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lonization layer at the edge of a fully ionized plasma
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A model is developed of the ionization layer which separates a thermal plasma close to full ionization from
the space-charge sheath adjacent to the surface of an electrode or of an insulating wall. The multifluid descrip-
tion of the plasma is used. Asymptotic solutions are obtained for the cases in which the thickness of the
ionization layer is much larger or much smaller than the mean free path for ion-atom collisions. The solution
obtained for the latter case describes an interesting new regime which is in some aspects similar to the
conventional diffusion regime, though essentially different from the diffusion regime in other aspects. Formu-
las are derived for the ion flux coming from the ionization layer to the edge of the space-charge sheath.
Application of results to atmospheric-pressure argon and mercury plasmas is considered.
[S1063-651%98)08702-9

PACS numbd(s): 65.20+w, 05.70.Ce, 64.16:h

I. INTRODUCTION plasma temperatures measured recdrtB+-17] in front of a
thoriated-tungsten cathode of a 200-A atmospheric-pressure
A nonequilibrium region separating a thermal plasmaargon arc are in excess of 20 000 K, which corresponds to an
from the surface of an electrode or of an insulating wallequilibrium ionization degree exceeding 98%. question
includes a number of physically different subregions. A sub-arises concerning a role of recombination in the ionization
region adjacent to the surface is the space-charge sheathyer under such conditions. In other words, one can think of
Adjacent to the sheath is a subregion in which ionizationa model of the ionization layer in a fully ionized plasma
equilibrium is established, i.e., in which a transition occursdisregarding recombination. In the framework of such a
from boundary conditions at the sheath edge to a chargeghodel, the increase of the charged particle density would
particle density determined by the Saha equation. The lattetease at the edge of the ionization layer not because of re-
subregion is usually referred to as the ionization layer. Acombination, but rather because the full ionization of the
theoretical description of this layer plays a central role in anyplasma has been reached.
theory of near-cathode phenomena in high-pressure arc dis- Such a model is developed in the present paper. In order
chargeqe.g., Refs[1-8§]). to give a simple introduction, we start with developing a
According to conventional concepts, the physics of thetheory of the ionization layer disregarding recombination in
ionization layer is as follows. In the inner section of the layera diffusion approximatior{Sec. I). The multifluid model is
where the density of the charged particles is small, dominatwritten down in Sec. lll. Asymptotic solutions are obtained
ing processes are ambipolar diffusion of the charged particlei® Secs. IV and V, and discussed in Sec. VI. Application of
and ionization; recombination is a minor effect. As a dis-the results to particular experimental situations is considered
tance from the edge of the space-charge sheath increases, theSec. VII.
density of the charged particles grows and the recombination A theory of the ionization layer in a partially ionized
rate increases, while the effect of ambipolar diffusion de-plasma was considered previously in Ré&l. A comparison
creases. At the “edge” of the ionization layer, the recombi-carried out in Appendix A shows that the diffusion solution
nation rate becomes equal to the ionization rate and the if9], if written in an appropriate form, also remains applicable
crease of the charged particle density ceases: ionizatioi® the case of a fully ionized plasma. On the other hand, a
equilibrium is attained. multifluid solution for a plasma close to full ionization was
The thickness of the ionization layer under conditions ofnot found in Ref[9].
practical interest may be not large as compared to the mean
free path for ion-neutral collision®]. This means that cou-
pling between the ions and the neutral particles in the layer is Il. DIFFUSION THEORY
in a general case not strong enough and the diffusion de- , . o
scription of the ion-neutral motion in the layer is not valid; e consider a quasineutral layer of a plasma containing
one should rather employ a multifluid approagtee, e.g., ©ONe Species of.neutral atoms, singly charged positive ions of
Refs.[10,11)). the same species, and electrons. Supposing that the thickness
In many experimental situations, the plasma at the edge dif the layer is much smaller than the transversal dimensions,

the ionization layer is close to full ionizatiofFor example, ©ON€ can write the system of governing equations in a one-
dimensional form
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nink T, The quantityD{®)=D,(n;+n,)kT,/p introduced here does
_k(Th+Te) dy m( i—va)=0, ) not depend om; or n,, and may be considered as given. It
arme may be interpreted as the diffusion coefficient of the ions in
NK(Th+ Te)+NKTh=p, (3y  agas of neutral atoms under the pressusnd the tempera-
ture T,. In the framework of the diffusion theord?) co-
where they axis is directed from the “edge” of the space- incides withD;, evaluated at the edge of the space-charge
charge sheath into the plasnm, n,, v;, andv, are num-  sheath.
ber densities and mean velocities of the ions and atdips, It is natural to introduce the dimensionless variabes
andT, are temperatures of heavy particlgsns and atoms =y\/kinix/Di(a05 and f=n;/n;,, while treating Eq.(6). A
and electronsp is the plasma pressurk,is the Boltzmann first integral found with the use of the boundary condition
constantk; is the ionization rate coefficient, arid, is the  f()=1 reads
binary-diffusion coefficient evaluated for a binary mixture
constituted by the ion and neutral species. Variation of the
electron temperature across the ionization layer is sih8l]l (1+8)
due to the high thermal conductivity of electrons, and is ne-
glected. For simplicity, we also neglect variations of the
heavy-particle temperature. =(1-1)
The first equation in Eq(l) is the equation of conserva-
tion of ions written for the case when the dominating process
of ionization is ionization by electron impact while recombi- .
nation is insignificant. The second equation in Et). fol-
lows from conservation of nuclei, and is valid provided that
there is no influx of the nuclei from the surface. Equati@
follows from conservation of momentum of the plasma on
the whole. Equation(2) is the transport equation for charged 1—-f=0 exp( _ § )) (8
particles written in the diffusion approximation; the terms on V1+p8
the left-hand side describe, respectively, the pressure gradi-
ent of ions and electrons and the friction force due to elastic Equation(7) is to be solved with the boundary condition
collisions between ions and neutral atoms. Aftgthas been  f(0)=0. Solutions for finiteg should be found numerically;
eliminated by means of the second equation in @j. Eq.  solutions forg small or large may be found analytically and
(2) assumes the form of Fick’s law for ambipolar diffusion, read, respectively,

