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Transport properties of strongly coupled plasmas
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A self-consistent field theory is proposed of transport properties of strongly coupled, fully ionized, multi-
component plasmas. The results are compared with those of simulation and experimental [$tudies
molecular-dynamics one-component plasmas see J. P. Hats®n Phys. Rev. A23, 2041 (198J); for
capillary discharges see J. F. Benageetlal, Phys. Rev. E19, 4391(1994); for vaporization of copper wires
in water see A. W. DeSilvéprivate communicatior. Like in previously considered caspg. M. Adamyan
et al, J. Phys. D27, 927 (1994, and references thergjrthe agreement is good or reasonable; the approach
possesses no adjustable paramef{&$063-651X98)06302-9

PACS numbd(s): 52.25.Fi

I. INTRODUCTION Il. MODEL

We consider dense relatively cold plasmas with tempera-

Recently, there has been an increasing amount of workure T of about T=10* K and electronic number density
both theoretical and experimental, on electrical conductivityne=10?* cm™2 [13]. Under such conditions all characteristic
of strongly coupled Coulomb systems. The experimentalengths such as the Wigner-Seitz radis (3/4mne)'?, the
studies have been carried out by measuring the resistivity dilectronic Debye radiuspe=(47n.e’B8)*? (8~ '=kgT, kg
a plasma channel produced by strong electricalpillary) is the Boltzmann constantand the de Broglie wavelength
discharges in dense materials such as polyurethhand A\ =7%(2B/m)"? (#i is the Planck constanare of the same
copper[2,3]. order of a few atomic units and the Debye correction to the

Recent experimental data, especially those of DeSilva an{Pnization energy becomes comparable to thgdrogen
Kunze and DeSilva, have invited a number of researchers tiPnization energy itself. Thus, at least the valent atomic elec-
compare their theoretical predictions with these data; se§°nS become collectivized and one cannot distinguish be-
[4,5] and alsd6]. tween char_ge_d and neL_JtraI co_mponents of the plasma._

These theoretical approaches either are based;Tken The basic idea considered in the present approach is that

eneralizations of the Ziman formula for resistivity of metalsOf self-consistent field: Each electrdparriey moves in a
9 ) SISUVIty " self-consistent field generated by all other free charges in the
(see alsg8]) or, as in[9], construct appropriate interpolation

f las b he i d Spi heoft system. The finite values of the transport coefficients result
ormulas between the Ziman and Spitzer theoféls One {5 the electron’s scattering on the self-consistent field

should also take into consideration the semiempirical result§, t,ations.
of [10]. ) ) ) This approach was outlined and applied [ib3]. This
More references can be found in the review article byyork was based on the paddr] by Edwards, which related
lakubov[11], where it was also pointed out that there was nothe Lorentz-model expression for the fully ionized plasma
theoretical approach capable of describing all experimentadlectrical conductivity to the strict quantum-statistical calcu-
data, despite its ambiguity. In an early wofd2] a |ation involving the Green’s-function formalism with the
correlation-function expression for the collision frequencyself-consistent field potential.
was found and shown to reduce to the Ziman and Lenard-
Balescu results in the appropriate limits. The realm of valid- IIl. THEORY
ity of this expression is limited by the possibility of applying
and solving the hypernetted-chain equations.
In this paper we want to show that the theory of transpor
coefficients of dense cold plasmas based on the concept of 9 .
self-consistent field and the generalized random-phase ap- O'=Re(¥jx(r,t)||::0, (D)
proximation (RPA) also possesses correct low- and high-

density limiting properties and is in reasonable, taking 'ntowheref(F,t) is the averaged current density generated in the

account a low level of precision of resistivity measurements, tem by an external electric fieR(F 0.0). We presum
agreement with all available experimental data. This theor ﬁ/;te y an external electric fiefe(F,0,0). We presume

considers only fully ionized plasmas and has not yet been
extended to the description of data corresponding to alleged F(rt)=F exp(5t) )
Mott phase transition conditions. ’ '

