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Wide ultrarelativistic plasma-beam–magnetic-barrier collision

V. V. Usov and M. V. Smolsky
Department of Condensed Matter Physics, Weizmann Institute, Rehovot 76100, Israel

~Received 9 April 1997!

The interaction between a wide ultrarelativistic fully ionized plasma beam and a magnetic barrier is studied
numerically. It is assumed that the plasma beam is initially homogeneous and impacts with the Lorentz factor
G0@1 on the barrier. The magnetic field of the barrierB0 is uniform and transverse to the beam velocity. When
the energy densities of the beam and the magnetic field are comparable,a58pn0mpc2(G021)/B0

2;1, the
process of the beam-barrier interaction is strongly nonstationary and the density of reversed protons is modu-
lated in space by a factor of 10 or so. The modulation of reversed protons decreases with decrease ofa. The
beam is found to penetrate deep into the barrier provided thata.acr , whereacr is about 0.4. The speed of
such a penetration is subrelativistic and depends ona. Strong electric fields are generated near the front of the
barrier and electrons are accelerated in these fields up to the mean energy of protons, i.e., up to;mpc2G0. The
synchrotron radiation of high-energy electrons from the front vicinity is calculated. Stationary solutions for the
beam-barrier collision are considered. It is shown that such a solution may be only ata&0.220.5, depending
on the boundary conditions for the electric field in the region of the beam-barrier interaction.
@S1063-651X~98!04602-9#

PACS number~s!: 41.75.2i, 95.30.Gv, 95.85.Pw, 98.70.Rz
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I. INTRODUCTION

There is now compelling evidence that plasma is ejec
from many astronomical objects and flows away at relativ
tic speeds. The Lorentz factorG0 of such plasma wind is a
few 3(1210) for the jets associated with active galac
nuclei @1# and;1022103 or even more for theg-ray burst-
ers@2#. A strong magnetic field may be in the outflowing g
@3–6#. Relativistic magnetized winds can interact with
external medium~e.g., an ordinary interstellar medium!. It
was pointed out in Ref.@7# that such an interaction may b
responsible for radiation of both x rays andg rays from the
g-ray bursters. For consideration of the interaction betwee
relativistic magnetized wind and an external medium, it
convenient to switch to the wind frame. In this frame, t
problem of the magnetized wind–external medium inter
tion is identical to the problem of collision between a wi
relativistic beam of cold plasma and a region with a stro
magnetic field, which is called a magnetic barrier.

The problem of the interaction between plasma beams
magnetic barriers was attacked in many experiments and
oretical papers~see Ref.@8# and references therein!. How-
ever, all known experimental studies of the beam–magne
barrier interaction are irrelevant to our problem. This
because the plasma beams produced by the laboratory e
ment are either nonrelativistic or very narrow and the cro
beam sizes are much smaller than the gyroradius of the b
protons in the field of the barrier. In the theoretical studies
is usually used the assumption of Rosenbluth@9# that the
charge separation is small. However, this assumption is v
provided the inequality (v0 /c)2!me /mp.5.431024 holds
true, wherev0 is the beam velocity,me is the electron mass
and mp is the proton mass. For relativistic beams,v0

5cA12(1/G0)22.c, the assumption of Rosenbluth prov
inadequate and the charge separation is very importan
the dynamics of particles near the barrier front@10,11#. Be-
low, the interaction of a wide ultrarelativistic plasma bea
571063-651X/98/57~2!/2267~9!/$15.00
d
-

a
s

-

g

nd
e-

c-

ip-
s-
m

it

id

or

with a magnetic barrier is considered numerically~for pre-
liminary results and some astrophysical applications see
@11#!.

II. FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

The situation to be discussed is the following. At the in
tial momentt50 the ultrarelativistic~Lorentz factorG0@1!
neutral beam of protons and electrons~number densitiesnp5
ne[n0) runs along thex axis into the magnetic barrier
which is the half spacex.0 with an external magnetic field
B05B0êzQ(x), wheren0 ,B0 are constants andQ(x) is the
step function equal to unity forx.0 and to zero forx,0.
The beam is infinite in they-z dimensions and semi-infinite
in thex dimension. Our goal is to construct a 11

2 dimensional
time-dependent solution for the problem, i.e., to find induc
electromagnetic fields (E5Exêx1Eyêy , B5Bêz) and motion
of the beam particles in thex-y plane. The field structure an
the beam particle motion are to be treated self-consisten
All the quantities are assumed to be dependent ont and x
only.