1 df
1+p-pf dé
1+f 2 2(1+p)
—_ + JR—
B /32 B (1-1)
Note that at large wheref is close to unity the quantity
in the square brackets on the right-hand side of &9.is

approximately equal to 1 f, which ensures an exponential
decay of I-f at largeé:

— o n@+s=-gH . ()

£ £
- (1+,3)D.a(;';, (@ 2 tanfy| 2 tanf, + ﬁ) E(£+2)
= £ 2 242842 ©
whereB=T./T. tanhz—+ \/§

The coefficientD, in the framework of the first approxi-

mation in expansion in Sonine polynomials in the method of  Before presenting the solutions, it is convenient to intro-
Chapman-Enskoge.g., Refs[19-21)) is given by the for-  guce a dimensionless distance from the sheath edge,

mula =y/d, in such a way thaf~ » at small 5. It follows from
Eq. (7) that
D 37 Cia (5)
@~ an . . =1 (0)
32 (n;+n,)QRY d= 1. /Pa ' (10)
C Kinio
where Q'Y is the average cross section for momentum
transfer in ion-atom collisionsC;,= (16kT,/wm;) 2 is the ~ Where
mean relative speed of ions and atoms, amds the mass of 12

a heavy particle. _ (1+p)(2+B) _ 2(1+p)?
Boundary conditions for the considered equations are as B2 B3

follows. The density of the charged particles at the edge of

the space-charge sheath should be set equal to zero in thie coefficientC,=C,(8) defined by Eq(11) is depicted

diffusion approximation. At the edge of the ionization layer, by the solid line in Fig. 1. Note that its limit values for small

the plasma is fully ionized and the charged particle density isind larges are finite:C;(0)=y3/3 andC;(*)=1. These

In(1+ B) (11)

Ni.=p/K(Th+Te). values are shown in Fig. 1 by the dashed lines. Boof
Substituting Eq(4) into the first equationil), and exclud- practical interest,3=1, C, varies in a relatively narrow
ing n, by means of Eq(3), one obtains an equation for range from 0.674 to unity.
The dimensionless charged particle dens§itis a function
d 1 dn, i i i 1
(1+ )n;..D© — = kni(n.—ny). of the dimensionless distance from the sheath edgeis

shown in Fig. 2. The solutions f@@=1 and 5 were obtained
(6) by means of a numerical integration of @), and the so-

& dy| (1+A)ni.—pn; dy|
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FIG. 1. CoefficientC, determining the ion flux from the ioniza- FIG. 2. Distribution of the charged particle density across the
tion layer, calculated in the diffusion approximation. ionization layer, calculated in the diffusion approximation.

lutions for 3=0 and were calculated by means of E@8). (
One can see that an increase@fesults in a decrease of the o (1+ ) =—a(1+B) =+ a?fw(f+ )+ fw,
normalized charged particle density for fixed however, d¢ d¢
this effect is weak: all the solutions are rather close between (15
themselves. The lengith used for normalization of abscissa
in Fig. 2 represents a reasonable scale of thickness of the d(fw)
ionization layer: for example, in the rangg>2d, the a(1+:3)d—§: —fv, (16)
charged particle density deviates from the equilibrium value
by no more than 20%.

Thus the diffusion model of the ionization layer disre- Tfa Lzl (17)
garding recombination is complete. The density of the ion v 1+ 7
flux generated in the ionization layer and coming to the edge
of the space-charge sheath is given by the formula

w?) df

where
J;=C1(1+B)\VkDn3.. (12)
_ Vi _ Na . kTh 18
Il. MULTIFLUID MODEL W==2- Ve as o (18
' s o [mipkiDi;"]

The aim of this section is to replace the conventional dif- -
fusion model(i.e., a model of one fluid with diffusing spe-  The boundary conditions for Eq&l5)—(17) read
cies used in Sec. Il with an approach regarding each species
of the plasma as a separate fluid coexisting with the fluids w(0)=1, f(»)=1. (19
made up of other species. To this end, one has to supplement
Eq. (2) with terms accounting for ion inertia and momentum
transfer from the neutral-atom species to the ion species du’éﬁef the problem(15)—(17) and (19) has been solved, one

to ionization; Eq.(3) should be supplemented with terms can find the ion flux coming from the ionization layer to the

accounting for dynamic pressure of the ion and atom speciegd9e Of the space-charge shealfw-ni.vsf,,, where f,,

We shall need to know asymptotic behavior of a solution
d 5 dn, NNk Ty at largeé. Retaining in Eqs(15)—(17) terms of the first order
d_y(nimivi )= —k(Th+Te)d—y— m(vi_va) in 1—f, w, and», one obtains equations
1 a 1a
+kininamiva, (13)

df dw
—a(1+B)—=+(1+a®>)Ww=0, a(l+B)===-vr,
mnvZ+mni+nk(Tp+Te) +nkTh=p. (14 d¢ d¢
The boundary conditiom;=0 at the edge of the space- w2 v
charge sheath should be replaced by the Bohm critéeian, —+ =
Refs.[10,22, and references therein; see also a discussion in v 145
Appendix B: v;=—vg, wherev=[k(T,+ Te)/m;]¥2

Excluding v, from the system(1), (13), and(14) and A solution to these equations can be sought in an exponential
introducing dimensionless variables, one obtains form. One finds

1-f. (20)
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( 1 3 1=
W, ()
1—f a1+ {ws(®
&
W p=constx{ 1l+a® } exp( - .
Vi+
4 a?(1+B) p
\ 1+ a? J
(21)

One can conclude that E¢B), which describes asymptotic
behavior of a solution at largé in the framework of the
diffusion theory, remains valid also in the multifluid model.