The starting point for the conductivity calculation is the
tquantum—mechanical expression

with 6>0,6—07". This specific time dependence of the field
is introduced to avoid coherent currents inducted at the
*Electronic address: imtk@ign.upv.es switch-on moment= —o, Thus
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I wte > > = 9 =2
—5‘1’ (r,=o)¥(r,—©)|, ©) X G(r,r ;sl)gG(r,r (&5)
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where on!y the density matrix operatpft) depends on the —G(F,F"85)—G(F, ;81 .[ (1) .(82)] _
external field(2), so that X i(e1—&,— 11 6)
ap(t) ie = (10
—E | =7/ ¢ *ds
F I, 0 Here
><fﬂx[\w(ris)qf(ris),;(—oo)]dF. @ G(r,F"5e)=2 (N (1) 8(e,~¢)
[(—e) andm are the electronic charge and mddsere s the electronic Green's function of the Sctimger equa-
tion involving the self-consistent fiel(r):
—eFe—&f xWi(r,s)W(r,s)dr 2
Q - - -
—ﬁAG+eV(r)G=sG+5(r—r),
is the interaction contribution to the system Hamiltonian
H(t) and . L.
G(r,r';e)=G(r'r;e). 11

p(—o)=exp[— B[H(—»)—¢]},

p(==) A= AH(==)~ ¢l Averaging in Eq.(10) is to be carried out over the self-

exp(— ) =Trexd — BH(—=)] (5) consistent field fluctuations. The symmetry properties of the
’ Green'’s function lead to

¢ being the system free energy of Helmholtz afidthe

system volume. Thus, me’hd (= dw(e) [ -
y o= Ref de dr’
o2 " m? 0 de Jo
o= —Ref e“ssdsf dr'x'Trp(—o) . -
2m Jo Q IG(r',r:e) aG(r,r';e)
. (12
ax’ X

x| wir 9 W(r 9 i
— 00 —00)— — 0
(r, )(9X (r,—o) X (r,—o)

An important advantage of formuld?) for o is that it is
analogous to the expression that describes the interaction of
: (6)  electrons with quantized electromagnetic field and there al-

ready exists the diagrammatic perturbation theory technique
The second-quantized wave functidr(?,t) is express- of calculation of the right-hand s_ide of EQLZ): I_n ad_dition,
o N the present problem lacks the divergence difficulties charac-
ible in terms of the one-electron wave functign(r) of the  eistic of quantum electrodynamics and various approximate

XW(r,—o), U7 s)W(r’,s)

one-electron free Hamiltoniai methods of the quantum field theory can be applied to evalu-
- - ate Eq.(12) without complications.
Hot,(r)=g,4,(r), (7) There is an important difference between Eds.and(3),

_ on the one hand, and E{L2), on the other. The latter per-
> | > mits one to carry out the self-consistent field averaging pro-
\I’(r,s)—EV avexy{ %8”3) ¥l(1), ®  cedure before the coordinate integration.
Edwards[14], who previously obtained Eq12), devel-

a, being the corresponding annihilation operator, for whichoped and applied to it a diagrammatic technique analogous to
we have the averaged commutator that of the quantum field theory. He showed that if the inter-
R ; ; action operatot could be introduced by the equation

Trp(—oo)[aﬂ,aﬂ,ay,ay]=5lw, Wl W—W, 1, (9) i
(GG)=(G)(G)+(G)(G)I(GG) (13
where
. and estimated within a perturbation theory, thee Green’s
w,=w(e,)={exd B(e,—p)]+1} function

is the Fermi-Dirac distributiony being the electronic sub- L s,
: ) - m  sin(k|r—r’'|)
system chemical potential. Go(r,r';e)= —
The trace in Eq(6) can thus be simplified to get 272 |r—r’|

(14
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[herek=(2me/%?)Y?] in the presence of the self-consistent nal charge distribution of the species x.=—1, and

field V(r) fluctuations should be substituted by ki(0)=Z2;, the charge number of ioris The field potential
correlation function thus equals