As noted earlier, the strength of the magnetic fields in
astrophysical winds may be very high, especially in t
winds flowing out from theg-ray bursters@4,5#. High-energy
electrons generate synchrotron radiation in these fields
the radiation damping force that acts on the radiating e
trons has to be taken into account. Sincemp@me , both the
synchrotron radiation of protons and the radiation damp
force that acts on the protons are very small~e.g., Ref.@12#!
and may be neglected.

The following set of equations can be used to describe
process of the beam–barrier collision@12#:

]Ex

]x
54pr, ~1!
2267 © 1998 The American Physical Society
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]Ey

]x
52

1

c

]B

]t
, ~2!

]B

]x
52

1

c

]Ey

]t
2

4p

c
j y , ~3!

mc
dui

ds
5

e

c
Fikuk1

2e4

3m2c5
~Fklu

l !~Fkmum!ul , ~4!

where r and j are the densities of charges and curren
respectively,e is the charge of particles,m is the mass
of particles,m5$me ,mp%,s is the interval,ui5$G,(v/c)G%
is the four-velocity,G is the Lorentz factor of particles, an
Fik is the electromagnetic-field tensor. No simplifying a
sumptions besides geometrical ones are exploited when
writing Maxwell equations~1!–~3!. The second term on th
right-hand side of the relativistic equation of particle moti
~4! is the radiation damping four-force. Following Ref.@11#,
only the term of the highest power inG is left in the damping
force. This is valid for ultrarelativistic motion of particle
G@1 ~e.g., Ref.@12#!.

The four-velocityui from Eq. ~4! is related to the charge
and current densities that appear in the Maxwell equati
~1!–~3!:

j i5$cr, j x , j y,0%5( ceG21ui , ~5!

where( means the sum over the beam particles per uni
volume. The energy lossesI of electrons because of the
radiation in the electric and magnetic fields are compu
using the equation@12#

I 5
2e4

3me
2c3H S E1

1

c
v3BD 2

2
1

c2
~E–v!2J G2. ~6!

To evaluate the spectrum of the radiation of electrons,
have used the following expression for the spectral inten
of synchrotron radiation@13#:

I n5
A3e3B

mec
2

n

nc
E

n/nc

`

K5/3~h!dh, ~7!

whereK5/3 is the modified Bessel functions of 5/3 order,

nc5
3eBG2

4pmec
. ~8!

In Eqs. ~7! and ~8!, it is taken into account that in our cas
the velocities of particles are perpendicular to the magn
field v'B.

The initial beam number density is taken from the eq
tion

n0mpc2~G021!5a
B0

2

8p
, ~9!

where a is the dimensionless parameter. In this work w
study mainly the casea;1 when the plasma flow pressure
,
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comparable to the magnetic-field pressure of the barrier
different runs,a ranges from 0.2 to 4.

To integrate the set of equations~1!–~9! we used a mac-
roparticle approximation in which all particles of the bea
are subdivided into a large number (;104) of packets. The
particles within a packet are bundled together forming
large macroparticle that is infinitively small along the axisx
and infinitively large in all directions of they-z plane. Each
packet contains either protons or electrons~for details of the
numerical method see Ref.@11#!.

The examined space-time domain is

xmin,x,xmax, 0,t,tmax, ~10!

wherexmin is equal to a few3~1210!~c/vBp), xmax is equal
to a few3~1210)(c/vBp), tmax is equal to a few3~1210!
Tp , Tp52p/vBp is the proton gyroperiod, andvBp5eB0 /
mpcG0 and c/vBp5mpc2G0 /eB0 are the proton gyrofre-
quency and gyroradius, respectively. The time step of ca
lations is a few31026Tp , depending ona.

The boundary condition forEx is Exux5xmax
50, asxmax is

chosen so that no beam particles penetrate deeper thanxmax
in the observed interval of time. Electromagnetic waves g
erated due to charge flow are allowed to escape freely f
the system that is used as boundary conditions forB andEy
in Eqs.~2! and ~3!.

III. RESULTS OF NUMERICAL SIMULATIONS
AND SCALING

The relativistic cold plasma–magnetic-barrier collision
characterized by the following parameters:B0, G0, and a.
The input parameters of our simulations are given in Tabl
The values ofB0 and G0 are chosen to be relevant to co
mologicalg-ray bursters@3–5,7,11#.

