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Precise determination of the bond percolation thresholds and finite-size scaling corrections
for the sc, fcc, and bcc lattices

Christian D. Lorenz and Robert M. Ziff
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136

~Received 22 August 1997!

Extensive Monte Carlo simulations were performed to study bond percolation on the simple cubic~sc!,
face-centered-cubic~fcc!, and body-centered-cubic~bcc! lattices, using an epidemic approach. These simula-
tions provide very precise values of the critical thresholds for each of the lattices:
pc(sc)50.248 812 660.000 000 5, pc(fcc)50.120 163 560.000 001 0, and pc(bcc)50.180 287 5
60.000 001 0. Forp close topc , the results follow the expected finite-size and scaling behavior, with values
for the Fisher exponentt (2.18960.002), the finite-size correction exponentV (0.6460.02), and the scaling
function exponents (0.44560.01) confirmed to be universal.@S1063-651X~98!04601-7#

PACS number~s!: 64.60.Ak, 64.60.Cn, 64.70.Pf
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I. INTRODUCTION

Percolation theory is used to describe a variety of natu
physical processes, which have been discussed in deta
Stauffer and Aharony@1# and Sahimi@2#. In two-dimensional
percolation, either exact values or precise estimates
known for the critical thresholds and other related coe
cients and exponents@3–6#.

However, three-dimensional lattices are relevant for m
natural processes. The most common of these are the si
cubic ~sc!, the face-centered-cubic~fcc!, and the body-
centered-cubic~bcc! lattices. The percolation thresholds fo
these lattices are not known exactly and the estimates
have been determined for the latter two lattices are much
precise than the values that have been found for typical t
dimensional systems.

An exception is the case of the sc lattice, where fai
precise values have been determined. A number of years
Ziff and Stell carried out a study of three-dimensional p
colation for the site and bond percolation on the sc latt
@7#. The values pc50.248 81260.000 002 and pc
50.311 60560.000 010 were found for bond and site perc
lation, respectively. The behavior forp away from pc was
also studied and it was found that the critical exponents
be described by the consistent sett5116/53'2.1887, s
524/53'0.4528, andn57/8, with errors60.001,60.001,
and60.008, respectively. However, this work, which used
growth method essentially equivalent to the epidemic
proach, remained unpublished as an internal report only@7#.

In a more recent work, Grassberger foundpc
50.248 81460.000 003 andpc50.311 60460.000 006 for
bond and site percolation~respectively! on the sc lattice@8#,
using an epidemic analysis@9#. The precise agreement be
tween these two independent works provides strong evide
that the procedures, random-number generators, error a
ses, etc., implemented by both groups of authors are cor
Previous to these two works,pc was known only to abou
four significant figures, as discussed below. It is importan
know pc very precisely so that other critical properties c
be studied without bias.

For bond percolation on the fcc and bcc lattices, the m
571063-651X/98/57~1!/230~7!/$15.00
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accurate values appear to bepc50.120060.0002 andpc
50.180260.0002, respectively, recently found by van d
Marck @10# using the average crossing probability meth
@1#. Additional literature values are listed below. The
thresholds are not precise enough for a study we have b
carrying out on the universal excess cluster numbers in th
dimensional systems@11# and as a consequence we ha
conducted the present work.

Here we use a growth or epidemic analysis to obtain hi
precision values for the percolation thresholds of the sc,
and bcc lattices. We reaffirm that three-dimensional perco
tion follows the hypothesized finite-size and scaling beh
ior, and estimate the exponents and coefficients that e
into the finite-size and scaling functions.

In the following sections, we discuss the simulation th
we used to grow the percolation clusters and obtain our d
Then we present and briefly discuss the results that we
tained from our simulations.

II. SIMULATION METHOD

We used a Monte Carlo simulation of bond percolation
each of the three-dimensional lattices. This simulation e
ployed the so-called Leath growth algorithm@12# to generate
individual percolation clusters. The cluster was started a
seeded site that was centrally located on the lattice. From
site, a cluster was grown to neighboring sites by occupy
the connecting bonds with a certain probabilityp or leaving
them unoccupied with a probability 12p. The unit vectors
that were used to locate the neighboring sites for each la
are summarized in Table I. All of these clusters were allow
to grow until they reached an upper cutoff, at which po
any cluster that was still growing was halted. This cutoff w
221 ~2 097 152! wetted sites for the sc lattice and 220

~1 048 576! wetted sites for the fcc and bcc lattices. The s
of the cluster was characterized by the number of wet
sites rather than the occupied bonds of the clusters since
former figures directly in the growth algorithm procedure

In order to grow such large clusters, our simulation us
the data-blocking scheme@13#, in which large lattice is di-
vided into smaller blocks and memory is assigned to a bl
only after the cluster has grown into it. In this case, t
230 © 1998 The American Physical Society
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TABLE I. Unit vectors used to describe the neighbors in the sc, fcc, and bcc lattices.