- m  sin(k|r—r’|) [r’—r| )
(G(r,r';e))= s — exp — & | o s 1o -
2m*h®  [r—r’| ve (IV(q,0) )= 5———]| 2 *a(®)x5(Q)Sap(0,).
(15 q°e(q,w)/ ab
(21
where y(¢g) is the electronic mean free path. Then integra-
tion in Eq.(12) yields The dynamic structure factor of the specaeandb,
2mé (= _ dw(E) San(d, @) =(p3 (q, @) pp(Q, @), (22
== J dE v(E)dE. (16)
3mh=Jo is related, by the fluctuation dissipation theorEgts]

Since, as in the kinetic theory, - f -

San(Q, @) = z—coth( A w/2)ImX (g, w), (23
Y(E)=(2E/m)*?7(E), (17) 2m

7(E) being the mean relaxation time, HG6) coincides with  1© the partial density-respong@reen’s function

the Lorentz formula - -
Xap(0, @) =I15(0,0) Sap—1T4(0, 0) (9, 0)I?%(q, @),

4e? (= dw(E) (24)
O'=—3—m o EdEd—Ep(E)T(E), (18) )
1G,0) = 4me” ka(q) kp(Q) (25

where p(E)=(2m°E)Y%27°%% is the density of one-
electron states in the energy space. Generally speaking, the
mean free pathy(E) or the mean relaxation timg(E) of Eq.  being the full vertex part anlll,(q,») the a-species polar-
(18) is determined by the exact pairwise scattering cross sedzation operators, which also determine the dielectric func-
tion. Notice also that the averaging over the self-consisteriion in Eq.(20) and
field thermal fluctuations includesonfigurationsfor which

q2 8(qyw)

2

ivitv is infini i ibuti 47e
the cgnducuwty .|s mﬁmtg. We attr.lbute to such contributions () =1+ E Kﬁ(q)Ha(q,w). 26)
of V(r) a negligible statistical weight. q®> @
V. CALCULATION OF CONDUCTIVITY Substitution of Eq3(21)—(25) into Eg. (19) and integra-
tion [15] yields
It was shown in[14] that Eq.(15) for the averaged one-
electron Green’s functiogG) is a result of summation of -y 47met deq K2()T4(q,1) @7
N L e . r — Ny e tvrra g
infinite series in powers of the pairwise-interaction transport s2mB¥2o a4 4 2.

cross section. That is why, though we substitute the latter by

its first Born approximation and thus neglect a good deal OfA corresponding expression frof6] is valid for hydrogen

diagrammatic contributions t¢G) [13], we can consider agmas only.Here thel summation is spread over the poles
Coulomb systems with relatively strong interactions. Thus

we express the inverse mean relaxation time in terms of the O\=2#l/ph (1=0,£1,£2,...) (28

self-consistent field correlation function
of coth(B%2/2) on the imaginary-axis, i.e., over the Mat-
. me? Q @ e subara frequencid47], andIl (q,l) are the real parts of the
T (E)=—3/J q dQJ (IV(q,0)[*)de. I1,(q,w) operators atv=i(),. Equation(27) together with
4m(2mE)™Jo o (19 Eqg. (18), forms a general algorithm of conductivity calcula-
tion, as soon as specific approximate expressions are used for
Here Q= (8mE/#?)Y2 the momentuntQ being the maxi- the density-response functions and the polarization operators.

mum possible variation of the electronic momentum as a [In our computations we evaluated the real pag{q,!) of
result of the scattering process, and the a-species polarization operator beyond the standard