TABLE I. Input parameters of simulations.

B0 G0 a 2xmin xmax tmax

Run ~G! (103) (c/vBp) (c/vBp) (Tp)

A 100 0.1 2 5 10 2.8
B 300 0.3 2 5 10 2.8
C 300 1 2 5 12 3.3
D 104 0.5 2 5 7 3.3
E 104 1 2 10 7 3.5
F 104 2 2 5 5 2.4
G 105 1 2 10 5 2.3
H 104 1 1 10 5 4.4
I 103 1 4 5 20 3.5
J 104 1 0.2 5 15 5.1
K 300 0.3 1/3 10 5 10.6
L 300 0.3 2/5 10 5 10.6
M 300 0.3 4/7 5 30 10.6
N 300 0.3 2/3 5 30 15.9
O 300 0.3 1 5 30 10.6
P 300 0.3 2 5 30 10.6
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57 2269WIDE ULTRARELATIVISTIC PLASMA- . . .
A. Particle dynamics and penetration of the beam particles
into the barrier

The density of protons that move towards the magnet
barrier (vx. 0) is almost unperturbed until the distance to
the barrier is smaller than;c/vBp . Reversed protons that
move away from the magnetic barrier (vx,0) are bunched
in the process of the beam-barrier interaction~Fig. 1!. The
modulation of the density of reversed protons is strong a
a;1 and decreases with decrease ofa. Namely, the ratio of
the maximum to minimum densities of reversed protons i
;10 ata.1 and;2 at a.0.2. A typical length of such a
modulation is roughly the proton gyroradiusc/vBp . A simi-
lar phenomenon was observed also in numerical simulatio
of collisionless shock waves near the shock front~e.g., Ref.
@14#!.

At a;1, the mean Lorentz factor of reversed protons tha
are far enough from the barrierx,2(c/vBp), where the
process of a strong interaction between particles and fields
more or less over, iŝGp

out&.(0.560.1)G0, i.e., about half of

FIG. 1. Density of reversed protons in units ofn0 in run N.

FIG. 2. Energy spectrum of reversed protons atx,2(c/vBp) in
run N.
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the initial kinetic energy of protons, is lost in the process
their collision with the barrier~see Table II!. Figure 2 shows
the energy distribution for reversed protons.

The density of electrons that move away from the barr
is well correlated with the density of reversed protons;
correlation coefficient isr .0.8, where r 5spe /Asppsee,
and

s i j 5E
xmin

xmax
~ni2nī !~nj2nj̄ !dx, $ i , j %5$e,p%. ~11!

These electrons screen the electrostatic fieldEx of proton
bunches mostly, but not completely.

At a.acr , acr.0.4, it is observed that the length of th
beam particle penetration into the barrier increases in ti
Figure 3 shows thex coordinatexpen of the most deeply
penetrated proton as a function of timet. The speeds of such

FIG. 3. Beam penetration depthxpen as a function of timet in
run P ~thick solid line!, in run N ~thin solid line!, and in run L
~dotted line!.

TABLE II. Derived parameters of simulations.

Run
^Ge

out&
G0

Ge,max
out

G0

^Ge
rad&

G0

^Gp
out&

G0

jg

(1022)
^«g&
MeV!

A 132 603 643 0.61 3.231023 0.013
B 107 785 809 0.41 0.12 0.45
C 106 464 543 0.57 0.96 5.1
D 119 745 425 0.48 3.4 8.9
E 92 542 337 0.48 11 14
F 92 785 235 0.40 12 35
G 56 402 193 0.43 14 36
H 116 801 419 0.57 9.9 15
I 105 427 555 0.41 2.9 9.1
J 9.5 39 41 0.99 0.16 0.20
K 115 573 288 0.94 0.017 0.09
L 424 1473 596 0.73 0.052 0.19
M 296 1038 913 0.69 0.18 0.64
N 489 1275 807 0.50 0.36 0.34
O 213 1284 821 0.62 0.16 0.34
P 94 550 883 0.63 0.42 0.68
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protons along thex axis vary strongly from each other. How
ever, the mean velocityvpen5^vx& of the penetrated protons
remains more or less constant within the studied time int
vals, wherê vx& is the proton velocity that is averaged ove
proton gyroperiod. The value ofvpen depends ona and is
equal to zero~no penetration! at a,acr.0.4 ~see Fig. 3 and
Table III!.