Lattice Vectors

sc ~1,0,0!, ~0,1,0!, ~0,0,1!, ~21,0,0!, ~0,21,0!, ~0,0,21!

fcc ~1,1,0!, (1,21,0), (21,21,0), (21,1,0), ~1,0,1!, (21,0,1),
(1,0,21), (21,0,21), ~0,1,1!, (0,21,1), (0,1,21), (0,21,21)

bcc ~1,1,1!, (1,1,21), (21,1,1), (21,1,21), (21,21,1), (21,21,21), (1,21,1), (1,21,21)
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lattice, which has dimensions of 20483204832048, was di-
vided into 643 blocks of dimensions of size 32332332. Bit
mapping was also used to reduce the memory load of
large lattices. The upper six bits of each coordinate w
used to tell where in the memory that block is mapped. T
lower five bits of they and z coordinates tell the memor
which word and the lower five bits of thex coordinate tell
the memory which bit of that word is used to store the s
With such a large lattice and the cutoffs we used, none of
clusters saw the lattice boundary, so there were no boun
effects.

The simulation counted the number of clusters that clo
in a range of (2n,2n1121) sites for n50,1, . . . and re-
corded this number in thenth bin. If a cluster was still grow-
ing when it reached the upper cutoff, it was counted in
last ~20th or 21st! bin. The simulation also kept track of th
average number of occupied bonds and the average nu
of unoccupied bonds for clusters in each bin range, for r
sons discussed below.

Random numbers were generated by the four-tap s
register rulexn5xn2471% xn21586% xn26988% xn29689, where
% is the exclusive-or operation, which we have used~with
apparent success! in numerous previous studies~e.g.,@4,5#!.

III. RESULTS

A. Fisher exponentt

Using the data obtained from the simulation, the num
of clusters grown to a size greater than or equal to sizes can
be deduced. The probability of growing clusters with t
number of wetted sites greater than or equal tos, P(s,p),
when operating at the critical threshold (p5pc) and neglect-
ing finite-size effects is predicted to follow@1#
e
e
e
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P~s,pc!;As22t. ~1!

In Fig. 1 data from our simulation plotted on a log-log pl
show good agreement with this equation. However, for sm
clusters, there is a clear nonlinear region, which repres
the finite-size effect. For larges, the curves also becom
nonlinear, resulting from growing the clusters at values op
away frompc . Values ofp that are greater thanpc produce
curves that increase for larges and values ofp below pc

cause curves to decrease.
Such behavior is similar to that seen in an epidemic ana

sis of a transition of interacting particle systems and inde
the cluster growth procedure is in fact essentially such
process. The only difference is that, in the usual epide
analysis@9#, one plots the growth probability as a function
time ~generation or chemical distance number for perco
tion!, while here we plot that probability as a function o
size. However, since the size scales with time, the two
proaches are equivalent.

The slope of the linear portion of the curves shown in F
1 is equal to 22t, where t is the Fisher exponent@14#.
However, due to the nonlinear portions of the curves and
uncertainty of whichp is precisely at the critical threshold,
is difficult to accurately deducet from these plots. To make
the behavior more pronounced, we plot difference betw
the data and a straight line of slope 22t in Fig. 2, for the fcc
lattice and different values ofp. Here the correct value oft
produces a horizontal central portion of the curve. Applyi
this analysis for all three lattices yieldst52.18960.002.
Figure 3 shows the effect of using slightly larger or smal
values oft for the fcc lattice.
a
e
nt

e

FIG. 1. Plot of the raw simulation results on
log-log plot. These data are from the fcc lattic
and each of the five curves represent a differe
value of p: 0.1206 ~square!, 0.1204~diamond!,
0.1202 ~circle!, 0.1200 ~triangle!, and 0.1198
~cross!. Nonlinearities are caused by finite-siz
effects~small s! andp not equalingpc ~larges!.