RPA, using the temperature-dependent static local-field cor-

. Ame .. rection G¢(q) [18,16,19 parametrized to satisfy both the
V(q,w)=2—)§ ka(d)pa(q, @) (200 compressibility sum rulefwith the electronic subsystem
q°s(q,@ compressibility determined from the one-component plasma

is the field potential operator complete Fourier transform 8XCeSS interaction energy determined by the Monte Carlo
A . . . > (MC) simulation[20]] and the long-wavelength limiting con-
pa(0,») being thea-species density operator in () space

ande1(q,w) the plasma dynamic screening function. Thedltlon of Kimball [21]

system is presumed to contain electroap &ndp ionic spe- Ge(0)=Gq(2)=[b+al(22)?] . (29)
cies (iy,iz, ...,ip) characterized by their respective form

factorsk,(q), a=e,iq,i, ... iy, which describe the inter- Hereb=[1-g.(0)] ! anda was estimated as ifL9]:
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A B 2C 5D -1 r G| "
__ n-13 2 P o1, S r—an, 2 oo B i
a (127°) 9 + 12F + 27F + 54F ) i(z,1)=8né - 1_(1T2)1/37 (40)
(30
Herel' = Be?(4mn /3)*"® measures the rate of Coulomb cou- with
pling in the systemz=q/kg, ke=(37?n.)*? is the Fermi Gi(2)={b[se(z, )] +al(22)2 "1, (41)

wave vector, and A=-0.899 3749, B=-0.224 469 9,

C=-0.0178747D=-0.517 575 3[20]. for the ionic one 6 , is the Kronecker delta symbo&and
The model parametag,(0), which is the zero-separation thus obtained a closed expression for the conductivity coef-

value of the electronic radial distribution function was deter-ficient. Notice that the influence of the valuegy{0) proved

mined by a self-consistent procedure: It was computed via & be quite small; see, nevertheless, Sec. VII A.

simultaneous solution of two integral equations

1 Pz
se(z)=|=2|1 oz’ (31)
go(0)=1+12 f;(se(z)— 1)22dz. (32)

In Eqg. (31) the summation is spread over the Matsubara di

mensionless frequencies

v, =xl/2Dz (33

r Pe(z,1)

( 12,”_2) 1/3 22

eo(z,)=1+ (34)

is the electronic dielectric function; the value kf in Eq.
(31) was determined by the numerical precision.

Here D=0~ '=g#%k?/2m is another dimensionless pa-

V. LIMITING CASES

Despite the approximations made to obtain our expression
for the plasma conductivity, it possesses correct limiting
forms corresponding to the cases of dilute gas plasma and
metal-density Coulomb systems. In particular, if we omit the
electronic contribution in Eq27) and neglect the screening
effects(i.e., sete(q,l)=1) and the momentum dependence

of the ionic form factors, the sum on the right-hand side of
Eq. (27) becomes a constant

B> Ztn;.

If further we presumeE to be equal to the mean kinetic
energy of an electron, we retrieve from E@Q7) the Cou-
lomb logarithm, and Eq(18) with w(E) substituted by the
Boltzmann distribution takes the form of the Spitzer formula
without corrections due to electron-electron interacti@$.

rameter measuring the plasma degeneracy rate; notice th@fe have estimated the relative weight of this last correction.

the Brueckner parameter

r=T0/0.543. (35)

P.(z1) in Eqg. (31) is the dimensionless polarization op-

erator I1.(q,1)=114(q,i ;) with the local-field correction
included:

r Ge(z)Pg(z,I)) -t

Pe(z,I)ZPg(ZJ)( 1- (1272)18 2

(36)

The RPA dimensionless polarization operdP@(z,l) can be
calculated(for each value of density and temperaturggnd
[) by simple integratiori22],

30 (= ydy
0 -
Pe(zul)_ 42_[0 ey2/0777+1

z+y+iv|
Z—y+iv|"

(37

while the dimensionless chemical potentigk Su is deter-
mined by the normalization condition

_ % -3
jo elt"7+1 37 38
Thus we used in Eq27)

Ie(a,1)=neBPY(Z,1) (39

for the electronic polarization operator aff]

