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Precise determination of the bond percolation thresholds and finite-size scaling corrections
for the sc, fcc, and bcc lattices
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Extensive Monte Carlo simulations were performed to study bond percolation on the simple(sibic
face-centered-cubiffcc), and body-centered-cubibco) lattices, using an epidemic approach. These simula-
tions provide very precise values of the critical thresholds for each of the lattices:
pc(sc)=0.248 812 6:0.000 0005, p(fcc)=0.120 163 5-0.000 001 O, and p¢(bcc)=0.180 287 5
+0.000 001 0. Fop close top., the results follow the expected finite-size and scaling behavior, with values
for the Fisher exponent (2.189+0.002), the finite-size correction exponddt(0.64+0.02), and the scaling
function exponentr (0.445+0.01) confirmed to be universdlS1063-651X98)04601-7

PACS numbses): 64.60.Ak, 64.60.Cn, 64.70.Pf

I. INTRODUCTION accurate values appear to Ipg=0.1200+0.0002 andp,
=0.1802t0.0002, respectively, recently found by van der
Percolation theory is used to describe a variety of naturaMarck [10] using the average crossing probability method
physical processes, which have been discussed in detail B§]. Additional literature values are listed below. These
Stauffer and Aharonfd] and Sahim[2]. In two-dimensional thresholds are not precise enough for a study we have been
percolation, either exact values or precise estimates ar@rrying outon the universal excess cluster numbers in three-
known for the critical thresholds and other related coeffi-dimensional system§ll] and as a consequence we have
cients and exponenf8—6]. conducted the present work. - . . o
However, three-dimensional lattices are relevant for most H€re we use a growth or epidemic analysis to obtain high-

natural processes. The most common of these are the simd?éeCiSiO” values for the percolation thresholds of the sc, fcc,
cubic (s, the face-centered-cubiéfcc), and the body- and bcc lattices. We reaffirm that three-dimensional percola-

centered-cubicbco) lattices. The percolation thresholds for tion follows the hypothesized finite-size and scaling behav-

these lattices are not known exactly and the estimates thag" and estimate the exponents and coefficients that enter

have been determined for the latter two lattices are much Ies'gto the finite-size and scaling functions.
In the following sections, we discuss the simulation that

precise than the values that have been found for typical WOye used to grow the percolation clusters and obtain our data.

dimensional systems. _ _ Then we present and briefly discuss the results that we ob-
An exception is the case of the sc lattice, where fairlyizined from our simulations.

precise values have been determined. A number of years ago,
Ziff and Stell carried out a study of three-dimensional per-
colation for the site and bond percolation on the sc lattice
[7]. The values p.=0.248 812-0.000 002 and p. We used a Monte Carlo simulation of bond percolation on
=0.311 605-0.000 010 were found for bond and site perco-each of the three-dimensional lattices. This simulation em-
lation, respectively. The behavior far away fromp, was  ployed the so-called Leath growth algoritjd2] to generate
also studied and it was found that the critical exponents caindividual percolation clusters. The cluster was started at a
be described by the consistent set 116/53<2.1887, ¢  seeded site that was centrally located on the lattice. From this
=24/53~0.4528, andv="7/8, with errors+0.001,+0.001, site, a cluster was grown to neighboring sites by occupying
and+0.008, respectively. However, this work, which used athe connecting bonds with a certain probabilityor leaving
growth method essentially equivalent to the epidemic apthem unoccupied with a probability-1p. The unit vectors
proach, remained unpublished as an internal report pfily  that were used to locate the neighboring sites for each lattice
In a more recent work, Grassberger found. are summarized in Table I. All of these clusters were allowed
=0.248 814-0.000 003 andp.=0.311 604-0.000 006 for to grow until they reached an upper cutoff, at which point
bond and site percolatiofnespectively on the sc latticé8], any cluster that was still growing was halted. This cutoff was
using an epidemic analys[®]. The precise agreement be- 22 (2097 152 wetted sites for the sc lattice and®®2
tween these two independent works provides strong evidendd 048 576 wetted sites for the fcc and bcc lattices. The size
that the procedures, random-number generators, error analgf the cluster was characterized by the number of wetted
ses, etc., implemented by both groups of authors are corredites rather than the occupied bonds of the clusters since the
Previous to these two workg, was known only to about former figures directly in the growth algorithm procedure.
four significant figures, as discussed below. It is important to In order to grow such large clusters, our simulation used
know p. very precisely so that other critical properties canthe data-blocking schenid 3], in which large lattice is di-
be studied without bias. vided into smaller blocks and memory is assigned to a block
For bond percolation on the fcc and bcc lattices, the mosonly after the cluster has grown into it. In this case, the

II. SIMULATION METHOD
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TABLE I. Unit vectors used to describe the neighbors in the sc, fcc, and bcc lattices.

