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Delay-induced multistable synchronization of biological oscillators
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We analyze the dynamics of pulse coupled oscillators depending on strength and delay of the interaction. For
two oscillators, we derive return maps for subsequent phase differences, and construct phase diagrams for a
broad range of parameters. In-phase synchronization proves stable for inhibitory coupling and unstable for
excitatory coupling if the delay is not zero. If the coupling strength is high, additional regimes with marginally
stable synchronization are found. Simulations witk>2 oscillators reveal a complex dynamics including
spontaneous synchronization and desynchronization with excitatory coupling, and multistable phase clustering
with inhibitory coupling. We simulate a continuous description of the systenNfere oscillators and dem-
onstrate that these phenomena are independent of the size of the system. Phase clustering is shown to relate to
stability and basins of attraction of fixed points in the return map of two oscillators. Our findings are generic
in the sense that they qualitatively are robust with respect to modeling details. We demonstrate this using also
pulses of finite rise time and the more realistic model by Hodgkin and Huxley which exhibits multistable
synchronization as predicted from our analysis as W8L063-651X98)09902-4

PACS numbd(s): 87.10+e, 05.45+b

[. INTRODUCTION model whose amplitudé(®), in the case of neurons the
membrane potential, is a smooth function, which is concave
Synchronization of coupled oscillators is a quite commondown and depends on the tindesince the last activation. A
and elementary phenomenon in many different discipline®rototype of this system is a leaky integrate-and-fire oscilla-
such as physicEL—3], chemistry[4], and biology{5]. In the "
recent years, this topic has gained increasing attention as
synchronous oscillations have been observed in the visual
cortex[6,7,50, which were related to Gestalt properties of If f reaches a threshold, the neuron emits a pulsefdaad
the stimulus. It has been pointed out that synchronous firingeset to zero, while all the other oscillators in the network
activity may be a part of higher brain functions and a methodncrement their amplitudes by an amountexcitatory cou-
for integrating distributed information in an abstract repre-plings). These conditions always lead to stable in-phase syn-
sentatior[8,9]. Besides the question of the functional role of chronization of the whole network.
synchronization, the mechanisms that lead to this collective [n this paper, we investigate the effects of nonzero delays
behavior were of central interest. on such oscillators, and we include also inhibitory couplings.
Abstracting from biophysical details, neurons and othed Secs. Il and Ill, we present a complete mathematical
biological oscillators have been modeled as phase oscillato@1@lysis for pairs of two Mirollo-Strogatz-type oscillators for
with an instantaneous sinusoidal phase coupling, and colle@ Wide range of delays and coupling strengths, which
tive phenomena such as synchronization have been fourliEcessitates a set of intricate case distinctions. We explicitly

[3]. This elementary approach has been somewhat generﬁQnStrUCt fire maps and return maps, and reveal the existence

ized to account for more realistic situations by choosing ind stability of all fixed points. For inhibitory couplings, it

f=—c,f+c, with c,>c;. 1)

different interaction function whose shape was determine urns out that the presence of delays can lead to stable in-

. . : ; hase synchronization. For excitatory couplings, we only get
by the underlying biophysical model, in the case of neuronsy, 4 ¢ nhase synchronization because in-phase synchroniza-

e.g., the Hodgkin-Huxley neurofL0]. The higher Fourier ion proves to be not stable. Considering higher coupling
modes of these modified functions are known to give rise (Qrengths, the existence of marginal stable regimes for syn-
phase clustering of the oscillatofd1-14. Furthermore  chronization is shown. These results are summarized in Sec.
negative coupling has been shown to be important for synpy.
chronization[15-17. In the numerical part of this paper, beginning with Sec. V,

However, two problems arise in this context. Every bio-we examine the behavior of populations M2 up toN
logical system has to deal with substantial delays that seem,,~ neurons, which we have simulated numerically. In ad-
heuristically speaking, to constrain the process of synchronidition to our previous results, we observe multistable phase
zation. Nevertheless, the brain manages this problem andustering for inhibitory couplings, and the spontaneous
even synchronizes neurons across long distafit@s Sec- emergence and decay of synchronized neuronal clusters with
ondly, real neurons do not interact continuously but instea@xcitatory couplings. In Sec. VI, we derive a continuity
exchange pulses at certain times. equation for the dynamics in the limit & — o neurons that

A key work about the origins and mechanisms of syn-shows that our results do not depend on the system’s size. In
chronization which accounts for the pulselike interaction wasorder to demonstrate that most of our results do not only rely
the analysis of Mirollo and Strogaf49]. They proposed a on abstract pulse-coupled oscillators, but also do apply for
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. MATHEMATICAL ANALYSIS
FIG. 1. Functionf(®) and the dependence of the phase shift on

®. With excitatory couplings, an increase efin the amplitudef In this section, we will derive phase diagrams that allow
corresponds to a shift of phase that is larger when starting with @ne to determine if and how two oscillators synchronize their
larger phase A®,>A®d,). A negative phase shifaAd; occurs  activities. Speaking in mathematical terms, the repellors and
with inhibitory couplings. attractors of the dynamics have to be found. We hereby con-
sider a systent of two oscillatorsA and B, both either
real neurons, we simulate in Sec. VII the more detailed neuinhibitorily or excitatorily coupled together with time delay
ron model of Hodgkin and Huxlej20]; and we show that 7. Let us first introduce some basic definitions for our analy-
the phenomena found in the simple Mirollo-Strogatz modelsis.
are preserved in this realistic framework. To extract the asymptotic behavior 8f we keep track of
the evolution of the phase difference between the oscillators