In particular, in the dilute plasma regime, we calculated the
conductivity contribution due to scattering on ions only. Hy-
drogenlike plasmas were considered in these computations
with ng=2n; and the screening function was substituted by
its long-range static limiting form

e(q,0)—(1+q%k?)~*

with the screening lengtk; * chosen to be either the elec-
tronic Debye radiusk; *=(47n.e?8) Y2 or the complete
Debye radiusk, '=[47(1+Z)n.e?B] Y2 Thus we em-
ployed instead of the relaxation time of Hg7) the limiting
expression

4mrmZ2e’n, fQ q°dq

SHE)= :
=BT ome Jo (@113

(42

These estimates are provided in Table I, labetgedand
o5, along with the results of our complete calculations, la-
beledo and obtained as explained in Sec. VII C. It is seen
that the electron-electron interactions are responsible for up
to 45% of the resistivity value.

On the other hand, if we consider the low-temperature
limiting case 3~ '—0), the Fermi-Dirac distribution deriva-
tive in Eq. (18) turns into — 8(E— Eg) with Ep=#2kZ/2m
andQ becomes equal tokZ , so that we immediately regain
the Ziman specific resistance formy24].

Notice that no special effort was dom initio to guar-
antee the correct limiting behavior of our model. Neverthe-
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TABLE |. Relative contributions to the plasma conductivityof Table Ill, o5 (s=1,2), are calculated

according to Eq(18) but with 7¢(E) from Eq.(40) with k; = y4mn.e?8 andk,= V4w (1+ Z)n.e>B, respec-

tively. T,n, are the temperature and electronic number density in coppeZ amslthe effective ion charge.

T (kK) neX 1072 (cm™3) z oX 10 (S/m) o1 X107% (S/m) a,X 1074 (S/m)
20 3.18 1.3 2.12 3.13 4.07
20 7.69 1.2 2.94 4.55 6.34
30 4.07 1.6 3.03 4.02 521
30 6.03 1.6 3.42 4.47 5.97
40 4.33 2.0 3.66 4.37 5.72
less, further studies of the limiting behavior of our model and 4 (= dw(E) _
a comparison with other general expressions for the collision Ki==3m, . Ep(B)7(E) —E (E—w)'dE, (45

frequency(e.g.,[12]) or for the conductivity itself{see[25])
are to be carried out.

In general, the difference between our expression and th
of Ziman (widely used lately to calculate conductivi#—6])
is that we include the energy-dependent relaxation fiEwe

where u is the electronic subsystem chemical potential and
E) is the same relaxation time defined by Ef7). The
transport coefficienK, determines the static conductivity

(27)] and the Ziman formula takes it &=E . In addition, o=e?K, (46)
we have the electron-electron interaction included explicitly
via the structure factoB,(q,w). while the static thermal conductivity

The o(T) dependence at constant densigee[16]) is
characterized by a minimum corresponding to a transition —E(K “KZK,) 47)
from the low-temperature regime with decreasifigith K= 7 Rhem R
growing T) conductivity characteristic for metals and liquid
metals(Ziman regimé to that of increasing conductivity at and the thermal electromotive potential
higher temperatures, characteristic for dilute plasmas 1
(Spitzer regimg Thermodynamic conditions were specified a=Ky(eTKo) . (48)
in [16] corresponding to the domain of values of the elec-
tronic concentration and the plasma temperatimehydro-
gen plasmas where our expression asymptotically ap-
proaches the Spitzer regime withy  T) o« T%2

Finally, relative contributions due to various factors in Eq. k72 Kg)2
(27) were also estimated. We found that at least Ter20 —= ?(—) T
kK and n,.=10?* cm 2 (conditions considered earlier in 7
[13]), the value of conductivity calculated with the sum in

In the case of complete degeneracy of the electronic sub-
system the conductivitiesc and o are related by the
Wiedemann-Franz law

: (49)

If the degeneracy is incomplete, like in our case, there

Eq. (27) substituted by appear temperature-dependent corrections to(&%). Nev-
5 ertheless, we will see that these corrections under the condi-
[11e(q,0) +Z°11(q,0)]/&(q,0) tions we consider are quite small.
(as in[13]) was about 50% higher than the complete calcu- VIl. RESULTS AND CONCLUSIONS

lation results given in Tables | and Il ] ) ] o
Extensive studies of electrical and thermal conductivities

in a wide range of variation of temperature and electronic
VI. OTHER TRANSPORT COEFFICIENTS density in hydrogenlike plasmawith n,=Zn;) were carried