nt

e

d
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FIG. 2. Determination of the Fisher expone
t by plotting lnst22P(s,pc) vs lns. These curves
show data from the simulations of a fcc lattic
and each curve represents a different value ofp:
0.120 165 ~diamond!, 0.120 162 ~circle!, and
0.120160~triangle!. These curves were produce
using a value oft52.189, which produced the
best horizontal curve for all three lattices.
iz

r

b
t
e

is
t

ite
te

for
e

, we

a
a

B. Finite-size corrections

In order to account for the small clusters, the finite-s
correction must be added to Eq.~1!. ThenP is predicted to
follow

P~s,pc!;As22t~A1Bs2V1••• ! , ~2!

whereV is the first correction-to-scaling exponent@15#. Like
Eq. ~1!, Eq. ~2! is only valid at the critical threshold. At the
correct value ofV, Eq. ~2! predicts there will be a linea
relationship betweenst22P(s,pc) ands2V. Figure 4 shows
plots between these two quantites for the sc, fcc, and
lattices, respectively. The values ofV that produced the bes
linear fit are summarized in Table II. The slope of the curv
gives the value for the coefficientB in Eq. ~2! and the inter-
cept givesA in Eqs. ~1! and ~2!. The values we found are
summarized in Table III. Note that the last data point
shown on each of these plots, but they have been left ou
linear fits because they represent clusters of only two s
too small to be described by just the first term of the fini
size corrections series.
e

cc

s

of
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-

C. Percolation thresholds

In Fig. 1 we show the effect that values ofp away from
pc have on the data for large clusters. In order to account
the behavior whenpÞpc , a scaling function needs to b
included inP. The behavior is then represented by

P~s,pc!;As22t f „~p2pc!s
s
…, ~3!

which is valid rigorously in the scaling limit ass→`,
p→pc , such that (p2pc)s

s5const@1#. Becausep is close
to pc , we can expandf (x) in a Taylor series

f „~p2pc!s
s
…;11C~p2pc!s

s1••• . ~4!

Equation~3! and~4! describe howst22P(s,p) deviates from
a constant value for larges when p is close topc . Figures
5~a!, 5~b!, and 5~c! show the plots ofst22P(s,p) vs ss for
the sc, fcc, and bcc lattices, respectively. For these plots
used the value ofs50.453 from@7# and the linearity of the
plots confirms that it is a good value. These plots show
steep decline, which is the finite-size effect, followed by
le
FIG. 3. Effect of varyingt on the central
curve of Fig. 2~fcc lattice!. These curves~all at
p50.120 162, which is close topc! compare
three different values oft: 2.192 ~diamond!,
2.189~circle!, and 2.186~square!. The best hori-
zontal fit is clearly produced by using the midd
value.



r-

I
p-
re

57 233PRECISE DETERMINATION OF THE BOND . . .
FIG. 4. Plot to determine the finite-size co
rection predicted by Eq.~2!, for the sc~triangle!,
bcc ~circle!, and fcc~diamond! lattices. The val-
ues ofV, A, andB are summarized in Tables I
and III. The last points of each curve, which re
resented clusters of just two wetted sites, we
left out of the curve fit. Deviations from linearity
for larges are caused byp being slightly differ-
ent frompc .
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mostly linear region as predicted by Eq.~4!. The linear por-
tions of the curve become more nearly horizontal as the c
sen value ofp gets closer topc . The value for the critical
threshold can be deduced by interpolating from these pl
For the three lattices considered here, we thus find

pc~sc!50.248 812 660.000 000 5, ~5a!

pc~ fcc!50.120 163560.000 001 0, ~5b!

pc~bcc!50.180 287 560.000 001 0; ~5c!

A more formal method of carrying out this interpolation c
be obtained by plotting the slopes of the curves, shown
Figs. 5~a!–5~c!, vs p. From Eqs.~3! and ~4!, it follows that

]„st22P~s,p!…

]~ss!
5C~p2pc!1••• , ~6!

which implies that the value of the critical threshold can
calculated from thex intercept of this plot, as shown in Fig
6. Figures 5~a! and 6 yield consistent values of the critic
threshold for the sc lattice.