IV. ASYMPTOTIC SOLUTION FOR a—x

We shall use the method of matched asymptotic expan- 0 1 2 3 4
sions (e.g., Refs.[23-27), and seek an outer asymptotic &, C,50+P
expansion of a solution of the probleih5)—(17) and(19) in
the limit of large« in the form FIG. 3. Distribution of the normalized mean ion velocity in the
inner section of the ionization layer. Dotted line: the square-root
f(&a,B)=F1(&EB)+ -, distribution characteristic for the Bohm criteriofl) Second equa-
tion in Egs. (27) (the diffusion solutioh (2) Second equation in
w(&a,B)=a wi(&R)+- -, Egs. (45) (the pseudodiffusion solutign
: = : . 1
V(S!QIB) Vl(glﬂ)+ . (22) fzwclgz, szg_z, V2*>1+B- (27)

Substituting this expansion into Eqal5)—(17), and ne-
glecting terms of order ofr~? with respect to the leading Another boundary condition reads,(0)=1.
terms, one obtains equations equivalent to the diffusion From Egs.(26), one findsf,=C;/w, and v,=1+ 3.
equations treated in Sec. Il. Assuming that the first term ofSubstituting these relations into E@5) and solving the ob-
the outer asymptotic expansion obeys the diffusion boundartained equation with account of the above-described bound-
condition f1(0)=0, one can conclude that this term is de- ary conditions, one obtains
scribed by the formulas obtained in Sec. Il. In particular, the
asymptotic behavior of the functiony , w;, and v, at & 2

_ H W2: .
Olis 2+ &+ Bt Ag,

(28)

This solution is shown in Fig. 3. Also shown is its

asymptotic behavior at large and smdll, which is gov-

erned, respectively, by the second equation in ) and
The inner asymptotic expansion, applicable in the vicinityby the formula

£=0(a 1) of the edge of the space-charge sheath, is

1
f1=C1§+~--, W1:E+"‘, V1—>1+,8. (23)

Wo~1—E,. (29)
f(&a,B)=a a8+, _
Note that the square-root behavior near the edge of the
W(E a,B)=Wy(&B)+ -+ -, space-charge sheath described by &§) is characteristic
for problems involving the Bohm criterion. Thus, the
W(Ea,B)=vyép:B)+- -, (24) asymptotic solution for large values afis complete. It fol-

lows, in particular, that asymptotic behavior of the function

where ¢,= a£. Substituting this expansion into Eg4.5)— fw(@,B) in the limit a— is

(17) and neglecting terms of order ef * with respect to the

Ci(B)

leading terms, one obtains fu(a,B)~ . (30
o
d(f,w3) df,
(1+pB) dg, —(1+B)d—§2+szzV2, (25 V. ASYMPTOTIC SOLUTION FOR a—0

We start with asymptotic estimates of various terms of the
d(fow,) _ V2 —1 26) equations, supposing that a characteristic length scale of
dé, 1+B8 variation of the solution in terms of the variabfeis unity,
and orders of magnitude éf w, andv do not exceed unity.
The boundary conditions for these equationgat- fol- Evidently, the term on the right-hand side of E#j6) cannot
low from asymptotic matching, be dominating(if it were, this would mean that or » is O,
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which does not make sensé follows thatv<O(aw). This d

means, in particular, that the last term on the left-hand side (1+,6’)E(w3f4+f3w4)+ vafstf3vs=0, (39

of Eq. (17) is small. 3
The second term on the right-hand side of Etp) may

2 2¢2 2 fow?2 f2w f2w?2 v
be represented ag“fwrv+ a“f“w. a“fwr does not exceed 2 33 403 3W 3 = fanie 3
in order of magnitudex? with respect to the term on the vg 4T w4 V2 474 3 1+
left-hand side of Eq(15). «?f?w is of order of &? with (36)

respect to the last term on the right-hand side. Thus, the
second term on the right-hand side of Etp) is small. Since  Taking into account the asymptotic behavior of the functions
the last term on the right-hand side of E45) cannot be f3, ws, and v at large &; that follows from Eq.(33) and
dominating, one find§w=0(«). making use of the fact that the functiohg w,, andv, must
Returning to Eq(17), one can see that the first term on vanish at large, one finds a limit form of Eq¥34)—(36) for
the left-hand side of this equation is small. Since the differ-£;— oo:
ence 1-f is of order unity, the second term on the left-hand
side also is of order unity and=0(f?w?). df,
In order to apply the boundary conditidifec) =1, one —(1+,8)d—§3+w4=—(1+,8)C3exp(—C3§3),
should consider an asymptotic expansion in whiehO(1).
It follows from the above thatv=O(«) in this expansion. dw,
The term on the left-hand side of E{.5) does not exceed in (1+p) 9E. +v,=0, (37
order of magnitudex? with respect to the first term on the €3
right-hand side. Thus the only terms to be retained in Eq.
(15) are the first and last terms on the right-hand side. No 2 W it
one of these terms can be dominating, thereforeO(a). It (1+8)Cs * (14 B)2C2 vaTla
follows that v=0(«?). Thus an asymptotic expansion with

f=0(1) is =—(1+ B)Clexp(— C3&3). (39
f(&a,B)="F3(&3:8)+a?fy(é3:8)+ -,

Excludingw, and v,, one obtains an equation fdy,

W(Ea,B)=aws(&s;8)+adwy(é3;8)+- -+, (3D

Ldy, 2df [1—(1+B)CZlexp —Caés)
il - = =[1- exp(— .
V(£ B) = aPva(EgiB) + vy £31B)+ -, Cidg Cedés ’ 0
(39
whereé;=¢—E, E=E(a,B) being an unknown quantity.
The functionsf;, w;, andv; obey equations A solution to this equation includes a secular term
dfs d(faws) c3 22
_(1+,3)d_§3+f3W3:0- (1+B)d—§3=—f3V3. 5 [1=(1+B)C5lézexp( — Cata), (40)
faw3 which should be removed. It follows th@;=1/\1+ g.
V—+f3= 1. (32) Now the functionsf,;, w3, and v; are determined com-
3 pletely. The asymptotic behaviors of these functions at
Excludingw; and v and solving the obtained equation, one $3— ~% are
finds
f ~exp§—3 ws~+1+8 exp( &
37 [} 3~ - I}
fo= . (33 Vi+a Vita
1+ Coexp(—Cgés)’

whereC, andC; are arbitrary constants.