II. MODEL AD; (1):=[1+P;(H)—Di(1)] mod1, (4

The network consists di relaxation oscillators, which
are caricatures of real pulse-coupled neurons in biologic
systemg19]. Each oscillator may be described by a smooth
function f(®,), which is concave down and monotonically

increasing[ f'>0, f"<0, f(0)=0, f(1)=1]. f plays the . ) :
role of an amplitudgle.g. the membrane potenicnd @, @i(tp,) <7, | must have fired at, ;—®; . This second con-
dition is not necessary in a mathematical sense, but makes

e[0,1] is a phase, which in the case of vanishing input from vsi ier by reducing th ber of disti
other oscillators corresponds to the normalized time elapsett!i1e analysis easier by requcing theé number of case distinc-

since the last firing of. Whenf reaches the thresholtl tions. Note that the phase difference in a GS is by definition
:=1, the oscillator fires and; andf are reset to zero. After Ad;j(tp,) = P;(tp,) = Pi(ty,) = Dj(tp,) =:Pp;. Now, we
a time delayt=7, 7e]0,0.5, the spike reaches all the other Fllrg]able to define a firemap and a return map, similiarly as in
oscillators (no self-interactioh and raises(excitatory cou- A ) ] B .

plings) or lowers (inhibitory coupling$ their amplitudes by (i) Firemap h: @pi—@q;: @q;=h(Pp;) with tg

— — _ =min, e ke amlte kltr K>tk
— _1\-1 rEN,kE{,\,\B}{ r,kltr,k— tp,i
an amounte= e(N—1)" -, where € denotes the normalized (i) Return mapR: ®,;—®,,1;: o1 =R(®,;) R

coupling strength € < ]0,1]). The coupling to the oscillators  maps the phase differene, ; wheni fires onto the phase
j may be represented equivalently by an increase or decreagﬁferenceq)p +1; wheni fires again.
in phaseA®; (Fig. 1) The dynamics ofs does not depend smoothly on the ini-
tial phase differenc&:=®; and the coupling strengté,
q)j-q-Aq)j:f_l(min[f(cpj)-{-5,1]);:F+(q)j €), (2 and must therefore be described by sets of different equa-
tions. This is due to the nonvanishing delayand the ab-
sorption at thresholfle>0, min condition in Eq.(2)] or at
zero level off [e<0, max condition in Eq(3)]. As the main
parameters are the initial phase differenkeand the cou-
where Eqs(2) and(3) refer to excitatory and inhibitory cou- pling strengthe, our strategy is to divide thed,e) phase
pling, respectively. We point out that the concavityfofs  space into disjunct domains, which we treat separately, lead-
responsible for the dependenceiob; on ®;, the larger the ing to a single explicit form oh in each of them. In the final
phased;, the larger the phase shit®; (Fig. 1). analysis, these firemags have to be combined together to
Before we treat a pair of these oscillators in a mathematidetermine the long-term behavior 8f
cal analysis, we note some simple properties of the functions Before we begin the analysis of the different cases or
F_ andF ., introduced in Egs(2) and(3) that we will need configurations of the dynamics, we want to illustrate our mo-

Avhich is calculated each time,; (pel, ie{AB}) S
reaches a ground state, GS. A state is called GS if oscillator
i has just fired itspth time, and if its phase is zero. We
additionally demand that, if the other oscillator's phase

O +AD;=f"Y(max{f(®))—€0]):=F_(Pj,€e), (3

in the next paragraph: tivation for our choice of intervals in the subspace of initial
Al:F (D,e)>d for d<1. phase difference®. Let us consider tha® is a GS with
A2:F_(®,e)<® for &>0. oscillator A just being reset ta ,=0 such thadb=®g. In
A3: F.(c+®,e)—F, (c—D,e)>(c+P)—(c—D) a first intervall 1, both oscillators have fired, but their spikes
=2® for c—®>0 andF, (c+d,e)<1. did not reach their destination yet. Therefore, the conse-
A4: O<F_(c+®,e)—F_(c—P,e)<(c+P)—(c— D) quences of the two pulses being received have to be evalu-
=2® for c+®<1 andF_(c—d,e)>0. ated. In a second intervéR, only the spike of oscillatoA

A5: f(P,)—f(P)>f(Py,+a)—f(Py+a) if P;<D,, did not reachB and has to be taken into account. In a third
a>0, f’>0, andf"<0. interval 13, oscillatorB will reach the threshold before the
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spike of A can be received. These considerations lead to th8ince ®,(7)=7 and ®p(7)<1, h(®)>1-1+7+d=71

following definitions forl1, 12, andl 3: such thath: Ex1—12UI13. Additionally, the phase differ-
enceA®d, g increases because the phase shiftg is larger
11 @y ;e[0,], than the phase shifi®,.
12: ®yie[rl1-17], Ex2: 1-f(®P+ 1)<e<f(1-P)—f(7—P) andP el 1:
13: (Ex0,In0): Py;e ]1—71]. time t D, g
On the one hand, the dynamics is very simple if we ard 0
looking at domain 3. After a timet=1—® (from here on, 7—® T—P— T
we identifyt with the time elapsed sinc@has been in a GS Fi(r—®,¢)
S will be in a GS with®z=0, which leads to a firemap r F (r—®,e)+D (*) T+ d—
h(®)=1-d. Additional case distinctions are not required F.(r+®,e)=1