Lattice Vectors

sc (1,00, (0,1,0, (0,0,2, (~1,0,0, (0,—1,0), (0,0-1)
fcc  (1,1,0, (1,-1,0), (-1,-1,0), (-1,1,0),(1,0,9, (-1,0,1),
(1,0~1), (-1,0-1), (0,1,9, (0,-1,1), (0,1-1), (0,~1,—1)
bcc  (1,1,D, (1,1-1), (-1,1,1), -1,1-1), (-1-11), (-1,-1-1), (1~1.1), (1-1,-1)

lattice, which has dimensions of 2042048 2048, was di- P(s,pc) ~AS ™. (1)
vided into 64 blocks of dimensions of size 3232x 32. Bit
mapping was also used to reduce the memory load of the

large lattices. The upper six bits of each coordinate wergn Fig. 1 data from our simulation plotted on a log-log plot
used to tell where in the memory that block is mapped. Th&now good agreement with this equation. However, for small
lower five bits of they andz coordinates tell the memory ¢|sters, there is a clear nonlinear region, which represents
which word and the lower five bits of the coordinate tell e finjte-size effect. For largs, the curves also become
the memory which bit of that word is used to store the S'te'nonlinear, resulting from growing the clusters at valueg of

With such a large lattice and the cutoffs we used, none of th%way fromp,. Values ofp that are greater thap,, produce
-

clusters saw the lattice boundary, so there were no boundarLy .
urves that increase for largeand values ofp below p,

effects.
The simulation counted the number of clusters that closeG2US€ CUrves t_o d_ecr_ea_se. . . .
in a range of (2,2""1—1) sites forn=0,1 and re- Such behavior is similar to that seen in an epidemic analy-

corded this number in theth bin. If a cluster was still grow- sis of a transition of interacting particle systems and indeed

ing when it reached the upper cutoff, it was counted in thdN€ cluster growth procedure is in fact essentially such a

last (20th or 21st bin. The simulation also kept track of the Process. The only difference is that, in the usual epidemic

average number of occupied bonds and the average numb@palysisi9], one plots the growth probability as a function of

of unoccupied bonds for clusters in each bin range, for reatime (generation or chemical distance number for percola-

sons discussed below. tion), while here we plot that probability as a function of
Random numbers were generated by the four-tap shiftsize. However, since the size scales with time, the two ap-

register rulex,=X,_471% Xn_ 1586® Xn— 608D Xn_ 9689, Where  proaches are equivalent.

@ is the exclusive-or operation, which we have usgeith The slope of the linear portion of the curves shown in Fig.

apparent succesf numerous previous studiés.g.,[4,5]). 1 is equal to 2-7, where 7 is the Fisher exponertl4].

However, due to the nonlinear portions of the curves and the
ll. RESULTS uncertainty of whichp is precisely at the critical threshold, it

is difficult to accurately deduce from these plots. To make

the behavior more pronounced, we plot difference between
Using the data obtained from the simulation, the numbethe data and a straight line of slope-2 in Fig. 2, for the fcc

of clusters grown to a size greater than or equal to sigen  lattice and different values qf. Here the correct value af

be deduced. The probability of growing clusters with theproduces a horizontal central portion of the curve. Applying

number of wetted sites greater than or equabtd(s,p), this analysis for all three lattices yields=2.189+0.002.

when operating at the critical thresholp=€ p.) and neglect- Figure 3 shows the effect of using slightly larger or smaller

ing finite-size effects is predicted to follojit ] values ofr for the fcc lattice.