ConstantC, may be absorbed by redefiniiy hence one  Evidently, expansio31) cannot satisfy the boundary con-

can setC,=1 without losing generality. The constal  dition w(0)=1. In order to apply this boundary condition,
should be determined with the use of the boundary COﬂdItIOI?Dne should consider an expansion in whighk= O(l) and,

f(%)=1. However, this boundary condition is ineffective in consequentlyf<O(«), »=0(f2)<0(a?). The third term
the approximation considered, and one should treat the segn the left-hand side of Eq17) is small. The term on the

ond approximation. right-hand side of Eq(16) is small and this equation gives
~ The functionsf,, w,, andv, are governed by the equa- fw=const. If one assumet<O(a), the last term on the
tions right-hand side of Eq(15) will be small and this equation

will give fw?+f=const, which, together witliw= const,
results in a trivial(constank solution. Hence, the assumption
f<O(«a) is inappropriate and one should assufmeO(«)
(39 instead. Thus, an expansion in whial=0O(1) reads

df, d(faw3)

+2f3W3f4+f§W4:(1+ﬁ)
dés

—(1+B)
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f(&a,B)=afs(&R)+- -+, W(Ea,B)=Ws(&B)+---, these equations: expansiof&l) and (42) can be matched
directly. Indeed, one can check easily that such a matching is
(& a,B)=a’vs(EB)+ -, (42)  possible, and
with the functionsfs, ws, and vs being described by equa- . 1 1
tions v " ’ Y e Ca=V1+p, E=V1+B|In——5—InVyl+a].
4
d(fswg) dfs “n
(1+5) de —(1+,8)d—§+f5w5, Thus the asymptotic solution for small values @fis com-
plete. In particular, the asymptotic behavior of the function
d(fsws) f2w2 f(a,B) in the limit a—0 is
=0, = (43
de 'S fu(a,B)~ay1+B. (48)
It follows from the second and third equations thiat
=C,/ws and v5=C3, whereC, is an arbitrary constant. VI. DISCUSSION OF ASYMPTOTIC RESULTS
Substituting these expressions into the first equation and , ,
solving it with the boundary conditioms(0)=1, one ob- One can see that the parameteis of order of the ratio of
tains the lengthd, which can be considered as a scale of thickness
of the ionization layer in a fully ionized plasma evaluated in
wé— 1 C, the framework of a diffusion theory, to the mean free path
T_an5:1+ £ (44)  for ion-atom collisions\j,. The solution that has been ob-

tained for the case of large (in other words, for the case
This solution is shown in Fig. 3. Also shown is its 9>\ involves two asymptotic zones: the outer zofie

asymptotic behavior at small and largewhich is governed = ©O(1) and the inner zong= Q(“_l)- These zones may be
by the formulas identified in terms of the dimensional distance from the

sheath edgey, asy=0(d) andO(\,,).
Ca Cs 1 The conventional diffusion theory is applicable provided
Ws~1— mf, w5~exp{ - 1+B§_ 5), (45  that a local length scale be much larger than Hence the
outer solution obtained in the framework of the multifluid

respectively. The first formula describes the square-root bgheory for the limit casex—ce must coincide, to a first ap-

havior characteristic for problems involving the Bohm crite- Proximation, with a solution in the framework of the diffu-
rion, similarly to Eq.(29). sion theory, which is indeed the case. The first equation in

It is interesting to compare the functions, and ws, Egs.(26) shows that_ the ion flux is to a first approx_imation_
which describe distributions of the normalized ion velocity COnStant across the inner zone. In other words, the ion flux is
in the inner section of the ionization layer far large and gengrated primarily in the outer zone. Therefore, the ion flux.
small, respectively. To this end, the scales of abscissa in Fig°Ming to the edge of the space-charge sheath calculated in
3 are chosen in such a way that E89) be represented by he framework of the multifluid theory for the limit case
the same line as the first equation in E45). Thus the plots @ Must coincide, to a first approximation, with that
of w, andws are close between themselves at small valuefound in the framework of the diffusion theory. One can
of abscissa. At larger values, their behavior is essentiall heck that this is indeed the case: the ion flux calculated with
different: ws decreases very fast and becomes quite close t§'€ Use of Eq(30) coincides with that given by Eq12).
its asymptotic representation for large arguments when the Quantityf,, may be considered as the ion flux normalized
value of abscissa reaches 1, white, decreases much by the quantityn;..,vs, which may be treated as a character-

slower, and approaches its asymptotic representation fdstic value (_)f the chaotic ion flux. The asy.mptotic_behavior
large arguments also slowly. of the functionf,(«,8) for large and smalk is described to

Now one should consider an asymptotic expansion valid first approximation by Eq$30) and(48), respectively. In
in between the regions of applicability of expansiq@d)  Order to obtain a general idea 6f, for finite «, one can
and (42). In this expansion, orders of magnitude of bdth aPProximate the functiori,,(a,8) by means of a rational
andw should be greater tham but smaller that unity. The fraction in «, with coefficients determined with the use of
term on the left-hand side of E(L5) is small; it follows that ~ Information available on asymptotic behaviorff( «,8) at
fw=0(a) and v=0(a?). The third term on the left-hand a—0 anda— . In the simplest form, such a fraction must
side of Eq.(17) and the term on the right-hand side of Eq. containa in the numerator and a polynomial of the second
(16) are small. Thus the equations describing the leadinglégree ina in the denominator. Asymptotic formulaS0)

term of the considered expansion read and(48) allow us to find two of the three coefficients of this
polynomial. In order to find the third one, we need to deter-
df d(fw) 22 mine asymptotic behavior of the functidg(«,8) at a—0,
—a(1+ﬁ)d—§+f2W20- de =0, ——=1 or at «— to a second approximation. For brevity, we