here, and 3 will be referenced as region Exfbr excitatory

couplings or In0 (for inhibitory couplings for reasons of

conformity. : _ h(@)=1-[1—(F (1= ®,€)+®)]|=F (71— D,€) + .
On the other hand, the detailed analysislaf and |2 (6)

following in the next section requires one to distinguish be-

tween excitatory and inhibitory coupling. In each case, Wey il pe h(®)>7—®+® =7 such thath: Ex1—12U13.

first heuristically describe the temporal developmenSab

motivate the mathematical notation of the dynamics that will  Ex3: f(1—®)—f(r—®)<e<1—f(r— D) andP el1:

follow afterwards. For brevity, we denote a spike originating

from oscillatorA as “spike A” and the oscillatorA simply

as “A.” Each domain will be partitioned into smaller re- timet Dy o
gions, which we denote Exor Inn with successive number-
ing for excitatory and inhibitory coupling, respectively. 0 0
—&® —b— T
A. Excitatory couplings, €>0 Fi(r=®,e)<1 (")
_ _ T— O+ 1-0 T+
1. Conflguratlon 11 [1_ F+(T_(I),€)] [1—F+(T_CI),6)]
At t=7—®, spikeB reached\, and later at= 7, spikeA T d-1+ T+ d—

reachesB. Four cases must be distinguished.elfis very F.(r—®,¢€) F.(r+®,e)=1

high, A crosses threshold immediatglgx4) while receiving

the spike ofB. If € is still high enoughA reaches threshold

not immediately, but before spik& can arrive atB (Ex3).

Intermediate values o only cause spiké\ to raiseB in-

stantaneously above threshokk2). Low values ofe cannot h(®)=0—[1-F (7= P,¢)]. 0

bring either of the oscillators up to fire immediately after

absorbing a spikéEx1). Because the case distinctions nec-Since I-F (7—®,€)>0 (*), h(®)<d. This assures that

essary for a complete analysis of the time evolution of thé: 11—11. More precisely,h: Ex3—Ex3UEx4, be-

system are quite complicated, we use in the following concause the slope of the lower bound of Ex3 is posita® can

sistently a tabular form where the relevant time steps areasily be seen frond[f(1—®)—f(7—®)]/dP=—f"(X)

shown together with corresponding phases of the oscillatorst f'(y)>0 with x:=1—®>r—®=:y.) Intuitively, the do-

The motivation or justification for the upper limits efcan  mains Ex1 and Ex2 cover higher values ®f and lower

be found in the lines that are marked with an asterisk. values ofe such that an decrease in phase difference cannot
map in those regions.

e<l1l— + .
ExLie<1=f(®+7) andde 11 Ex4: 1—f(7—®)<e and P e |1:

time t D, Dg timet (O (O
0 0 @ 0 0
—o T—d— T T—® - - T
F.(r—®,e) F . (r—®,e)=1
T F (r—®,e)+¢ T+ — T ® 7o
Fo(r+®,6)<1 (¥ Folrt®,e)=1

h(®)=1—[F,(r+®,6)—(F,(r—D,e)+P)]. (5) h(®)=. (8)
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h:Ex4—Ex4 with the same initial conditions bt andB ~ We can estimate a lower and an upper boundfdr, g(7)
exchanged. Ex4 is a region of marginal stable fixed points.using the monotony of and relationA4, respectively:

2. Configuration 12 O<F_(7+®,e)—F_(7—D,6)<2D—|AD 5 (7)|<D.
Two cases have to be considered. Afterr, spike A (12
reachesB, which will fire next. Depending o, B reaches )
threshold immediatelyEx6) or later (Ex5). Thus h:In1—In0 and R(®)=h(®) if AD,g(7)<0. The
phase difference decreases because the absolute value of the
Ex5: e<1—f(®+7) and® el 2: negative phase shit®y is larger than the phase shiftb , .
time t Dy by In2: f(r—®)<|e|<f(r+P) andd el 1:
0 0 @ timet Dy Dy
T T b+ 7r—
F (P+re<1 (*) O 0
T—d T—d— T
F_(7—®,e)=0
h(®)=1—{f f(r+D)+e, ]—7}. 9 - ® +d_s
As can easily be seen in Eq9), r<h(®)<1l—r7, so F(®+7.6>0 (+)
h:Ex5—12.
Ex6: 1— f(d+7)<e and P e 12: h(®)=1-[F _(7+®d,e)— | (13
time t D, by We can estimate the same lower and upper bounds for
F_(7+®,e) as in Inl using relationA6 and the lower
0 0 @ bound of|e|:
T T O+ 17—

F.(P+T7e)=1 O0<F_(7+®d,e¢)
<F_(7+®,f(7— D))

h(®)=r. 10 1 (D)~ f(r— D))= UH(D+ D) — f(D— D))
Thus,h:Ex6—12. X(AG)
B. Inhibitory couplings, €<0 =20, (14