In the regionx,xpen, strong longitudinal (Ex) and trans-
verse (Ey ,Bz) electromagnetic waves propagate while a
most no remnants of the external magnetic fieldB0Q(x) are
found ~Fig. 4!. Roughly, it could be stated that ata.acr
the magnetic barrier is pushed according to the lawB(t)
5B0Q„x2xpen(t)… and xpen appears to be a location of the
barrier front at the momentt as well as the particle penetra
tion depth. At x.xpen, the magnetic field remains un
changed except for its time-space variations due to lo
frequency electromagnetic waves that are generated by
time-variable currentsj in the front vicinity. At a;1, the
typical amplitude of these waves isB̃0.(0.220.3)B0.

In the casea,acr , when the ion penetration length doe
not increase with time, all protons move along the same tra
with small deviations from it. In this case, the velocity of a
reversed protons is perpendicular to the barrier front. Ho
ever, ata.acr the trajectories of protons differ qualitatively
from each other~for the angular distribution of reversed pro
tons in this case see Fig. 5!. Therefore, the dimensionless
densitya may be called a stochastization parameter of t
beam protons. In all runs, the trajectories of electrons a
very chaotic and differ from each other qualitatively.

B. Acceleration of electrons and high-frequency radiation

The most important feature of the dynamics of electro
is that they are accelerated in the barrier front vicinity b

FIG. 4. Distribution of magnetic field in run N at the moment
t50 ~dotted line!, t57.96Tp ~thin solid line!, andt515.9Tp ~thick
solid line!.

TABLE III. Penetration of the beam particles withG05300 into
the magnetic barrier withB05300 G for different values ofa.

a 2 1 2/3 4/9 2/5 1/3

vpen/c 0.32 0.17 0.077 0.05 0 0
r-
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-
he

k
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induced electric fields and thus accumulate a substantial
tion of the kinetic energy of protons~see Fig. 6 and Table II!.
Figure 7 shows the energy spectrum of outflowing electro
vx,0, in run N. At a;1, the mean Lorentz factor of out
flowing electrons and their maximum Lorentz factor f
enough from the barrierx,2(c/vBp) are

^Ge
out&.0.1S mp

me
DG0 , Ge,max

out .
1

2S mp

me
DG0 ~12!

within a factor of 2. The fraction of the kinetic energy o
relativistic protons that is transformed into the energy of o
flowing electrons is up to;20%. The rest of the energy tha
is lost by protons is transformed into both low-frequen
electromagnetic waves and synchrotron high-frequency
diation.

The synchrotron high-frequency radiation is generated
single electrons in the process of their ultrarelativistic mot
in the electromagnetic fields. The mean energy of so-ca
radiating electrons near the barrier frontx.2(c/vBp) is
several times higher than the mean energy of outflo
ing electrons far from the barrierx,2(c/vBp), i.e.,
^Ge

rad&.~325!^Ge
out& ~see Table II!. The radiating electrons

FIG. 5. Angular distribution of reversed protons atx,
2(c/vBp) in run N.

FIG. 6. Maximum energy of accelerated electrons~thick line!
and intensity of their synchrotron radiation per unitary area of
barrier front~thin line! in run N.
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57 2271WIDE ULTRARELATIVISTIC PLASMA- . . .
are responsible for generation of the main part of the sy
chrotron high-frequency emission.

If the average fractionjg of the kinetic energy of the
plasma beam that is radiated in the vicinity of the magne
barrier is small,jg,0.01 orG0

2B0,33108 G, the results of
our simulations fora;1 may be fitted by the analytic ex-
pression

jg.331024~G0 /102!2@B0 /~103G!#. ~13!

At G0
2B0@108 G, the value ofjg tends asymptotically to

;0.15 asG0
2B0 increases. The characteristic energy of sy

chrotron photons is

^«g&.3~jg /1022! MeV ~14!

within a factor of 2 or so. Except for numerical factors, Eq
~13! and ~14! can be derived analytically from Eqs.~1!–~9!.

At a!1, electromagnetic fields that are induced in th
process of the beam-barrier collision are much smaller th
B0 and the beam particles may be treated as test particle
the field of the barrier. In this case, there is almost no ener
transfer from protons to electrons. Therefore, it is natural th
both acceleration of electrons and their high-frequency rad
tion are strongly suppressed ata!1, as was observed in our
simulations~see Table II!. Preliminarily, we have the follow-
ing scaling laws:^Ge

out&}a, Ge,max
out }a, ^Ge

rad&}a, jg}a2,
and ^«g&}a2. We did not observe any decrease in nonst
tionarity of the process of the beam-barrier interaction and
acceleration of electrons, even in simulations extended up
tmax.16Tp ~see Figs. 1 and 6!.