(46) present the asymptotic behavior at-0 to a second ap-
proximation without a derivation,
All terms of these equations are contained both in E3®).
and (43). Hence there is no need to consider a solution to fula,B)~a\1+B—2a%(1+B). (49
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; dni
w _k(Th+Te)d_y+kininaman:0,

minw2+nk(Th+Te)=p. (51)

Comparison of the first equation in Eq81) with Eq. (2)
indicates that, while ion inertia is insignificant in both cases,
the pressure gradient is balanced in the pseudodiffusion case
by momentum transfer from the neutral-atom species to the
ion species due to ionization, rather than due to elastic col-
lisions as is in the diffusion case. Comparison of the second
equation in Egs(51) with Eg. (3) indicates that, while the
dynamic pressure of the ion species is insignificant in both
cases, a variation of the static pressure of the charged par-
ticles is balanced in the pseudodiffusion case by a variation
of the dynamic pressure of the atom species, rather than by a
variation of the static pressure of the atom species as is in the
diffusion case.

Fick's law (4) remains valid in the pseudodiffusion case
A rational fraction determined with the use of E¢80) and  provided that the conventional diffusion coefficidy, (cal-

(49) is culated in terms of a cross section of elastic collisjoiss
replaced by the combinatio®,=kT,/mkn; (which in-
volves the ionization cross sectjoimhe equation governing

aCiV1+p8 a distribution of the charged patrticles in the pseudodiffusion

fu(a,B)= . 50
w(a,B) Cot2aC it B+ a2 it B (50 case reads

0 LERLRRLLL LERELRRLLL| LRI LR |

0.01 0.1 1 10 o 100

FIG. 4. The dimensionless ion flux from the ionization layer.

2

d/1dn 1 dn,
e T e

@ n_ud_y _ni(nioo_ni) d_y

The functionf,, calculated by means of this formula is de-
picted by the full lines in Fig. 4. The dashed lines represen

asymptotic behavior described by_llzq_SO) and (49). which governs the charged-particle distribution in the diffu-
According to Eq.(30), f,,=O(a"") in the case of large  gjon case, is that Eq52) is invariant with respect to a linear

a, which means that the ion flux is much smaller than theyansformation of the independent variable and does not con-
chaotic flux in this case. This result conforms to the conventain a length scale. A solution to E¢2) may be written as

tional diffusion concepts, according to which the mean ve-
locity of the ions is of order of the therm&haotig velocity 1+ ;{ y—CS)
expg —
Ce

An essential difference between this equation and (Bj.

-1

; (53

times the Knudsen numbex,,/d. As « decreasesf,, in- Ni = Nic,
creases; the ion flux becomes comparable to the chaotic flux

when a=0(1). This, again, is quite understandable: colli- whereC; andCg4 are arbitrary constants.

sions between ions and neutral atoms are not frequent, the This solution satisfies the boundary conditiog=n;,, at
ion-atom friction force is not large and cannot prevent accelinfinity without regard ofCs and Cg, provided thatCg>0.
eration of the ion fluid by the pressure gradient and by theConversely, the boundary conditiofn=0 cannot be satisfied
ambipolar electric field to velocities of order of a thermal at finitey. The latter means that E(p2) cannot be used right
velocity. Asa decreases furthef,, starts to decrease. When up to the sheath edge, in contrast to E). In perturbation
« becomes smallf,, is small, too: according to Eq48),  theory terms one can say that E§2) describes a “shock
f,=O(a) for a—0. Thus the ion flux in the case of small layer” positioned aty=Cs, while Eqg. (6) describes a

is much smaller than the chaotic flux, as is in the diffusion Poundary layer” aty=0. .
limit case a>1. It will be shown below that the two cases = ConstantCe has the meaning of a scale of thickness of the

are similar also in a number of other aspects, which is whysNock layer. This constant cannot be determined in the ap-

the limit case of smalk may be called a “pseudodiffusion” proximation considered, which is a consequence of the fact
regime that Eq.(52) does not contain any length scale. In order to
In order to clarify the physics of the pseudodiffusion re- determineCs, one should either conS|d(Tr a seccr)]nd approxi-
gime, it is useful to construct a simplified model for this matldqr), asAwas done n S%C' V,dor emp g.V. anqt er bcl).ur&dsry
regime in a way similar to that in which a diffusion model condition. An appropriate boundary condition is supplied by

d " Eq. (8): comparing this equation with a two-term asymptotic
was developed in S?C' . I.t f(.)HOWS from the results thamedexpansion of solutiorg53) for large values of the argument,
in Sec. V that a major variation of the charged particle den- '

L . : one finds
sity is localized and the ion flux to the edge of the space-
charge sheath is formed in the region described by expansion
(31). Inspection of Eqs(32) indicates that Eqg13) and(14) C.=

. . . R . . . 6
in this region may be written to a first approximation as

1 D (]2
(1+8) } 54

Kinj
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The constan€s determining a position of the shock layer VII. IONIZATION LAYER IN ARGON
remains indeterminate in the framework of the simplified AND MERCURY PLASMAS
approach considered. However, the ion flux from the ioniza-

tion layer to the edge of the space-charge sheath is indepen- In ordgr to apply the above r_esults o a particular experi-
mental situation, one has to estimate the parameténith
dent of Cs, and can be calculated as

the help of Eq(5), the functiona(T.,T) may be written as
ka 1/2
h

2 0
m; kiDi(a)

= (55) 1/2

z Ciaji;’l)

S (56)

a=

One can check that this formula conforms to &) It Thus one needs to know the ionization rate conskarand

e e ) . : The average cross section for momentum transfer in elastic
atom diffusion coefficient, in spite of the ion-atom momen-