D. Scaling function

The linearized scaling function, as shown in Eqs.~3! and
~4!, can be studied efficiently by the following procedur
From Eqs.~3! and ~4! it follows that

]P~s,p!

]p
5ACs22t1s1••• . ~7!

TABLE II. Values of the universal finite-size correction exp
nentV and the scaling function exponents for the sc, fcc, and bcc
lattices.~s was not found for the sc lattice.!

Lattice V s

sc 0.63
fcc 0.66 0.4453
bcc 0.66 0.4433
o-

s.

in

.

Equation~7! shows that we could determine 22t1s and
AC directly from a measurement of the derivative]P/]p as
a function ofs.

To develop a formula for this derivative, we consider t
formal expression for the probability of growing a clust
containingn occupied bonds andt vacant~perimeter! bonds:

Pn,t5gn,tp
n~12p! t, ~8!

wheregn,t is the number of distinct clusters configuratio
with n occupied andt vacant bonds. From Eq.~8! we can
write the probability of growing a cluster of size greater th
or equal tos as

P~s,p!5(
n

(
t

gn,tp
n~12p! t, ~9!

where the sum is over alln and t such that the number o
wetted sites is greater than or equal tos.

Differentiating Eq.~9! with respect top gives

]P~s,p!

]p
5(

n
(

t
gn,tp

n~12p! tS n

p
2

t

12pD , ~10!

which can be simplified to the final form

]P~s,p!

]p
5

^n&
p

2
^t&

12p
, ~11!

where^n& and ^t& are the average number of occupied a
unoccupied bonds, respectively, over all clusters of s
greater than or equal tos. For a Monte Carlo estimate of thi

TABLE III. Nonuniversal coefficients for finite-size correctio
and the scaling function of the sc, fcc, and bcc lattices.~C was not
found for the sc lattice.!

Lattice A B C

sc 0.813 0.178
fcc 0.767 0.186 7.95
bcc 0.776 0.187 5.57
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FIG. 5. Plot ofst22p(s) vs ss. The linearity for larges demonstrates the validity of Eqs.~3! and~4!. The value ofp that produces the
best horizontal fit yields the critical threshold.~a! shows the data from the sc lattice and each curve shows a different value ofp: 0.248 820,
0.248 814, 0.248 810, and 0.248 800.~b! shows the data from the fcc lattice and the values ofp shown are 0.120 165, 0.120 162, an
0.120 160.~c! shows the data from the bcc lattices and the values ofp are 0.180 300, 0.180 287 5, and 0.180 275 0~top to bottom in all cases!.

FIG. 6. Plot of the slope of the linear portions of the curves shown in Fig. 5~a! as a function ofp. Thex intercept gives the value of the
critical threshold for the sc lattice.
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FIG. 7. Determination ofs and C using
]P/]p calculated from Eq.~11!. By fitting the
last 15 data points to Eq.~7!, 22t1s can be
found from the slope of these curves andAC can
be found from they intercept. The resulting val-
ues ofs andC ~usingt andA determined above!
for the fcc ~triangle! and bcc~diamond! lattices
are summarized in Tables II and III, respectivel
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derivative, we simply usên& and ^t& averaged over the
sample of clusters. The values for these averages were
corded by our simulations and were then used with Eq.~11!
to calculate the derivative.

Figure 7 shows a plot of the measured derivative~11! vs s
for the fcc and bcc lattices. From the slopes and interce
and using the values ofA and t determined above, we ca
deduces andC. For s we find 0.44560.01 for both cases
which is consistent with@7#, and the values ofC we find are
given in Table III.

Another application of the derivative~11! is that it can be
used to produce new curves at values ofp nearpc that re-
semble the curves seen in Figs. 5~a!–5~c!, by virtue of a
Taylor expansion

P~s,p2!5P~s,p1!1~p22p1!
]P~s,p!

]p U
p5p1

, ~12!

where the last derivative is determined using Eq.~11!. This
‘‘shifting’’ of the data is useful for correcting results take
close to, but not precisely at,pc , without carrying out a new
set of time-consuming simulations.

IV. DISCUSSION OF RESULTS

A. Fisher exponentt

Our results show excellent agreement with the expec
relationship for the number of cluster of size greater than
equal tos, which is shown in Eq.~1!. The only nonlinear
portions of the curve on a log-log plot occur whens is either
small or large, which is where Eq.~1! is not valid. These
nonlinearities are caused by the finite-size effect~small s!
and the departure ofp from pc ~larges!.