A. Fisher exponent+

27 FIG. 1. Plot of the raw simulation results on a

log-log plot. These data are from the fcc lattice
3t and each of the five curves represent a different
value of p: 0.1206 (square¢, 0.1204(diamond,
0.1202 (circle), 0.1200 (triangle, and 0.1198
(cross. Nonlinearities are caused by finite-size
effects(smalls) andp not equalingp, (larges).
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FIG. 2. Determination of the Fisher exponent
-0.18 7 by plotting Irs™2P(s,py) vs Ins. These curves

show data from the simulations of a fcc lattice
and each curve represents a different valug:of

0.120 165 (diamond, 0.120162 (circle), and

-0.22
0.120160(triangle. These curves were produced

In P(s) + (T-2)In s

—0.24 using a value ofr=2.189, which produced the
06 e best horizontal curve for all three lattices.
-0.28 T —a
0.3 }
0 2 a4 6 3 10 12 14
Ins
B. Finite-size corrections C. Percolation thresholds

In order to account for the small clusters, the finite-size In Fig. 1 we show the effect that values pfaway from
correction must be added to Ed). ThenP is predicted to  p. have on the data for large clusters. In order to account for
follow the behavior wherp#p., a scaling function needs to be

B B included inP. The behavior is then represented by
P(s,pe)~As> (A+Bs %+--1),

_ _ _ , , P(s,pe) ~AS™ "f((p—pc)s”), €)
where( is the first correction-to-scaling expongaf]. Like
Eq. (1), Eq.(2) is only valid at the critical threshold. At the which is valid rigorously in the scaling limit as—o,
correct value of(), Eq. (2) predicts there will be a linear p—p,., such that p— p.)s’=const[1]. Because is close
relationship betwees™ 2P(s,p.) ands™ . Figure 4 shows to p., we can expand(x) in a Taylor series
plots between these two quantites for the sc, fcc, and bcc
lattices, respectively. The values Qfthat produced the best f((p—pe)s?)~1+C(p—pe)si+:--- . 4
linear fit are summarized in Table Il. The slope of the curves
gives the value for the coefficieR in Eq. (2) and the inter- Equation(3) and(4) describe hove™ 2P(s,p) deviates from
cept givesA in Egs. (1) and (2). The values we found are a constant value for large whenp is close top.. Figures
summarized in Table Ill. Note that the last data point is5(a), 5(b), and Fc) show the plots 06™ 2P(s,p) vs s’ for
shown on each of these plots, but they have been left out dhe sc, fcc, and bec lattices, respectively. For these plots, we
linear fits because they represent clusters of only two sitesjsed the value of-=0.453 from[7] and the linearity of the
too small to be described by just the first term of the finite-plots confirms that it is a good value. These plots show a

size corrections series. steep decline, which is the finite-size effect, followed by a
-0.1
—0.15 f
/]
c 02} :
= FIG. 3. Effect of varyingr on the central
W curve of Fig. 2(fcc lattice. These curvesall at
T 025t p=0.120 162, which is close t@;) compare
- three different values ofr, 2.192 (diamond,
= 2.189(circle), and 2.186(squaré. The best hori-
£ 03f zontal fit is clearly produced by using the middle
value.
-0.35 F
0.4 1
0 2 4 6 8 10 12 14
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0.94

FIG. 4. Plot to determine the finite-size cor-
rection predicted by Eq2), for the sc(triangle),
bcce (circle), and fcc(diamond lattices. The val-
ues of(), A, andB are summarized in Tables Il
and lll. The last points of each curve, which rep-
resented clusters of just two wetted sites, were
left out of the curve fit. Deviations from linearity
for large s are caused by being slightly differ-
ent fromp,.

s2P(s)

0.7

mostly linear region as predicted by Ed). The linear por- Equation(7) shows that we could determine-2r+ ¢ and
tions of the curve become more nearly horizontal as the choAC directly from a measurement of the derivati#®/dp as
sen value ofp gets closer t.. The value for the critical a function ofs.

threshold can be deduced by interpolating from these plots. To develop a formula for this derivative, we consider the

For the three lattices considered here, we thus find formal expression for the probability of growing a cluster
containingn occupied bonds andvacant(perimetey bonds:
pc(s0=0.248 812 6 0.000 000 5, (5a
Pn,t:gn,tpn(l_p)ta (8
p(fcc)=0.120 1635-0.000 001 O, (5b) . - . .
whereg, ; is the number of distinct clusters configurations
pc(bco)=0.180 287 5:0.000 001 0; (50  With n occupied and vacant bonds. From Ed8) we can

write the probability of growing a cluster of size greater than

A more formal method of carrying out this interpolation can or equal tos as
be obtained by plotting the slopes of the curves, shown in

Figs. 5a)-5(c), vs p. From Egs.(3) and(4), it follows that P(s p)=2 E 9np"(1—p)t (9)
n ot ' '
I(s™2P(s,p))
W=C(P—pc)+“' , (6)  where the sum is over ali andt such that the number of

wetted sites is greater than or equalsto

which implies that the value of the critical threshold can be Differentiating Eq.(9) with respect top gives
calculated from the intercept of this plot, as shown in Fig.