IV. STATIONARY COLLISION

The problem of the beam-barrier collision is simplifie
significantly if it is treated as a stationary one. This is b
cause in a stationary consideration a time dependence o
values is disregarded and the beam particles of any k
~protons or electrons! move along exactly the same track. In
this section we consider the beam-barrier interaction in
stationary manner.

FIG. 7. Energy spectrum of outflowing electrons,vx,0, in run
N at the momentt515.9Tp .
-
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A fully relativistic self-consistent model of the stationa
interaction between a wide plasma beam and a magnetic
rier was developed by Peter, Ron, and Rostocker in th
pioneering paper@10#. The set of equations that describ
such an interaction is@10#

dBz

dx
5AyS me /mp

Azp

1
1

Aze
D , ~15!

dEx

dx
5

Gp

Azp

2
Ge

Aze

, ~16!

df

dx
52Ex ,

dAy

dx
5Bz , ~17!

whereG j[G02m jf, zj[G j
22m j

2Ay
221,

m j[H 21 for electrons ~ j 5e!

me /mp for protons ~ j 5p!,
~18!

f and Ay are the electrostatic and magnetic potentials
units of e/mc2. In these equations we have measured
distance x in terms of A2(vpeb0 /c), where vpe
5(4pn0e2/me)

1/2 is the electron plasma frequency andb0
5v0 /c.

Equations~15! and ~16! for the magnetic and electric
fields are first-order ordinary differential equations. Stric
speaking, such an equation allows only one boundary co
tion. For the magnetic fieldBz , the boundary condition is
Bz5B0 at the proton turning pointxp ~see Fig. 8!, whereB0
is the field of the barrier. The strength of the magnetic fie
Bf at the front of the barrierx50 has to be found from
integration of Eq.~15!. An important issue iswherethe elec-
tric field Ex should vanish: at the right or left boundary of th
collision region 0<x<xp . In Ref.@10# the electric field van-
ishes atx5xp , Exux5xp

50. This seems quite natural an
corresponds to our nonstationary solution. However, in R
@10# it is wrongly suggested that if the beam density is hi

FIG. 8. Schematic drawing of a plasma beam entering a m
netic barrier.
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2272 57V. V. USOV AND M. V. SMOLSKY
enough the electric fieldEx is zero at the left boundary a
well, Exux5050. Below, stationary solutions for the beam
barrier collision are considered in detail and, in particular
is shown that there is a net charge in the region 0<x<xp

irrespective of the beam density until the beam-barrier co
sion is stationary, i.e., the transverse electric fieldEx cannot
be zero at both boundaries at once.

The right-hand side of Eqs.~15! and ~16! for the deriva-
tives of the electric and magnetic fields contains terms
tend to infinity at the electron and proton turning points, i.
at bothx5xe andx5xp . This is the main difficulty that does
not permit one to apply a standard numerical technique
integrate Eqs.~15! and ~16! directly. Since the electric and
magnetic fields should remain finite everywhere, the m
tioned singularities are integrable. To integrate a set of eq
tions with such a weak, integrable singularity, one sho
switch to another independent variable so that all derivati
with respect to this new variable are finite. The interval
the beam particles may be used as such a new indepen
variable instead ofx. In this case, the right-hand sides
Eqs.~15! and~16! are finite everywhere. This is because t
particle density per unitary interval is constant~e.g., Ref.
@10#! rather than infinite at the turning points if measured p
unitary x. We integrated Eqs.~15!–~17! from x50 to x5xe
using theelectron interval se as an independent variable
Then we switched to another independent variablesp , which
is the proton interval measured from theelectron turning
point with the initial conditionspux5xe

5seux5xe
. We thus

broke the region of integration into two parts and used
different independent variable for each subinterval to in
grate Eqs.~15!–~17!. Then we switched back tox as an
independent variable to present results of this integration

Following Ref.@10#, we have used the dimensionless p
rameter a f58pn0mpc2AG0

221/Bf
2 as a measure of th

beam density instead ofa. The parametera f is more conve-
nient thana for integration of Eqs.~15!–~17! because such
integration is performed fromx50 to x5xp . In our calcu-
lations the value ofa f varies in a wide range from 1022 to
103.