1. fi tion 11 .
Configuration Thush:In1—In0 andR(®)=h(®) if Ad, (7)<O0.
A receives spikd® att=7—®, andB receives spiké\ at

t=7. Three cases have to be considered: Depending,on  In3: f(7+®)<|e| andP el1:

none of the oscillator¢§inl), one of the oscillatorsg, In2),

or both oscillators A and B, In3) are reset to the resting timet D, Dy

potential f=0. The mechanism of inhibition induces one

more difficulty in our analysis. Due to the fact that the oscil-0 0

lator with higher amplituddé decreases its phase more than7—® T—P— T

the oscillator with lower amplitude while receiving a spike, it F_(7—®,e)=0

is possible that the oscillators exchange their position within: P +d—

the phase axis. F (®+7,e)=0

Inl: |e|<f(r— @) andd el 1:

time t Dy by h(®)=R(®)=1—->. (15

0 0 Thush:Inl—In0.

—o T—0— T

F_(r—®,e)>0 (%) 2. Configuration 12

7 Fr=®.e+® ;Jrqc)pj_ Three cases have to be considered. tAtr, spike A

~(P+7.€)  (eaches. Depending ore, B is reset to the resting potential
(InB) or not (In4, In5). The difference between In4 and In5
h(®)=1—|Ad 4 g(7)| will be clarified in Appendix B.

=1-|F_(7+®,e)—F_(r—®,e)—P|. (11 In4: |e|<f(r+®)—f(27) and® e2:
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I3 I1 12

FIG. 2. The flow of the dynamics for excitatory couplings. Ini-
tializations inl2 terminate in Ex@synchronization with phase lag

7), whereas initializations ih3 or11 terminate either ih2, in Ex4
(marginal stable synchronization with phase lag smaller #awr
remain in (Ex0-Ex2 if the fixed point in this loop is stablésee
text).

timet D, O
0 0 [}
T T 7+d—

F_ (®+7,€)>0 (*)

h(®)=1—{f " f(r+D)—|e|]—7}. (16
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Since O0<KF_(7+®,e)<sF_(27,e=0)=27, |[F_(7+D,¢)
—7/<7 such that h:In5—~In0 and R(®)=h(P) if
A(I)A’B(T)<O.

In6: f(7+P)<|e| andP e12:

timet (O (O

0 0 D

T T T+d—
F_(P+7,€)=0

R(®)=h(®)=1—7. (18)

h:In6—1In5.

IV. CONSTRUCTION OF PHASE DIAGRAMS

Taken together, the firemaps for the different domains
EX0-Ex6, In0-In6 form a single description of the dynamics
of S. This can be represented by flow diagrams shown here
(Figs. 2 and 3 In the next paragraphs, we explain how the
firemaps work “together,” and which attractors or repellors
can be found.

Let us start in domaih2 with excitatory couplings. The
repellor in Ex5* (Appendix A) drives® to the bound of this
domain. All initializations out of the Ex5* map ontd =7
after at most two iterations df [Appendices A and D, Eq.
(10)]. SinceR(7)=7 (Appendix D, there exist two stable
fixed points inl 2, the first one being ab = r and the second
one at® =h(7). Under these conditions, the oscillators syn-
chronize with phase lag since the two stable fixed points
correspond to each other in the following way such that de-
pending on the initial conditions, eithérfires beforeB or B

The consequences of this firemap are discussed in Appendifes peforeA.

B, too.

In5: f(7+®)—f(27)<|e|<f(7+P) andP e12:
Same dynamics table as i, In4,
h(®)=1—|F_(7+d,e)—1]. 17

12 13 I1

FIG. 3. The flow of the dynamics for inhibitory couplings. Ini-

tializations in In4 map onto In4(antiphase synchronizatipn
whereas initializations in any other region terminate eithefin@-
Inl) if e<1—1f(7) (arrow up, in-phase synchronizatjoor in (InO-

In3) if e>1—f(7) (arrow down, synchronization with a phase lag

up tor).

The next domain we discussli. Starting in Ex1h can
map tol 2 or build a loop with Ex0 (3) [Eq. (5)]. Sinceh in
Ex0 (13) does not change the phase difference, whili@
Ex1 increases it, théEx1-ExQ loop increases the phase dif-
ference. At some time, the phase difference has been grown
so much thah maps ontd 2 or onto Ex2[if e>1—1f(27)].
Depending on the behavior & in the (Ex2-Ex0 loop (see
Appendix Q, it is possible thah maps onto 2 or Ex3. In
Ex3, the phase difference decreases more and fhaye7)]
until the domain of marginal stable fixed points EX¥Zy. (8)]
is reached. An interesting feature of Ex3 and Ex4 is that each
oscillator fires twice before the other one can fire again. This
can be interpreted such that in one cycle with two spikes of
each oscillator, oscillatoA is “leading,” and in the next
cycle, oscillatorB is “leading.” In Fig. 4, we have plotted
an example forr=0.2. Throughout our illustrations, we use
for f the standard example of Mirollo and Stroght®] with
b=3:

f(d))z%ln{lJr[exp(b)—l](D}, (19)

which yields a particularly simple piecewise linear return
map.