. . : ion- cinne LD .
tum exchange due to elastic collisions being much smallefon-atom collisionsQj; ™, in order to estimater.
than the momentum exchange due to ionization. The reason TNe ionization rate constant can be represented as a sum
is the above-discussed fact that the scale of thickness of tHff the rate constant of direct ionization of atoms from the
considered layer remains indeterminate in the first approxiground state and of the rate constant of stepwise ionization
mation or, in other words, that the limiti— 0 is singular. that occurs as a result of transitions between excited states of

Note that the scale of thickness of the shock layer deterthe atom due to collisions with electrofiag],

mined by Eq.(54) is of orderd, thus being much smaller k=Kot k (57)
than the mean free path for elastic ion-atom collisiags 17 dir T Pstepr
On the other hand, it is natural in this case to introduce a The rate constant of direct ionization is given by the in-

mean free path characterizing the momentum excha}Pge OILft‘?gral of the ionization cross section with the electron energy
to ionization, which is related to the diffusion coefficiddf,  distribution function. The latter in a strongly ionized plasma
by the conventional formula;;=D;,/C;;. The mean veloc- considered in this work is governed by electron-electron col-
ity of ions in the shock layer is of order of the thermal ve- lisions and is therefore close to Maxwellian. At thermal en-

locity times the Knudsen numbar,/d, similarly to the con- ~ ergies much smaller than the ionization ener@y the atom,
ventional diffusion concepts. The mean free pith, being (he integral can be estimated as

of order of C,/kini., is much smaller thard: X;,/d

=0(a). It follows that the mean ion velocity is much Kgir=C;
smaller than the thermal velocity, which explains why the

ion flux in the pseudodiffusion case is much smaller than th
chaotic flux. Note that, while the velocity of the ion fluid is
much smaller than the thermal velocity both in the diffusion” ™, = .. ¢ stepwise ionization can be estimated both nu-
and pseudodiffusion cases, the velocity of the atom fluid i%erically and analytically; see, e.g., revié@d]. A simple
much larger than the thermal velocity in the pseudodiffusionand reasonably accurate’ app’roa{cr.{ is provided by the so-

?L?Ssignaggsrgwh smaller than the thermal velocity in the OIIf’called modified diffusion approximatiotMDA) [28]. The

A diffusion theorv of the ionization laver in a partially PrOc€SS of stepwise ionization is considered in the frame-
- y ort ) ye P Y work of the MDA as a result of diffusion of bound electrons
ionized plasma was previously considered in Ref. A for-

mula for the ion flux generated in the ionization layer written over energy levels of atoms. For a giveg, a position in the
on the basis of the resulf§] is given in Appendix A[Eq. energy spectrum exists where a diffusing bound electron

(A1)]. For a plasma close to full ionization, this formula spends most of the timghe so-called bottlenegkWith the

conforms to Eq(12). Thus the case of a fully ionized plasma growth of T, the bottleneck shifts in the direction of lower
: energy levels.

represents in the framework of the diffusion theory a regular For conditions when the role of radiation is unessential

limit of the general case of a partially ionized plasma. hich is th it the el ber densi d
On the other hand, a multifluid solution for a plasma cIose(W 1'C '52 t escase It the e ectro.n number density exceeds
’ 107-107* m™3) the value ofkgepin the framework of the

to full ionization was not found in Ref9]. The reason for MDA is given by the interpolation tion
this is clarified by the above asymptotic solutions, and is as S given by the interpolation equatio
follows. One can express in terms off andw by analyti-
cally solving Eqg.(17). A solution to this quadratic equation k-lokr it k‘lil“
is twofold. It can be shown on the basis of the above step 2 N
asymptotic solutions that in the case of largethe proper

branch is the one with plus, while in the case of smaathe  whereE is the energy of the first excited state of the atom
proper branch is that with minus. Thus one should deal ircounted from the ionization threshold abdx;a) is the in-
numerical calculations with both branches of the solution ofcompletey function. The quantitiek; andk, represent limit

Eq. (17) with eventual switching of branches during the cal- values ofkge,for the cases of high and loW,, respectively
culations, while in the calculations of Ref9] only the (in the first case the bottleneck is positioned between the
branch with plus was considered. Note that a numerical soground and the first excited states of the atom; in the second
lution with the switching of branches is not a simple task,case it is positioned between the first excited state and the
and is not attempted here. continuumn).

KTe 1/2| 2KT, ( ! 58
e (I+2kTe)exp T kT (58

?Nhereci is a derivative of the ionization cross section with
respect to the electron energy, evaluated at the threshold.

(59

E 5
kT, 2/’



2238 M. S. BENILOV AND G. V. NAIDIS 57

TABLE I. Atomic parameters used in calculations of the ioniza-

tion rate constant, of the average cross section for momentum trans-
fer, and of equilibrium composition for argon and mercury plasmas.
Ar Hg
I, eV 15.75 10.44
E, eV 4.11 5.26
l,, eV 27.63 18.76
gl 1 1 N
g+ 6 2 :'
92+ 9 1 I)
c;,107%22 m?leV 18 30 s !
a,10 *m 7.0 11.9 el Te (10°K)
b,10m 0.60 0.56 10 L Y I I
0 10 20 30 40
k, is given by the formuld?28]. FIG. 5. lonization rate constants in argon and mercury plasmas.
(1) and(2): The total ionization rate constant8) and(4): The rate
4e* Ay 2m 1/2 AE constants of direct ionizatiori5) and(6): The rate constants calcu-
k= exp| — —|, 60 lated by means of Ed.63). (1), (3), and(5): Ar. (2), (4), and(6):
1= AE (mekTe p( kTe) (60) e y q.63. (1), ( ©) ), (4) (
whereAE=1—E, and A is the Coulomb logarithm for the

ground statda function ofkT,/AE). The latter can be ap- N9 into account the formul@g;(e) =a—b Ine [32], where
proximated in the range kT,/AE=0.07 as A, @aandb are constants, one can calcu@g’l) approximately
=0.25(kT./AE)'?[30]. The use of this approximation en- as