The value oft was found by comparing curves that we
similar to those shown in Figs. 2 and 3, finding the value t
produced the most nearly horizontal curve. As can be see
Figs. 2 and 3 for the fcc lattice, the reported value oft
52.189 @7# gives the best horizontal curve. This value oft
also provides the best horizontal curves for the other
lattices, showing universality~with error bars of60.002!.
re-
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This value oft is also consistent with the values given b
Stauffer and Aharony~2.18! @1# and Nakanishi and Stanle
~2.19! @16#.

B. Finite-size corrections

In Fig. 4 our data show excellent agreement with the p
diction described by Eq.~2!. It is expected that the exponen
V is a universal quantity, while the coefficientsA andB are
different for the three different lattices. These expectatio
were borne out by our results showing the best fit of data
all three lattices occurred at approximately the same valu
V (0.6460.02), as shown in Table II, but different values
the coefficients as given in Table III. Our value forV is
significantly larger than the value reported by Nakanishi a
Stanley (V50.40) @16#. We believe this discrepancy is du
to their using less precise values of the critical expone
which leads to more inherent error inV, and carrying out
significantly fewer simulations, as were feasible at the ti
that that work was done.

C. Percolation thresholds

In Figs. 5~a!–5~c!, our data show excellent agreeme
with the predicted relationship as described by Eqs.~3! and
~4!. The curves show the finite-size effects for smalls and
then become linear. The linear portion of the curves beco
more nearly horizontal as the value ofp approachespc ,
which is also predicted by the equations.

Our values for the critical thresholds~5! are consistent
with most previous works. The critical threshold for the f
lattice has been reported as 0.120060.0002@10# and 0.119
@1#. The critical threshold for the bcc lattice has been
ported as 0.180260.0002@10# and 0.1803@1#. The critical
threshold for the sc lattice has been reported as 0.248
60.000 002 @7#, 0.248 81460.000 003 @8#, 0.2488 @1#,
0.2487560.00013 @17#, 0.248860.0002 @18#, and 0.2487
60.0002 @10#. A number of years ago the higher value
0.249260.0002 @19# and 0.249460.0001 @20# were re-
ported, but these have since been recognized as prob
erroneous due to a flaw in programming@21#.
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D. Scaling function

One expects that the value of the scaling function ex
nents should be a universal quantity while the coefficientC
should be different for each of the lattices. Values of the
quantities were only calculated for the fcc and bcc lattic
because in the sc lattice simulations we did not record
values of^n& and ^t&. The same value ofs (0.44560.01)
produced the best fit for both lattices. This value is sign
cantly smaller than the value reported by Nakanishi a
Stanley (0.50460.030) @16#, but it is consistent with the
values given by Ziff and Stell@7# (0.45360.001) and
Stauffer and Aharony@1# ~0.45!. The values for the coeffi-
cient C, which are summarized in Table III, were differe
for the two lattices. Thus these results confirm the expe
tions.

V. CONCLUSION

Our work has produced the bond percolation critic
threshold values given in Eq.~5!. For the fcc and bcc lattice
these results are at least two orders of magnitude more
cise than previous values, while for the sc lattice the resu
four times more precise. We find critical exponents cons
tent with those given in@7#, and a more precise value of th
correction-to-scaling exponentV than previously known.
This increased precision is the result of having conduc
extensive simulations with an inherently efficient proced
~the epidemic method@9#! along with programming tech
.
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niques that allow one to simulate very large lattices@13#. The
results of this work allow other properties of thre
dimensional percolation on these lattices to be stud
equally precisely.

Because all of this work was performed in a relative
short amount of time, we believe that the epidemic appro
is a more efficient way to find the critical threshold than t
conventional crossing-probability methods. However, we
not make a direct time comparison of two methods. Note t
the epidemic growth algorithm used here can also be use
study systems of any dimension, unlike hull metho
@4,22,23#, which are limited to two dimensions.

Our measurements ofP(s,p) for all s ~except the smalles
values! and for p very close topc can be summarized in a
single equation

P~s,p!5st22~A1Bs2V!@11C~p2pc!s
s# , ~13!

with all constants and exponents determined by our sim
tions. Although this equation mixes finite-size and bulk sc
ing forms, it provides a very accurate fit of the data in t
regime we studied.
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