To integrate Eq.~16!, the following two kinds of bound-
ary condition for Ex were specified: Exux5050 or
Exux5xp

50. Integration of Eq.~16! for the boundary condi-

TABLE IV. Parameters of simulations of stationary collisio
between the beam withG05300 and the magnetic barrier for th
boundary conditionExux5xp

50.

Run a f a
Gp,min

G0

Ge,max

G0

Bf

B0

Ef

B0

Emax

B0

SR1 0.01 0.0098 0.99 1.02 0.9920.015 20.015
SR2 1/10 0.086 0.92 1.2 0.92 20.13 20.13
SR3 1/5 0.15 0.86 1.3 0.87 20.22 20.22
SR4 1/2 0.29 0.76 2.1 0.76 20.40 20.41
SR5 1 0.44 0.67 7.1 0.67 20.57 20.58
SR6 2 0.50 0.64 48 0.50 20.50 20.62
SR7 4 0.51 0.64 97 0.36 20.38 20.61
SR8 10 0.51 0.63 170 0.23 20.27 20.58
SR9 40 0.51 0.63 276 0.11 20.20 20.53
SR10 1000 0.51 0.62 434 0.02320.14 20.45
t
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tion Exux5xp
50 was carried out with a ‘‘shooting method

technique. The electric field was guessed at the left bound
x50 and Eq. ~16! was integrated with all the quantitie
specified on that boundary. Then the electric field on the
boundary was adjusted to give a closer agreement with
boundary conditionExux5xp

50. Such shots were repeate
until the boundary condition for the electric field was sat
fied with a desirable accuracy. As a rule, only a few sh
were required to reach the accuracy of;1%.

The computational engine we used to solve the regu
ized set of equations was theLSODE package@15# together
with the OCTAVE interpreter @16#. The developed octave
script is mostly compatible with the popularMATLAB @17#
language.

Figure 9 shows typical numerical solutions for the long
tudinal electric fieldEx , the magnetic fieldBz , and thex
component of the four-velocity of electronsue,x in run SR10.
In this run, the boundary condition forEx is Exux5xp

50. The
energies of both electrons and protons inside the barrier
shown in Fig. 10. The results of our calculations are summ
rized in Tables IV and V. From these tables and Fig. 9
can see that the electric fieldEx is not equal to zero atx50
andx5xp at once, as mentioned above. A common feat
of all stationary solutions is that the electric and magne
fields sharply increase near the electron turning pointxe as it
was pointed out in Ref.@10#. There is the following ten-
dency: The greater the value ofa f , the sharper the rise o
the fields. Due to the change of independent variables
cussed above, the sharp rise of the fields at the electron t
ing point is well resolved: It covers a large number of int
gration points and derivatives of the fields with respect to
new independent variable remain finite~see Fig. 11!. The
latter facts allow us to claim a high accuracy of our calcu
tions.

In the paper of Peteret al. @10#, Eqs.~15!–~17! were in-
tegrated directly usingx as an independent variable an
therefore they ran into serious difficulties on their way@18#,
which led to certain mistakes. For example, they were
able to calculate the valueEx(x) at x5xe directly and the
integration of Eq.~16! was treated as a two-point bounda
value problem, adjustingEx(xe) to be equal to zero at both
boundariesEx(0)5Ex(xp)50. Our calculations show tha

TABLE V. Parameters of simulations of stationary collision b
tween the beam withG05300 and the magnetic barrier for th
boundary conditionExux5050.

Run a f a
Gp,max

G0

Bf

B0

Ex(xp)
B0

SL1 0.01 9.831023 1 0.99 0.016
SL2 1/10 0.082 1.06 0.90 0.15
SL3 1/5 0.13 1.1 0.81 0.29
SL4 1/3 0.16 1.3 0.69 0.45
SL5 1/2 0.15 1.5 0.55 0.63
SL6 2/3 0.11 1.9 0.41 0.78
SL7 3/4 0.085 2.2 0.34 0.85
SL8 0.8 0.068 2.5 0.29 0.88
SL9 0.9 0.032 3.7 0.19 0.95
SL10 1 4.631024 31 0.02 1
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such an adjustment is impossible~see Tables IV and V!. The
authors of Ref.@10# believed that ata f@1 the orbit of elec-
trons is strongly elongated in they direction in a narrow
vicinity of the electron turning point and the beam electro
move more or less along the barrier front withx.xe for a
long time. As a result, a net charge in the collision regi
might be zero. We did not observe such a strong elonga
of the electron orbit. Moreover, for the boundary conditio
Exux5050 we havea f&1, i.e., for this boundary condition
a f cannot be much more than unit.