ables one to rewrite Eq60) as

07 2 Qa¥(Ty)~2[a—b In(2kT,)]2. (64)
k—43><10‘14ﬂ == _2E 3
e Ry Ry exp kTe mis, As an example, we consider an application of the above
(61)  formulas to argon and mercury plasmas. Atomic parameters
used in the calculations are given in Table I; also shown are
where Ry=13.6 eV is the Rydberg constant. the ionization potential of the singly charged idn,, and
k, calculated in the framework of the MDA [28] the statistical weight of the ground state of the doubly

charged iong,, . Parameters$, E, | ., g;, 9., andg,,

3 were taken from Ref[33]. The values ofc; were obtained
KT, exp| — KT/ 62 from the data on ionization cross sections for Ar and Hg
given in Ref.[34]. The parametera andb for Ar were taken
in accordance with Ref35]; for Hg they were obtained by

where, | is the partition sum of the iorg; is the statistical 4 !
) . —. approximating the measured resonant charge exchange cross
weight of the atomic ground state, andis the mean value . o
section[36] (e is in eV).

of the Coulomb logarithm for the excited atomic states. Tak- Dependencies of the ionization rate constgnon T, are
ing into account that under the considered conditions the P N

o . . - .., shown by the full lines in Fig. 5. The values kf§;, are also
partition sum. is approximately equal to the stafistical shown. A major contribution to the ionization rate in the

weight g, of the ion ground state, and~0.2, one can ¢onsidered range of electron temperatures is due to stepwise

8( 2 )1’2 e4A_E+< Ry

‘=3l m.) Ry® o1

rewrite the last expression as ionization both in Ar and Hg. A contribution of direct ion-
3 ization in argon is much greater than that in mercury, which
149+ Ry ' is a consequence of different structures of energy levels: the
k,=1.3x10 ¥=— —=| exp| — —| m%s. (63 S€q ( ; _ ay :
1\ KTe KTe first excited state in Ar is relatively close to continuub,

~|/4, while in HJE~1/2. Note that in the whole range of

As pointed out above, this value represents the rate constaiie values ok; are close tcy; that is, the ionization rate is
of stepwise ionization in the limit of lowf; it is related  governed mainly by transitions between the ground state and
through the detailed baland&aha equation to the well-  the first excited state. Also shown in Fig. 5 is the coefficient
known expression for the electron-ion recombination rate,, which corresponds to the ionization rate constant calcu-
constant involving the factof, %2 (e.g., Ref[31]). lated with the use of the electron-ion recombination rate con-

Resonant charge exchange is a dominating mechanism efant proportional tar, 2 and the Saha equation. One can
momentum transfer between singly charged ions and paregke that such a calculation results in a considerable overesti-
atoms. The energy-dependent momentum transfer cross se@ation of the ionization rate in the conditions of practical
tion Q1 is related to the total charge exchange cross sectiomterest.
Qe (Which is measured in experimeptsy the formula[32] The values ofx as functions ofT; are shown in Fig. 6 for
Qi(al)(s)~2Qex(s), wheree is the energy of collision. Tak- two values of the heavy-particle temperatures. The depen-
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3_ 90 a general model for a plasma of an arbitrary ionization de-
gree. In the framework of such a model, the increase of the
CEN / 7 @ charged particle density ceases at the edge of the ionization
. / , layer because the full ionization of the plasma has been at-
, y : tained, rather than because a balance between ionization and
. ‘ recombination has been reached.
v . A character of a solution in the framework of this model
10 7 e —1.0 has been studied on the basis of asymptotic analysis for the
.- T casese>1 anda<1, i.e., for the cases in which the thick-
N ] e ness of the ionization layer is much larger or much smaller
14,/ . T 0.5 than the mean free path for elastic ion-atom collisions. An-
’ Teeall other interpretation of the physical sense of these limit cases
‘ 2 is suggested by E@56), according to whichw? is of order of
04 : : : : 0.0 the ratio of the frequency of elastic ion-atom collisions to the
10 20 30 T, (10°K) ionization frequency.
An unexpected result of the analysis is that a regime oc-
FIG. 6. (1) and(2): Parameter in argon and mercury plasmas. curring in the limit cas_,ea<1_|s S_'m'lar na number_ of )
(3) and (4): Equilibrium ionization degree in atmospheric-pressure 2SPECts to the conventional diffusion regime that realizes in
argon and mercury plasmas. Full linds;=3000 K. Dashed lines: the casea>1. Characteristic features of the former regime
Tr=30000 K.(1) and (3): Ar. (2) and(4): Hg. (which has been called the pseudodiffusion regirhave
been found and discussed.

dence ofa on the heavy-particle temperature is rather weak.
As « is proportional tok; 2, values ofa in Hg are essen- ACKNOWLEDGMENTS
tially smaller than those in Ar.

The theory developed in the preceding sections is appli- The work was supported by FEDER and by the program
cable provided that the plasma at the edge of the ionizatioPRAXIS XXI. One of the author§G.V.N.) is indebted to the
layer is close to full ionization while the percentage of mul-Madeira Science and Technology Cent&TMA) for the
tiply charged ions is small. It is convenient to define thesupport of his stay at the University of Madeira.
ionization degreev as a ratio of the electron number density

to th.e.total numt_)er q_ensity of the hea}vy particles; then the AppENDIX A: DIEEUSION FORMULA EOR THE ION
copdltlon of applicability of t_he Fheory is thaft be close to_ FLUX GENERATED IN THE IONIZATION LAYER IN A

unity. Vall_Jes of the equilibrium ionization degree in PARTIALLY IONIZED PLASMA
atmospheric-pressure argon and mercury plasmas are also

shown in Fig. 6.(In calculations, neutral atoms and singly A diffusion theory of the ionization layer in a partially
and doubly charged ions were taken into account, and th®nized plasma was developed in Rg]. The results of Ref.
atomic parameters shown in Table | were uséssuming [9] for the ion flux cannot be directly applied to a plasma
that w can differ from unity by no more than, say, 20%, one close to full ionization since they involve the diffusion coef-
can see that at,;=3000 K the theory is applicable in the ficient of ions in the neutral gas evaluated at the edge in the
range T,=17 000-25 000 K for Ar and in the rangg, ionization layer, which tends to infinity when the plasma
=13300-19 500 K for Hg. The rangesB{=30 000 K are  approaches full ionization. However, these results can be
T.=16 000—24 000 K for Ar and’,=12 300—18 500 K for transformed to give a formula which does not give rise to

