition; for the configuration presently consid-
ered it possesses two equilibrium positigtvgo wells). Each
pendulum is connected to its neighbors by springs. When the
dissipation is neglected and the difference between angular
displacement of neighboring pendulums are small enough,
the equation of motion of theth chain unit is giver(see the
AppendiX by

d%e, _
IW: —K#,+mgdsing,+Cq(6n+1+ 60,-1—26,)

_CO,nI( en_ 0n+1)3_CO,nI( an_ an—l)sy (22)

where the terms on right hand site represent the restoring
torque owing to the torsion, the gravitational torque and the
restoring torque owing to the coupling with the neighboring

The compacton wave form corresponding to each of théendulumgsee the Appendix 6,(t) is the angular displace-

above solutions is represented in Figéa)11(b), and ic)

ment as a function of time of the nth pendulum| =md is

respectively. For each potential the S-shaped wave forfhe moment of inertia of a single pendulum of massand
(continuous ling represents the compact part which connectdengthd, g is the gravitation, and is the torsion constant.

the two constant part®= = 1; dotted lines of the solution.

Cy, andCy , are the linear and nonlinear torque constant of

We see that although the analytical solutions corresponding SPring between two pendulums: they are given by

to each potential are quite different, the shapes of the com-
pactons look very similar: in fact, they are not very sensitive

to the form of potentiaV(9).

conde(l—Jﬁ), (239

Iy
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0 O,I) (23|)

=kd? -
Con=kd (2|l 6

wherek is the spring stiffnessly the natural length of a
spring at rest, and, the length of this spring when it is

stretched between two adjacent pendulums at equilibriun

(bottom of one we)l. Note that the nonlinear coupling term

must be fully taken into account because the linear term i

especially small wheh is not very different frorm . More-

over, whenl,=1,, we haveCy;=0 andC, ,=kd*/2Kl3, as
we will see in the following.
Setting
K mgd C0’| CO, |
T=I—t, F:T, C1’|:?, CnI: Kn’ (24)

we transform Eq(21) into

d?6 _
g2 00— Sin g+ C1(20n= Ops1= 0n-1)

+Cnl[(0n_0n+1)3+(0n_en—l)s]zo- (25
In Eq. (25), the quantity  6,,+1I" sing,) represents the “on-
site” (zero coupling limi} torque. In the continuum approxi-
mation one obtains

%0 .
X2 +6—1T sind=0. (26)

%6

a2

962
C.,+3Cy X
The on-site potential energy, corresponding to E§) [or
Eqg. (25)]is
V(6,)=3(63— 62)+T(cos 6,— coby,). (27)

Here the parametdr plays the role of a control parameter.

ForI'>1 it determines the depth and separation of the two

wells [14], and *+ §,,, correspond to the two equilibrium po-
sitions. Equation(25) and its continuum approximatio{27)
cannot be solved analytically. Nevertheless, in order to o

tain some approximate solution, one can replace the potenti

V(6,) by the standard-four potential given by Eq3) with
0,— 6,16, and Vo= — 0,2+ 2I'(cos#,—cosb,). As de-
picted in Fig. 4, the fitting is good for 6,,< 0,< 6,,,. Under
these conditions, Eq25) reduces to

d?e, 5

W+CI(2®n_®n+l_®nfl)+cnl[(®n_®n+1)

+(0,—-0,_1)%]-2V((0,-03)=0, (28
where ©,=6,/6,, T=6,7, C=Cy,/6%, and V|

=2V,/6%. In the continuum limit, Eq(28) is approximated
by
62

aT?

%0

< 2VH(©—-03%)=0.

(29

o3

Equationg28) and(29) are similar to Eqs(5) and(6). Thus
Eqg. (29) admits compacton solutions of the forn®) and

(9.
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FIG. 4. Fitting of the double-well potentié27): dotted line, by
a ®-four potential of form(3): continuous line. For—1.5<4,
< 1.5 the two curves are practically superimposed and the approxi-
mation of the double-well potential of the real system b$-dour
potential is justified.

B. Apparatus and experiments

The apparatus is a lattice of 20 pendulums attached verti-
cally to the center of a horizontal steel ribb@ m long, 6
mm wide, and 0.1 mm thigksupported by vertical metallic
plates which are equidistana€ 10 cm) (see Figs. 3 and)5
A basic pendulum consists of a thin r¢gdiameter 3 mm
along which a cylindefmassm=67 g) can be displaced and
fixed. Depending on the vertical positionof the mass along
the rod, the system can oscillate with a motion which de-
pends on the potential shape, and is determined, as men-
tioned earlier, by the forces of gravity and torsion in oppo-
sition. Here, with d=87 mm and K=0.03, the control
parameter i§'=1.9, thus the on-site potential is a symmetric
double-well potential.
Once its tension is adjusted, the ribbon is held tight on the
top of each plate. With this precaution, the torsion constant is
the same for each pendulum, and the weak residual torsional

bg:oupling between pendulums can be neglected. Each pendu-

%’m (cylinden is attached to its neighbor with a spring.
prings connecting pendulums that are at equilibrium, in one
of the bottom of a potential well, are horizonfalee Fig.
5(a)].