6. Figures %a) and 6 yield consistent values of the critical M:
threshold for the sc lattice. p

t
; Z gn,tp“<1—p>t(5——), (10

p 1-p

D. Scaling function which can be simplified to the final form

The linearized scaling function, as shown in E¢.and IP(s,p) (ny (t)
(4), can be studied efficiently by the following procedure. ap - ?_ 1-p’ (1D
From Egs.(3) and(4) it follows that
where(n) and(t) are the average number of occupied and
aP(s,p):ACSZ_T”jLW @) unoccupied bonds, respectively, over all clusters of size

ap greater than or equal ® For a Monte Carlo estimate of this

TABLE Il. Values of the universal finite-size correction expo- TABLE Ill. Nonuniversal coefficients for finite-size correction
nent() and the scaling function exponemtfor the sc, fcc, and bcc  and the scaling function of the sc, fcc, and bcc latti¢€swas not

lattices.(o was not found for the sc lattide. found for the sc lattice.
Lattice Q o Lattice A B C
e 0.63 sc 0.813 0.178
fcc 0.66 0.4453 fcc 0.767 0.186 7.95

bcc 0.66 0.4433 bcc 0.776 0.187 5.57
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FIG. 5. Plot ofs™ 2p(s) vs s”. The linearity for larges demonstrates the validity of Eq&) and(4). The value ofp that produces the
best horizontal fit yields the critical threshol@) shows the data from the sc lattice and each curve shows a different vahue 48 820,
0.248 814, 0.248 810, and 0.248 8@b) shows the data from the fcc lattice and the valuep ashown are 0.120 165, 0.120162, and
0.120160(c) shows the data from the bcc lattices and the valugsare 0.180 300, 0.180 287 5, and 0.180 27#®p to bottom in all cases
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FIG. 6. Plot of the slope of the linear portions of the curves shown in F&).& a function op. Thex intercept gives the value of the
critical threshold for the sc lattice.
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41 FIG. 7. Determination ofc and C using

§' dP/dp calculated from Eq(11). By fitting the
@ last 15 data points to Eq7), 2— 7+ ¢ can be
& r found from the slope of these curves ah@ can
: L A > be found from they intercept. The resulting val-
= Ll 4 . > ues ofg andC (using~andA determined above
¢ for the fcc (triangle and bcc(diamond lattices
are summarized in Tables Il and lll, respectively.
1F
0 .
0 2 4 6 8 10 12 14

Ins

derivative, we simply us€n) and (t) averaged over the This value ofr is also consistent with the values given by
sample of clusters. The values for these averages were r&tauffer and Aharony2.18 [1] and Nakanishi and Stanley
corded by our simulations and were then used with(&f)  (2.19 [16].
to calculate the derivative.
Figure 7 shows a plot of the measured derivati/® vss B. Finite-size corrections
for the fcc and bcec lattices. From the slopes and intercepts, , ,
and using the values d& and 7 determined above, we can In Fig. 4 our data show excellent agreement with the pre-
deduces andC. For o we find 0.445 0.01 for both cases, diction described by Eq2). It is expected that the exponent
which is consistent witfi7], and the values of we find are (! is @ universal quantity, while the coefficierAsandB are
given in Table III. different for the three different lattices. These expectations
Another application of the derivativd 1) is that it can be ~were borne out by our results showing the best fit of data for
used to produce new curves at valuespofiearp, that re-  all three lattices occurred at approximately the same value of
semble the curves seen in Figga)s-5(c), by virtue of a (0.64+0.02), as shown in Table Il, but different values of
Taylor expansion the coefficients as given in Table Ill. Our value for is
significantly larger than the value reported by Nakanishi and
dP(s,p) 12 Stanley €2=0.40) [16]. We believe this discrepancy is due
ap ! to their using less precise values of the critical exponents,
P=Ps which leads to more inherent error {3, and carrying out
significantly fewer simulations, as were feasible at the time
that that work was done.