If the initial state of plasma is not far from that of ther- Out in[16,27,28. Here we report our results on the conduc-
modynamic equilibrium, the generalized transport equation&Vities obtained for the conditions corresponding @

= ~ model Coulomb plasmafl29], (ii) capillary discharges in
Log wﬁtgﬁzns[%arem densiyand for the thermal fluQ can polyurethang1], and(iii) copper plasmas obtained by vapor-

izing copper wire in a water baf}3].

2 o= _q -
J=eKF+T ek (= VT), (43 A. Microscopic simulation of hydrogen plasma

- - R Fully ionized strongly coupled hydrogen plasmas were
Q=eK;F+T Ky(—=VT). (44 simulated using the method of molecular dynan{i®) in
well-known studies by Hansen and McDongRB]. Quan-
T is the plasma temperature and no magnetic effects ameim effects were taken into account in these simulations
taken into account. The transport coefficieKts(i=0,1,2)  through the use of effective pair potentials; at short distances
in Egs.(43) and (44) satisfy the Onsager relatiofig6] and  these differed significantly from the bare Coulomb potential.
within the same approximation instead of E4j8) we have = Reasonable agreement with the conductivity resultg26f
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TABLE II. a7 are the results of the extrapolation procedure according t¢8yandap, were calculated
in terms of the diffusion coefficients as explained in Sec. Vlla%p are the results of the present work
computed using the Coulomb potential amfl, represent our results calculated with the model pseudopo-
tential suggested if81] and employed if29]; o§rp stands for the results ¢f.2].

Nex 1024 (cm™3) TX10 % (K) r rs af o oCp Thp TERD

1.611 1.579 20  1.00 1.1 060 059  1.20 3.72
1.610 6.315 05 100 215 086 1.00 1.40 2.13
25.170 15.79 05  0.40 3.6 147 180 270 4.13

was obtained i12] (see Table Il, where the results are  The model pseudopotential $81,29 is determined by
presented for the dimensionless conductivity =o/w,.  the interacting particles charge numbers and their reduced
(wpe=(4wnee2/m)1’2 being the electronic plasma fre- masses. The species form factors cannot be introduced, so
guency. The dynamicalresults of[29] were successfully that Eq.(21) should be modified:
considered irf30].

The static conductivity of model plasmas was obtained in .~ o 41e
[29] on the basis of the Nernst-Einstein law in terms of elec- (|V(q,w)|2>=(qz—

2
: 2 Yao(®)Sas( 6 ),
tronic and ionic diffusion coefficients directly estimated by e(qw)/

MD simulations: (53)
where
UD:Bneez(Di+De)- (50
. _ Yan(®)=Ypa(4)=ZaZp[ 1+ (AN ap)*] 7Y, (54)
In addition, o was determined, at least fér=2 andrg
=1, through the electric current autocorrelation function in 42
the relaxation time approximatidr29]. e(qw)=1+— > Y2 () 4(q,), (55
Notice that the simulation data fér=2 andr =1 were q- a
obtained in[29] by MD calculations; in this case the value
o’ was calculated as and
ﬁﬁ 1/2
3I'(m Aap=|5— (M1 +myH| (56)
agzﬂ(m)or +D3, (51) a2 e T

. . ] ) o o m, andZ, being thea species mass and charge number. In
De and D" being the dimensionless diffusion coefficients pydrogen plasmas,=m and m;=M, while Z,.=—1 and

determined in29]. Other results were found if29] by ex- Z=1.
trapolation. In these casd3f” was set equal to zergot The pseudoparticles screened interaction energy is equal
determined ir{29]); M is the proton mass. to 4me?Y,,/9%(q, ») and the relaxation time expression of