Next, we consider inhibitory couplings where we also
start with the discussion df2. It can easily be seen that no
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1.0 T T 1.0 ' '
(a) (a)
R(¢) R(¢) 5
0.0 . . 0.0 Lz s » .
0.0 @ 1.0 0.0 ¢ 1.0
1.0 ' ' 1.0 T :
(b) (b) | |
] L rmarginally stable; ]
H{(#%<) ;
€ €F :
L out—of—phase d L E in—phase E 1
(¢%°=7) ] [  ($7=0) i
3 1 3 | anti—phase 1
0.0l . ‘ . ] ool L (#%=1/2)
0.0 @° 1.0 0.0 @° 1.0
FIG. 4. (a) Return mapR for excitatory coupling of strengt FIG. 5. (8) The return mapR for inhibitory coupling with e

=0.1 with delay7=0.2 in the Mirollo-Strogatz model. Two stable =0.1 andr=0.2 shows two stable fixed points giving rise to in-
fixed points lead to asymptotic out-of-phase synchronization withphase ¢*=0) or antiphase ®*=T/2) synchronization. The re-
phase difference®”=7. (b) Phase diagram determining the spective basins of attraction determine the phase diagnas
asymptotic behavior in dependence of the coupling streagithd  indicated by the dashed lines for their particular values afnder
the initial phase differencé®. Out-of-phase synchronization with consideration. For intermediate valuesefthe oscillators always
phase lagr is stable everywhere apart from the upper left cornerfire simultaneously. Large leads to marginally stable synchroni-
where synchronization with phase lag smaller than the delay is poszation with phase lagp”<r.

sible. The dashed line denotes the parameter valfethe particu-

lar return map shown ifa). V. N>2 NEURONS

The evaluation of return maps for more than two neurons
domain maps onto In4 but itsdlEgs.(12)—(18)]. In In4 we  requires an increasing number of case distinctions and is dif-
find an attractive fixed poinisee Appendix Bthat synchro- ficult to manage even iN>2 is small. Therefore we per-
nizes the oscillators in antiphase. Initializations in In5 andformed computer simulations to uncover the dynamics of the
In6 are mapped b onto In0 (3) [Egs.(17) and(18)]. The  System.
domain In0 (3) itself builds several loops with In1-In31) In this section, we present simulationshé 100 neurons
[Egs.(11)—(15)]. From Eq.(14) we see that the phase differ- vyith phasesb;,i=1, ... N, either inhibitorily or excitato-
ence decreases in thig2-1n0) loop. At some time the phase 'ily coupled with delayr<0.5 and initialized with a uniform
difference will be so small that ié<1—f(r), h maps onto andom distribution of initial phases. _

In1, and ife=1—f(7), h maps onto In3. Under thén1-In0) .We find that with both |nh|b|tory.and.e.x.cnatory cou-
loop, the phase difference decreaeg. (12) until the oscil- pl[ngs, th? neurons tend to clustgr t'helr activities. After a few
lators will fire simultaneously: under th@n3-In0) loop, a firing periods, the oscnlato_rs_ split ihl; groups or clusters,
domain of marginal stable fixed points is reached, @&)] where all of the neurons within the same cluster are synchro-

. X nized with phase lag\®=0. The groups themselves fire
and the phasg difference dqes not change anylﬁli-Jga 5. alternately, thus leading to a frequency in the summed net-
To summarize our analysis, the general behavids o&n

be d ibed foll With , i h work activity that isN. times higher than the individual os-
e described as follows. With excitatory couplings, the 0S; 1oy frequency. A noise level of is simulated by modi-

cillators synchronize with phase lagsuch that they are not fying each phase shifd®; according to Ad,—Ad;(1

able to fire in unison. Inhibitory couplings lead to either in- | m), where 7; is taken from a Gaussian distribution with
phase or antiphase synchronization depending on the initighean 0 and standard deviatian Taking existence of noise
conditions, if the coupling strength is intermediate. If theinto account, we can clearly see an important difference be-
coupling is strong, only in-phase synchronization provesween excitatory and inhibitory couplinfsompare Fig. &)
stable. Additionally, marginal stable regimes are found, butwith Figs. 7a)-7(d)]. While the clusters remain stable with
only for extremely high parameter values. An other math-nhibition, the clusters in an excitatory network begin to de-
ematical approachil5,16 shows that these results also apply synchronize and to disappear simultaneously to the emer-
for integrate-and-fire neurons coupled viafunctions. gence of new clusters. This effect seems to be specific for
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pulselike coupling with instantaneous offset. With randomly
distributed initial conditions, clusters tend to be of equal size.

Additionally, the clustering with inhibition is multistable.
This means that we obtain an arbitrary, but limited number
of synchronous clusters only by initializing the oscillators
with appropriate phases. As an example, we can evoke one,
two, or three subpopulations with fixed network parameters
of N=100, e=—0.1, and 7=0.2 by choosing®;(0), i
=1,...,100, appropriately. In Fig. 6, the maximal number
of subpopulations have emerged.