With the physical parametef$,=0 [I;=1,=68 mm; see
Eqg. (23a], C, =25, andk=120, a static compacton can be
observed, as represented in Figp)5The experimental shape
approximately fit§see Fig. B)] the theoretical shape calcu-
lated from Eq.(9).

WhenC,#0 andC,# 0, solution(8) predicts a compac-
ton moving at velocity,/C, of the linear waves. In this case,
we cannot conclude that the moving S-shaped entity we ob-
serve has a compact shape for the following reasons. First,
we cannot control with sufficient precision the initial veloc-
ity of the kink. Second, even if we could launch a kink with
exact velocity/C, it would gradually slow down owing to
dissipative effectgthat are important compared to small ra-
diation effects predicted by our numerical simulations, see
Sec. Il B; thus we can never observe a moving compacton.
Nevertheless, with this mechanical line we can easily ob-
serve the dynamical properties of the kinks. For example, if
one launches a moving kinkinknown analytical shapevith
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inevitably occur for a real mechanical line. With the above
physical parameters no radiation of waves due to discretness
effects are observed. Thus the continuum approximation is
valid. Nevertheless, lattice effects and also the pinning of
kinks can be observed by simply decreasing the stiffness of
the springs; such experiments will be discussed elsewhere.

-\

V. CONCLUDING REMARKS

We have shown analytically that, in the continuum limit,
the ®-four model with nonlinear coupling only can exhibit a
static compacton solution. It presents a dynamic compacton
solution traveling at the characteristic velocity of linear
waves when both linear and nonlinear coupling are present.
Our numerical simulations point out that, contrary to the
static compacton, that is stable, the dynamic compacton is
unstable: it loses its compact shape when propagating, and
evolves into a kink wave form which is unknown analyti-
cally. We have also shown that compacton solutions can be
calculated for other topological systems with other on-site
potentials such as sinusoid@ine-Gordon typeor double-
quadratic on-site potential.

In order to observe compactons and kinks, we constructed
a mechanical analog which consists of an experimental chain
of identical pendulums that are nonlinearly coupled and ex-
perience a double-well on-site potential of tiefour type.
This analog model allows us to observe, in the strong non-
linear coupling limit, static compactons. This experimental
result confirms our numerical simulations results. Our ex-
perimental model is also convenient to illustrate and study
e qualitatively the dynamical properties of kinks that can
propagate and travel back and forth along the chain. Finally,
our analytical, numerical, and experimental study points out
0.5 that static compactons can exist. Such strictly localized enti-
ties should play a role in the modeling of domain walls in
real systems.
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APPENDIX

(b) In this appendix we derive E¢21). The general equation
of motion of thenth pendulum of the chain represented in

FIG. 5. (a) View of a static compacton on the experimental Fig. 3 is

chain lying horizontally on a table. This compacton connects pen- 420
dulums directed to the leflower part of the photographat equi- | " _K@.+madsing.+M -M
librium in one potential well @ =—1), to the pendulums directed dt? n Mg nt®n-in Tnn+ls

to the right (upper part of the photographat equilibrium in the

other potential well = +1). (b) Comparison of the experimental whereM,_;, andM,, ., are the torque exerted by pendu-
static compacton shape, observed(@) to the theoretical shape lum n—1 on pendulumm and pendulumm on pendulumn
calculated from Eq(9). Here ® = 6/ 6, (with 6,,==/3) is dimen-  +1. In terms of the componentg,=—d sing, and z,
sionless, antK=x/a (with a=10 cm) is dimensionless; the vertical =d cos 6, of the displacement, the elongation of the spring
lines represent the experimental precision. (see Fig. 3 between pendulums andn+1 is

arbitrary initial velocity at one end of the line, after reflection Al=\124 (Yo 1= Yn) 2+ (Zns1—2Z0) 2~ o,

at the opposite free end this kink becomes an antikink mov-

ing freely in the opposite direction, and so on. Depending orwherel is the length of the spring at rest, ahdhe minimal

its initial velocity a kink can reflect three or four times before length of the stretched spring between two pendulums. Thus
gradually slowing down owing to dissipative effects which we have
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kAl

0
Mn,n+l:7(yn+lzn_ynzn+l)1 Mn,n+l:kd2{1_n

4d? On— bni1)| V2
1+—TS|n2( n ﬂ+l)) }
17 2

where XsiN(6,— 0p41).

(yn+lzn_ynzn+1):d2 Sin(0p— 0n11)
Mn_1, is obtained by replacingy by n—1 in the above

and expression. When the difference between the angular dis-
s (B0 )] placement of neighboring pendulums is small enough
V=|17+4d? sir’ — | - (weakly discrete limijt, the torques can be replaced by their
expansion in terms of these angular differences, and we ob-
One obtains tain Eq.(22).
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