The value ofs{ was obtained if29] by a limiting pro-  Eq. (27) becomes more complicated:
cedure over the dynamic conductivity(k, ),

_ 47me*  [Qdq
ov = m lim Rer(k,o), (52) 7o (E)= /B(TE)'“JO FZ [YZlle+ YA,
+2(YeoYii — YopllIi)/e%(q,l). (57

and thus related via the fluctuation-dissipation theorem to the
dynamic charge-chargestructure factor. The limiting value The results of our computations with all these changes
of Eq. (50) could be found ir{29] only by extrapolation of jnc|ded, labeledo,, are also provided in Table Il. We

on:rg];-l\iviwzegength t';]/ID dzi\téseg tT ab lﬁ v Omlzi])a-{gg] p_l(_)fi]nt cannot overestimate the fact tha, virtually coincides with
w — .U was the only point really simulatedig=l. 1€ ihe true conductivity values| atI'=2.0. More simulation

other two points were obtained in this work using an X" results on both transport and dynamic plasma properties are
trapolation procedure; its precision is unknown to us. We . P y P prop .

. * i . needed to decide whether, and to what extent, the behavior
would rather not considetr| =0 /wye (Characterized in

h | b h liable than® of the classical pseudoparticles with the pseudopotential of
[29] as thetrue valug to be much more refiable tham . [31,29 imitates that of the true quantum system. We con-
We computed the conductivity of strongly coupled hydro-

: ) ) clude that overall satisfactory agreement with available
gen plasma for all three cases considere@@2@®] and using plasma-simulation data is achieved.
the static local field correction of E¢29). The calculations
were carried out for both the Coulomb interaction and the
model pseudopotential suggested by Deutsch and co-workers
in [31] and employed if29]. In the case of Coulomb inter- Dense strongly coupled plasmas were created in a well-
actions the relaxation time was calculated according to Egdiagnosed uniform discharge in polyurethane with density
(27) with Kﬁ(q)= la=e,i; see thea’ép data in Table II. 1.265< 10" 2 g/cn? and temperatures in the 25-30 eV range

B. Capillary discharge in polyurethane
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TABLE lll. ¢ are the results of the present work, the experimental vat§&¥ are by DeSilvd3], T and
p are the temperature and mass density of coppeis the effective ion charge, arfdis the dimensionless
Wiedemann-Franz rati9).

T (kK) p (glef)  Z r ) o™ 1074 (S/m) ox107% (S/m) f

20 0.7930 15 297  1.020 5.1 10.50 0.99
10 2.4550 23 1012  0.167 32.1 21.00 0.99
14 1.2036 17 515 0460 9.5 11.95 0.98
20 0.1557 12 162  3.240 2.2 4.12 1.11
26 0.0580 14 094  7.340 3.9 3.44 1.11
30 0.0400 16 075 9930 4.8 3.42 1.11
40 0.0230 20 051 1650 5.8 3.66 1.10
10 1.3546 17 751  0.304 8.3 11.27 0.99
14 0.3500 11 295  1.401 1.3 4.90 1.05
20 0.0260 1.3 092 1013 2.0 2.12 1.11
10 2.2616 22 970 0182 27.1 19.10 0.99
14 0.9704 15 460 0577 6.4 9.86 0.99
16 0.1323 11 187  3.060 1.2 3.27 1.11
20 0.0680 12 162 5630 2.2 2.94 1.11
30 0.0270 16 066  12.61 4.4 3.03 1.11

[1]. These results were compared[it] with several dense tween 10 and 30 kK. The ionization state used by DeSilva
plasma theorief32,33,12,34 and showed to be in a signifi- and in our computations was taken from the Fermi-Thomas
cant disagreement. model by More[38]. The plasma coupling and degeneracy

Preliminary experiments of this type were reported inparameters ranged froln=0.66 tol'=10.12 and#=0.167
[35—37. Reasonable agreement with these data was obtained #=16.5, respectively; see Table Ill.