We have confirmed the suggestion of Ref.@10# that elec-
trons of the beam may be strongly accelerated inside
barrier. However, such an acceleration was observed onl
runs with the boundary condition forEx in the form
Exux5xp

50. For the boundary conditionExux5050, the
beam electrons do not penetrate substantially deeper into
barrier than their gyroradius in the fieldBf and their accel-
eration is very small.

FIG. 9. Plots of the magnetic fieldBz(x) ~thin solid line!, the
longitudinal electric fieldEx(x) ~dotted line!, and thex component
of the four-velocity of electronsue,x(x) ~thick solid line! in run
SR10.

FIG. 10. Plots of the proton energy~solid line! and the electron
energy~dotted line! in run SR10.
s

n

e
in

he

For the boundary conditionExux5xp
50, a stationary solu-

tion of Eqs.~15!–~17! can exist for any nonzero value ofa f .
For all these solutions, we havea&0.5 ~see Fig. 12!. This
upper limit ona is more or less evident since in a stationa
case the ram pressure of the beam cannot be more than
magnetic-field pressure of the barrier. As for the case of
boundary conditionExux5050, a stationary solution can ex
ist only if a f&1 and a&0.2. This reduction of the upper
limit on a occurs because in such a solution the electric fie
Ex far enough from the barrier front is directed inside th
barrier,Ex.0 at x* a few timesxe . This field causes pro-
tons to penetrate even deeper into the barrier and to gene
even stronger electric field. Ata f.1, at some distance from
the barrier front the electric field inside the collision region
stronger than the magnetic field and the barrier cannot s
press penetration of protons inside itself.

FIG. 11. Numerical resolution of the main results of the statio
ary case, run SR10.s, magnetic field profile;d, electric field
profile; 3, longitudal component four-velocity of electrons. Eac
figure stands for five integration points.

FIG. 12. Value ofa as a function ofa f for both the boundary
condition Exux5xp

50 ~thin line! and the boundary condition
Exux5050 ~thick line!.
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V. DISCUSSION

One of the main results of our time-dependent simulati
presented in Sec. III is that the outflowing electrons
strongly accelerated near the barrier front and accumula
substantial portion of the kinetic energy of protons.
a;1, when the ram pressure of the beam is equal to
magnetic-field pressure of the barrier, the fraction of the
netic energy of protons that is transferred to outgoing e
trons is up to; 20%. The acceleration of outflowing elec
trons is completely due to nonstationarity of electromagn
fields that are induced inside and near the barrier during
beam-barrier interaction. Indeed, in a stationary case
electric field is constant in time and depends on thex coor-
dinate only,E5$Ex(x),0,0%. If, as in both Ref.@10# and Sec.
IV, the energy losses of electrons due to their radiation ins
the barrier are ignored, the electron energy is a function ox
only and the energy of reversed electrons outside the ba
coincides with their initial energy before the beam-barr
collision.

The bunching of reversed protons is a key element
nonstationarity of the beam-barrier collision. Roughly, t
process of bunch formation may be illustrated in the follo
ing way. The first protons, which enter the barrier fro
t50 to t!Tp , run along an almost semicircular trajectory
an almost unperturbed field of the magnetic barrier. For
same Lorentz factor, the gyroradius of electrons is mu
smaller than the gyroradius of protons. Therefore, electr
cannot penetrate as deep as protons into the barrier.
separation of electric charges induce a strong electric fieldEx
in thex direction according to Eq.~1!. The following protons
‘‘feel’’ this electric field. The fieldEx decelerates proton
and accelerates electrons. Protons that are injected into
barrier later run along ‘‘shorter’’ trajectories and spend le
time inside the barrier. As a result, in about half of a prot
gyroperiod,t; 1

2 Tp , most of the protons quit the barrier a
most simultaneously and formation of the second bunch
gins, and so on.

In the case of largea, the velocitiesvx of reversed pro-
tons in thex direction are quite different~see Fig. 5! so that
the bunches will decay at some distance from the barr
Once there is no bunching at all in the low-a case, no
bunches can be observed far from the barrier no matter w
a is considered.