P(s,p2) =P(s,p1)+(pP2—P1)

where the last derivative is determined using Ed.). This
“shifting” of the data is useful for correcting results taken
close to, but not precisely g, without carrying out a new

set of time-consuming simulations. C. Percolation thresholds
In Figs. 5a)—5(c), our data show excellent agreement
IV. DISCUSSION OF RESULTS with the predicted relationship as described by Egs.and

(4). The curves show the finite-size effects for snwabnd
then become linear. The linear portion of the curves become
Our results show excellent agreement with the expectethore nearly horizontal as the value pfapproache,,
relationship for the number of cluster of size greater than owhich is also predicted by the equations.
equal tos, which is shown in Eq(1). The only nonlinear Our values for the critical threshold%) are consistent
portions of the curve on a log-log plot occur wheis either  with most previous works. The critical threshold for the fcc
small or large, which is where Edl) is not valid. These lattice has been reported as 0.120D0002[10] and 0.119
nonlinearities are caused by the finite-size efferhall s) [1]. The critical threshold for the bcc lattice has been re-
and the departure gf from p. (larges). ported as 0.18020.0002[10] and 0.18031]. The critical
The value ofr was found by comparing curves that were threshold for the sc lattice has been reported as 0.248 812
similar to those shown in Figs. 2 and 3, finding the value that- 0.000 002 [7], 0.248 814-0.000 003 [8], 0.2488 [1],
produced the most nearly horizontal curve. As can be seen i8.24875-0.00013[17], 0.2488+0.0002 [18], and 0.2487
Figs. 2 and 3 for the fcc lattice, the reported valuerof +0.0002[10]. A number of years ago the higher values
=2.189[7] gives the best horizontal curve. This valuesof 0.2492+0.0002 [19] and 0.2494:0.0001 [20] were re-
also provides the best horizontal curves for the other twgorted, but these have since been recognized as probably
lattices, showing universalitywith error bars of+0.002. erroneous due to a flaw in programmify].

A. Fisher exponent =
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D. Scaling function niques that allow one to simulate very large latticE3]. The

One expects that the value of the scaling function expof€sults of this work allow other properties of three-
nento should be a universal quantity while the coefficiént dlmelr;smnall p(lercolanon on these lattices to be studied
should be different for each of the lattices. Values of thes&dually Precisely.

quantities were only calculated for the fcc and bec lattices | Bec@use all of this work was performed in a relatively
because in the sc lattice simulations we did not record th&"Ort amount of time, we believe that the epidemic approach

values of(n) and(t). The same value of (0.445-0.01) Is a more efficient way to find the critical threshold than the
produced the best fit for both lattices. This value is signifi-Conventional crossing-probability methods. However, we did
cantly smaller than the value reported by Nakanishi andot me}ke a_dlrect time comparison of two methods. Note that
Stanley (0.5040.030) [16], but it is consistent with the the epidemic growth algorithm used here can also be used to

values given by Ziff and Stel[7] (0.453+0.001) and study systems of any dimension, unlike hull methods

Stauffer and Aharony1] (0.45. The values for the coeffi- [4’202’23’ which are "m;ed to ;(WO ﬁimensions.h I
cient C, which are summarized in Table Ill, were different ur measurements &i(s, p) for all s (except the smallest

for the two lattices. Thus these results confirm the expecta/2!ues and forp very close top. can be summarized in a

tions. single equation

T2 —-Q o

V. CONCLUSION P(s,p)=s""“(A+Bs ")[1+C(p—py)s’], (13

Our work has produced the bond percolation criticalwith all constants and exponents determined by our simula-
threshold values given in E€). For the fcc and bcc lattices tions. Although this equation mixes finite-size and bulk scal-
these results are at least two orders of magnitude more préig forms, it provides a very accurate fit of the data in the
cise than previous values, while for the sc lattice the result isegime we studied.
four times more precise. We find critical exponents consis-
tent wit_h those giyen in7], and a more prec_ise value of the ACKNOWLEDGMENTS
correction-to-scaling exponerf? than previously known.
This increased precision is the result of having conducted This material is based upon work supported by the U.S.
extensive simulations with an inherently efficient procedureNational Science Foundation under Grant No. DMR-
(the epidemic method9]) along with programming tech- 9520700.
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