This phenomenon can heuristically be understood by con-
sidering the return maps for two neurons. With inhibitory
couplings, the fixed point a=0 is stable. All neurons
initialized with a phase being within the basin of attraction of
this fixed point will be synchronized in one cluster, neurons
being outside will be repelled. Another cluster, whose basin
of attration also synchronizes all neurons in its neighborhood
with zero phase lag, may then emerge in the next interval on
the phase axis. This implies that the phase axis is partitioned
into intervals of size~2r, each of them being a basin of
attraction for one cluster. Numerous simulations confirmed
that this heuristical approach is valid, and we find that the
maximum number of clusters roughly follows the power law

FIG. 6. (a) Stroboscopic view on the phasés(t,) of N=100
neurons plotted each ting a fixed reference neuron fires itsh
time. The neurons are inhibitorily coupled with strenggh=0.2
and delayr=0.2. The network exhibits multistable clustering and

an increase in the network frequen@y this case by about a factor as can tf’e S.een in Fig(tﬁ- . ] ] )
of 3). (b) The average number of stable clusters nearly follows aConsidering excitatory couplings, the first fixed point at
power lawN,~ 7~ as a function of the delay shown here fore. ~ P =0 is a repellor and the second fixed pointdat 7 is an

N~ 1/2r (20)

=0.2 andN=100. attractor. Imagining two clusters separated from each other
by a phase difference af, we have two counteracting ten-
dencies. One cluster itself is not stable and is likely to de-
synchronize, while the other cluster tries to stabilize it. Syn-
(a) (©) 19]
0.8}
~ ~ 06
< < 0.4:
0.2
0.0t X I R
0 50 100 150 200
k
(b) (@) ——

#(t.)

50

100
k

150

#(t.)

FIG. 7. Stroboscopic views on the phasedNof 100 excitatorily coupled neurons plotted as in Fi¢g)6wvith e=0.2, »=0.0005, and

(@—(c) 7=0.15,(d) 7=0.02. The network exhibits spontaneous synchronization and desynchronization in various(@mmsl.(b) Two
simulations with the same parameters but different random initializatiogs(6f) in [0,1]. (c) This simulation has been initialized with two
synchronous populations in antiphagd) Even if the delay and the noise are very smal=0.02, =5x10"°), the synchronization
becomes unstable.



57 DELAY-INDUCED MULTISTABLE SYNCHRONIZATION ... 2157

chronization is only possible if the attractive force (a) 10
overcomes the repulsive one. The balance between these two ]
forces is often unstable, even small amounts of noise can 8t ]
disturb the clusteringFigs. 7a)—7(d)]. The average number = sl ]
N of clusters cannot be expressed as a simple function of ;
the delayr [Fig. 10b)], and it depends sensitively on the 5 4| ]
initial conditions[Figs. @& and 7c)].

Very similar phenomena have been observed and ana- 2r 1
lyzed by van Vreeswijlet al.[15,16] for networks where the 0
postsynaptic potentiald®SP’s are modeled byr functions. 00 02 04 06 08 1.0
An important parameter ifil5,16 is the rise timer, of the 9
«a function, which is crucial for the development of synchro-
nicity and clustering. This constant determines the time lag (b) 80 ]
between the onset of the PSP and its maximum amplitude, 60 L ]
introducing arelative delay similar to theabsolutedelay 7 in o ]
our analysis. S 40 ]

We suspect that in real biological systems, clustering de- NS ]
pends strongly on the total effective delay, which is the * 20| ]
sum of the absolute delayand the relative delay,~1/a: | | \

0 . LL A1

(21) 50.0 50.5 51.0 51.5 52.0 52.5 53.0
t [units of T]

Tef= T+ Ty -
Evidence for this hypothesis is provided by Figs(dQ0 FIG. 8. () Snapshot of the continuous model with0.2 and
and 1@d) where we compare simulations with small and e=0.2 att,=500T, whereT:=1/v, denotes the firing period with-
large rise times of the postsynaptic potentials, and with varyeut any coupling(b) Corresponding time evolution of the instanta-
ing total delay. By substituting with 7o, EqQ. (20) is also  neous rate. While synchronized clusters lead to a high population
valid for a “smooth” coupling, as can be seen in Fig.(d0 frequency, the offsets of some clusters indicate subsets of asynchro-
where all simulations for a wide range of rise times cover thenous oscillators.

same functional dependency. if we assume that (0t)=v(1t)=v, (absorption at thresh-

old ® =0 or absolute refractoriness @t=0). From this and
VI. CONTINUOUS DESCRIPTION the boundary conditiop(0,t)v(0t)=p(1t)v(1t) then fol-

In the limit of N—oo a network of globally coupled neu- lows the continuity equation

rons can be described by the dynamics of a probability den- ap d(pv)
sity function - =

F Y

(26)

1 where v=d¢/dt denotes the drift velocity for @ ¢<1.
p(ot)= NZ 3(p— i(1)) (22 Note that the stationargasynchronoussolution is given by
p1/v, which in general depends ap. An analysis of this
equation forp(¢)=1 has been presented|[ib6].

In our simulations, we concentrated on the dependence of
the solutions of Eq(26) on the delayr. According to the
o periodic boundary conditions wheveis not smooth, we had
T . to simulate Eqg.(26) with an algorithm using nonconstant
ar Vol ((I))+e§j: o=t =), 29 discretization steps.