The propagation of plasma beams across a magnetic
is one of the oldest problems in plasma physics. In spite
the long history of investigation~e.g., Ref. @8#!, a clear
model of this phenomenon is yet to emerge. However, so
general conclusions about the beam–magnetic-field inte
tion were made many years ago. For example, if the pla
flow pressure is more than the magnetic-field pressure,
possible for the plasma to cross the field by purely mag
tohydrodynamic principles. This propagation mode
equivalent to the motion of a solid conductor across the fie
During propagation, the plasma beam picks up and car
along the ambient plasma and magnetic field. Such mo
of the beam propagation into the magnetic field are base
the diamagnetic properties of the plasma. Most probably
our time-dependent simulations we observed such a pr
gation mode. Physically, the pushing of the magnetic field
provided by strong transverse electric currents (j y) in the
s
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domainxpen(t)2(c/vBp),x,xpen(t), wherexpen(t) is thex
coordinate of the most deeply penetrated particle. Ifa is
large enough (a.acr), this current layer screens strong
the external magnetic field of the barrier atx,xpen(t)
2(c/vBp) and moves deeper and deeper into the barr
From our time-dependent simulations, we haveacr.0.4.
This is more or less consistent with the conclusion that th
are no stationary solutions for the beam-barrier collision ifa
is more than;(0.220.5) depending on the boundary co
dition on the fieldEx .

Many important features of our nonstationary solutio
are absent in a stationary one. They are energy transfer f
incoming protons to outgoing electrons, bunching of outg
ing protons, excitation of low-frequency electromagne
waves, etc.

The main question that still remains open is what the fi
state of the beam-barrier system in a very long-time
(t@Tp) is. As noted, we did not observe any decay of no
stationarity of the beam-barrier interaction, even in simu
tions extended up totmax.16Tp . However, it is possible tha
at (t@10Tp) our nonstationary solution tends to a stationa
one. It is worth noting that, in turn, a stationary solution
the beam-barrier collision might be unstable ifa is high
enough. Indeed, the energy of electrons inside the ba
may be a few hundred times higher than their initial ener
In this case, small (;1022) perturbations might result in tha
some part of the reversed,vx,0, electrons is stopped an
captured inside the barrier before reaching the barrier fro
In addition, electrons may be captured by the barrier beca
of their energy losses via synchrotron emission in elec
and magnetic fields if these fields are strong enough. In t
such a capture of electrons may result in complete dest
tion of the stationary solution.

The beam-barrier collision is similar, in many respects,
collisionless shocks. Such shocks in astrophysical sett
can and do accelerate charged particles to high energies~for
a review see Refs.@19,20#!. The efficiency of particle accel
eration by shocks may be as high as;20–40 %~e.g., Ref.
@19#!. This value is more or less the same as the fraction
the kinetic energy of the beam that may be transferred
high-energy electrons in the process of the beam–barrier
lision.

In addition to analytical calculations~e.g., Refs.@21,22#!,
acceleration of particles by shocks was studied numeric
in both test particle Monte Carlo simulations~see Ref.@23#
and references therein! and self-consistent plasma simul
tions ~e.g., Refs. @24–27#!. Most current self-consisten
simulations of plasma shocks used in astrophysics are of
hybrid type because theme /mp ratio is small, me /mp
.0.5431023. In the hybrid approach, the ions are treat
kinetically using standard particle-in-cell techniques, wh
the electrons are treated as a massless, charge neutra
fluid. In our simulations we did not use the hybrid approa
because the case of the ultrarelativistic beam is, in so
respects, easier than the nonrelativistic case. This is bec
in our case,G0@1, electrons are accelerated fast, and
mean energy becomes only an order of magnitude sma
than the mean energy of protons. In this case, the ratio of
gyroradii of electrons and protons is about two orders
magnitude larger thanme /mp , which is the ratio of the gy-
roradii of electrons and protons in nonrelativistic plasm
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This allowed us to treat both electrons and protons kin
cally.

The configuration considered in our simulations is n
quite self-consistent. Indeed, the barrier magnetic field ha
be generated by some kind of current flowing in the pla
x50 in they direction. However, the evolution of this cu
rent, because of its interaction with the induced electrom
netic fields, was not studied. In laboratory experiments,
external current flowing along a sheet of thin wires can
1

T

e-
-

f

i-

t
to
e

g-
n
e

the barrier-front current. As for a situation that is relevant
astrophysics, the barrier field has to be generated by the m
netized plasma of the barrier. Numerical considerations
such a configuration are under way.
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