Hg. such a problem,
One can see from Fig. 6 that values ®@ffor Ar in the
above-mentioned ranges 0f, are essentially greater than oo P 12
unity. Hence, the ion flux from the ionization layer in an Ji=Cy (1+:8)kiDi<a)niock_Th , (A1)

argon plasma to the edge of the space-charge sheath may be

estimated by means of E@l2). In the case of a mercury . . _

plasma, the respective values @fare comparable to unity, WhereC;=Cz(B,7) is a coefficient determined by E(7)

and one can employ E¢50) as a first guess for the ion flux. ©f Ref.[9] (herey=n;../n,.). o

Note that an increase of pressure will result in a shift of the ©One can check that the coefficiet,(3,7) tends as
range of values of electron temperature in whish-1 to ~ Y— to afinite limit coinciding withC,(3). It follows that

larger values, that is, in the direction of smalter Eq.(Al) for a plasma close to full ionization conforms to Eg.
(12). In order to give an idea of values of the ionization

degree at which the model of a fully ionized plasma is ap-
plicable in the diffusion limit, a comparison of the coeffi-
A specific case important for applications in the theory ofcientsC; andC, is shown in Fig. 7[The line 8=0 in this
the ionization layer at the edge of a thermal plasma is reprefigure has been calculated by means of the formula
sented by the case when the plasma is close to full ioniza€+(0,y) = J(2y+3)/(6y+6).] One can see that the model
tion. The recombination in the ionization layer is negligible of a fully ionized plasma already provides a good approxi-
in this case, which allows one to construct a model which ignation for y=5. For example, in the rangé=1, the coef-
mathematically simpler and more transparent physically thaficient C, differs from C; for y=5 by no more than 1%.

VIIl. CONCLUDING REMARKS




2240 M. S. BENILOV AND G. V. NAIDIS 57

1 - plicit limitation on the space-charge sheath being collision-
Cr - B=100 less or collisional is imposed in either section.

This approach may seem to contradict the reasoning of
Refs.[38,40, according to which the Bohm criterion is ap-
plicable at the edge of the space-charge sheath provided that
the sheath is collisionless. It is easy to see, however, that this
approach involves implicit limitations, which when taken
into account are totally consistent with Relffi88,40.

Consider first the case when ion inertia is essential. As-
suming that the respective tefithe one on the left-hand side
of Eqg. (13)] is not much smaller than the pressure-gradient
term, one finds that the mean velocity of the ions is compa-
rable to the thermal velocity. Assuming that the ion inertia
. term is not much smaller than the term accounting for the
ion-atom friction, one finds that a local macroscopic length
scale is comparable to the mean free ion-atom path,
Since the plasma is assumed to be quasineutral on the length
scale considered, this implies thg}, is much larger than the

FIG. 7. Coefficients determining the ion flux generated in tne|oca| Debye |ength Hence the Space_charge sheath is colli-
ionization layer, calculated in the diffusion approximation. Full sjonless and the Bohm criterion applies at its edge, thus pro-
lines: C;=C-(B,7), the model of a partially ionized plasma. yjding an appropriate boundary condition for the equations
Dashed linesC;(B,%) = Cy(B), the limit of a fully ionized plasma.  of 5 quasineutral plasma accounting for ion inertia.

Dotted line:C-(8,0)=y2/2, the limit of a weaKly ionized plasma.  Now consider the case when the bulk plasma is controlled

. by diffusion. A local macroscopic length scale is much larger
Thus Eq.(A1) may be used for a weakly to fully ionized than.

! . . y - ia» and the space-charge sheath may be collisionless as
friassgqc?.alt'; co_rt1r\]/ etﬂgefr:talfgfoﬁfsgg)cisapplIcatlonS to rewrité e as collisional. Treatments of a situation with a colli-
is equation wi

sional sheatfi40—43 indicate that the Bohm criterion is not
112 appropriate, and the proper boundary condition at the sheath

0.5 LRI LI R LLL | LELRALLL | T

0.01 0.1 1 10 Y 100

Ji=Cn.. 3m(1+ B)kiCia (A2) edge for diffusion equations describing a quasineutral plasma
32Q4Y is n;=0. If the sheath is collisionless, the Bohm criterion
applies at its edge. However, the diffusion equations cannot
APPENDIX B: BOHM CRITERION AS A BOUNDARY be_ extended_ right up to the_: sheath _edge in _this situation: as
CONDITION FOR HYDRODYNAMIC EQUATIONS pointed out in Ref[40], an intermediatdtransitiona) layer

exists, separating the diffusion-controlled bulk plasma from
A brief comment in this respect seems appropriate, giverthe sheath. The thickness of this layer is of ordek gf and

the recent controvers§37—44. In the present paper, the it may be called a Knudsen layer. This layer appears in the
Bohm criterion is invoked along the line®Ref. [10], pp.  present analysis as the inner zone considered in Sec. IV, and
26-28 as a boundary condition for equations of a quasineuis described by solutiof28). Thus a boundary condition for
tral plasma taking into account ion inerti&ec. Ill), when diffusion equations describing the bulk plasma should be es-
the solution has a singular point. In Sec. II, in which thetablished at the edge of the Knudsen layer rather than at the
conventional diffusion description of the plasma is consid-sheath edge, and the treatment of Sec. IV indicates that the
ered, the Bohm criterion is not used, and the boundary corproper condition isn;=0. One can conclude that it is an
dition for diffusion equations at the edge of the space-chargeppropriate boundary condition for diffusion equations re-
sheath is that of zero charge-particle dengity=0. No ex-  gardless of whether the sheath is collisional or collisionless.
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