in [16], especially aff=17-18 eV[37], but within the hy- We considered three shots of data[8f and calculated
drogen model. both electrical and thermal conductivities. The results are
An effective average ionic charge numizse 2.3 was ob-  provided in Table Ill, wheref is the dimensionless

tained in[1] presuming Saha equilibrium. This permitted us Wiedemann-Franz ratio
to carry out the calculation of the electrical conductivity of a
multiply ionized two-component plasma in the rangg 3 2 12
= (4.8-5.2)x10%* cm™3 and T=(2.5-4.0)x 10° K. The f=—(keloksT). (59)
same local field correction as in Sec. VII A was employed
with g.(0)=0 (see[19] and abovg

The experimental data ¢1] (provided graphically for the Wi
resistivity) range between 2x010° and 3.3<10° (O m)~ 1.
Our results varied between X30° (O m)~! (for ng=5.2
x10?t cm™2 and T=2.5x10° K) and about 19 (O m)~?
(for Nng=4.8x10%* cm 2 and T=4.0x10° K), taking the
value of 0=5.0x10° (O m) ! at about 3<10° K and n,

First of all, we observe a good level of verification of the
edemann-Franz law: We neglected the ionic transport. A
reasonable 30% agreement is observed in the majority of
points, especially at higher densities. A factor of 2—3 dis-
agreement detected at 14—-16 kK and low densities is attrib-
utable to the possible onset at the conductor-dielectric phase
transition: The copper plasma begins to undergo a transfor-

_ 1em3 Thi : -
=5 107! cm™°. This last value is characteristic for the re- aiion from the fully ionized state corresponding to our
sults of dense plasma theorid82,33,12,34 referred to in  aqe| into the partially ionized state where charge-atom in-

[1]. Notice that the lowest conducti\_/ilty value reached byieractions are to be taken into account. BesAME code “is
these theories is about 442[05 (@m)~" [1] and also that  jncreasingly inaccurate with the onset of strong Coulomb
under these specific conditions, i.e., [3-0.18-0.12, the ipteraction” [39] and cannot include the possible Mott-type

dimensionlessnormalized to the plasma frequencyom-  phase transition. The precision level of this code is not
puted plasma conductivity can be fitted to a simple potentiaknown, In addition, the experimental measurements are quite
function of the coupling parametét only: difficult [2,3] and we believe that an overall precision of the

experimental data df3] is of the order of 30—100 %.

Notice once more that no adjustable parameters were used
in our computations. The only input data were the plasma
temperature T) and density ) (provided by thesESAME
code; sedq3]) and the precalculated charge numiZefsee
above.

We have also carried out a broad comparison with the Calculations were carried out for different values of the
conductivity data measured by vaporizing copper wires in docal-field correction static parametgg(0), ranging accord-
water bath 3]. Plasma densities observed ranged from abouing to its definition between zero and unity. No appreciable
2.5 g/cnt down to 0.025 g/crhand temperatures varied be- dependence on the value @f(0) was detected; further cal-

o*(T)=u/T? (58)

with u=1.70< 10" 2 andv =2.27.

C. Discharges in water



57

TRANSPORT PROPERTIES OF STRONGLY COUPLED PLASMAS 2229

culations were carried out wittp,(0) set to be zero. Thus the mials contributions to the solution of the kinetic equation.
only experimentadata our results are based on is the com-The theory is applicable to multiple-componefhon-
puter fit to the one-component plasma interaction energy obhydrogen-like plasmas with variable ionization states, and is
tained by MC simulation$20]. shown to possess correct low-densi§pitze) and metal-
In conclusion, a theory of transport coefficients of fully density(ziman) limiting forms.

ionized strongly coupled plasmas, based on the self-
consistent field concept and having no adjustable parameters,
is presented. The self-consistent field theory suggested in
[13], outlined in detail, modified, and applied here to various
model and real plasmas, is not based on the solution of ki- The authors are grateful to A. W. DeSilva for providing
netic equations. In particular, we do not have to introducehis humerical data on conductivity and ionization state and
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