With inhibitory coupling e<0, we find an excellent
agreement with the multistable clustering seen in Figail0

(compare, e.g[21,16,4,14). The evolution of the amplitude
of one of our model oscillators obeys

wheret;,j=1, ... M are the times when the other oscilla- ) . . ! :
tors emit pulses, and,=dd/dt for e=0 (compare with (not shown. With excitatory interactiong>0, we find that
Sec. 1. the phase density shows a variable number of peaks rep-

resenting synchronized clusters, although some peaks have a
long tail connecting it with its neighbdFig. 8b)]. This side
effect of excitation can be related to oscillators that diffuse
&zv(ﬁ- € D S(t—t;— ) (24) along the phase axigiot shown. For discrete models, this
dt (D)7 has also been seen in simulatig2g]. Additionally, we find
clusters emerging and decaying spontaneously as seen in the
discrete dynamics.

For small individual couplinge we then have

from which in the limit of N—o we obtain
VII. HODGKIN-HUXLEY NEURONS

gt~ vo - p(Ot—1) |, (25 The description of the well-known Hodgkin-Huxley neu-
(D) ron with its standard parameters can be found2@]. We
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simulated the Hodgkin-Huxley neurons in a globally pulse- (a) 10—
coupled network with delay, where the pulses of the neurons s
were modeled byr functionsE ,(t) 08 ; ]
~ 0.6F ]
ea®(t—rexg—a(t—7)] for t>7 (27) =
Ea(t) = 0 . AN 0.4 ;f 1
otherwise. (28) k==
0.2F — 1
This realistic model shows a behavior similar to integrate- S
and-fire neurons. The clustering that is shown in Fig. 9 is 0.0L ‘
multistable and the number of stable clusters increases as the 0 K 20
delay decrease@ot shown. Due to the relaxation times of
the ionic currents in the Hodgkin-Huxley neuron, the effec- (b) 1.0E=="
tive delay cannot be reduced tgs=0 such that we were not 0.8 - ]
able to evoke more than three clusters of neurons. These TE
simulations confirmed that this grouping of neurons has to be 0.6l ]
expected in realistic neuron models and should be relevant = ;
for real biological systems as well. he = ]
E ]
VIIl. DISCUSSION 0.0 :
In this paper, we have analyzed the behavior of two pulse- 0 20
coupled oscillators in the presence of delays. While delays in k

oscillatory systems have been the subject of some previous FIG. 9. Stroboscopic views on the phaseshbt 50 Hodgkin-

work, this inherent property of most biochemical and physi- DL . o
cal systems has often been neglected or turned out to be n'af'XIGy neurons with inhibitory coupling plotted as in Figaf

) . . with (a) 7~0 and(b) 7~0.2. Note that withr~0, only up to three
analytmally SOlvable'. The. analy.tlcal treatmgnt of erollo clusters may emerge due to the “hidden” delays in the ionic con-
et al. [19] is only valid with excitatory couplings without ductances.
delay. If some more biological details such as, e.g., an abso-
lute refractory period23] were added, it becomes question- tistable phase clustering. The oscillators synchronize within
able if in-phase synchronization can always be achieved. several alternately firing groups whose maximal number is

Our analysis yields two results in this respect. First, wedetermined by the delay time via a power law. The emer-
showed that perfect in-phase synchronization is stable onlgence ofN clusters leads to a frequency in the summed
with inhibitory couplings. The corresponding return map hasactivity of the network that idN times higher than the indi-
two fixed points leading either to in-phase or antiphase synvidual oscillator frequency. We think that inhibition may be
chronization if the coupling strengthis intermediate, and to one of the key mechanisms for clustering of neuronal activity
in-phase or marginal out-of-phase synchronizatiore ifs  in the brain[32,33. It may also explain the increase in popu-
large. This consequence of inhibitory couplings has alreadiation frequency found in the hippocampus of rgg#],
been observed in simulatiof24-27,51,52 and analyzed where the network activity exhibits a several times higher
mathematically[16,51] for neurons coupled via pulses of frequency than the single neuron.
finite width. Conclusively, inhibition may be the best choice  Nevertheless, the phenomenon of multistable clustering is
to synchronize neurons coupled via substantial delays. well known in the literature. Clustering is also possible if the

Secondly, excitatory couplings lead to out-of-phase synsingle neuron is not driven continuously and does not oscil-
chronization where the phase lag between the two oscillatorsite itself[24]. Our results are therefore consistent with pre-
is proportional to the delay. These findings extend the workvsious work, namely, to the stabilization of synchronization
of Mirollo and Strogatz[19], which showed that without by adding inhibitory couplings to an excitatory systga2],
delay, in-phase synchronization can be achieved via excitaand to the emergence of a variety of spatiotemporal patterns
tory couplings. During the course of this work we were in-[35], but in this framework, they are exclusively the conse-
formed that a similar, but different analy§i®8—30 to ours  quences of alelayedinteraction.

[31,14 has been carried out yielding qualitatively similar ~ The generalization of the dynamics Nfcoupled oscilla-
results. tors to arbitrary system sizes by means of a single differential

Globally coupled populations dfi>2 oscillators show a equation for a phase-density function has been the subject of
variety of new phenomena. With excitatory couplings, thenumerous paperg36—40. We extended this formalism to
oscillators synchronize and desynchronize spontaneouslgccount for delays using a phase-dependent phase velocity,
sensitively depending on the initial conditions such as noisewhich we explicitly derived for the Mirollo-Strogatz neuron
delay, phases, and coupling strength. Remembering that tldass(see Fig. 3.
fixed point for in-phase synchronization of two neurons is An important condition for this paper was to keep the
unstable, while the fixed point leading to out-of-phase synimodel as simple as possible to account for various oscillator
chronization is stable, these two counteracting tendenciedasses, especially for integrate-and-fire neurons. The ingre-
may be responsible for this interplay between stability anddients(membrane potential concave down, threshold condi-
instability. tion, and pulselike interactignare typical for constantly

Populations coupled with inhibitory weights exhibit mul- driven biological neurong41]. A similar work that subsumes
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0.00 lO.1O 0.20 030 040 0.50 0.00 0.10 020 0.30 0.40 0.50

FIG. 10. Dependence of the number of synchronous clusters on the dély 100 integrate-and-fire neuroiglirollo-Strogatz-model
with b=0.3.(a), (b) The bold lines show the average number of clustéremerging from a random initialization, and the crosses show the
number of clusters emerging from an initalization of the oscillator’s phases in an intef@&igf;]. ¢;,: has been increased from 0.0 to 0.1
in steps of 0.01 and from 0.1 to 1.0 in steps of 0.1. The simulations were performed with an amount of noise equal to a frequency variability
of 5%. After the oscillators have been clustered, the noise has been decreased to a finite value in order to see if the oscillators will freeze
in a stable configuratior(a) Inhibitory couplings,e= —0.2. (b) Excitatory couplingse=0.2. Here, the clustering is not always multistable.
(c) Inhibitory couplings,e= —0.2. The pulses wera functions with rise times of 0.0(boxes, 0.05(starg, 0.1 (crossef 0.2 (diamonds,
and 0.3(triangles. (d) shows the same data as(ir) but plotted in dependence of the effective defgy instead ofr.

different oscillators in a general framework has been done bgate that phase clustering plays an important role in real bio-
Gerstnef{42)], and van Vreeswijk16]. In the more detailed logical networks.

and somewhat more complex pulse-response model, syn- Clustering may be useful for applications where several
chronization can be analyzed analytical§3,44, and has combinations of stimuli have to be represented at once. Here,

been found if the coupling is inhibitory and delays are of themultistability is related to the superposition problé8j, and
size of the firing period. If integrate-and-fire neurons arecan effectively be used for binding features of different ob-

coupled withe functions that introduce a relative delay,  J€CtS simultaneously together. Another application are synfire
the analysis yields the same results as described in this pape@ins, where the information transported has to be pre-
[15,16. served or even sharpengd8]. These topics have already

i een outlined49] and will be the subject of our further work

Certainly, other synchronization mechanisms may exis
(see, e.g.[45]) and more detailed models may exhibit addi-
tional phenomena, but we believe that despite the simplicity
of the model we analyzed, the results are typical for neuronal ACKNOWLEDGMENTS

oscillators [16]. We demonstrate this by the model of e acknowledge most fruitful discussions with our colle-
Hodgkin and Huxley 20] and show that even at this detailed, gues Leslie L. Smith, Hans-Ulrich Bauer, Josef Deppisch,
biological description level, multistable clustering is anang Fred Wolf. This work was supported by the Deutsche

emergent property of the network dynamics rather than th@orschungsgemeinsche(tt;rant No. SFB 185 and a grant
result of a nonuniform or learned weight structi#®,43;  (No. PA 569/1-1 to one of us(K.P).

and that this phenomenon appears to be quite common in
systems where delays are prevalent and inhibitory coupling
is strong(Fig. 10.

We believe that the mechanisms proposed in this paper The firemap in domain Ex®with ec[0,e*[ ande*: =1
might underlie the synchronization across the two hemi—f(27)) is given by
spheres of the braifl8] and the synchronous flashing of
fireflies[47]. In this respect, it is amazing that the synchro- h(®):=1—{f " f(P+7)+e]—7}. (A1)
nization at species of fireflies having a negative phase shift
(“inhibition” ) is much more precise than for species using dt is easy to check thah:Ex5—12 becauser<h(®)<1
positive phase shift‘excitation”) [47]. The frequency cou- —171 V(®,e)eEx5. Let Ex5*={(®,e€)|h(P) e Ex5}
pling found in the hippocampus of raf84] may also indi- where we can iteratd twice becausd (7+h(®))+e<1.

50-57.

APPENDIX A: FIXED POINT IN Ex5, >0
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We ignore oscillators starting in domain Ex&Ex5*, which
reach the stable fixed point ét= r after at most two itera-
tions of h. With fixed ep<e*, Ex5* is given by the open
interval

EX5*| =, =1h"%(9), 4], (A2)

with 6= "Y(1—¢y)— 1. (A3)

Starting fromeg<<e*, it is easy to prove that this interval is

nonempty:
e<1-f(27),
1+27—f H1-e)<1,
fl+2r—f 1(1-e))<1,
ff(A+2r—f Y 1—e)—€e]-7<f Y1l-e)—7

h=1(8)<5s, (A4)

Modifying the strategy of36], we now prove that there ex-

ists a unique fixed point dfl in Ex5*. First of all, we show
the following lemma:

Lemma 1: H(®P)<—1 andR'(®)>1 VP e Ex5*.

It suffices to show thath’(®)<—-1, since R'(®)
=h"(h(®))h'(P). From Eg. (Al), we obtain h’'(d)=
—f V[f(P+7)+e]f'(P+7). Sincef and f~1 are in-
verses, the chain rule implied’(®+7)={f"Y[f(d
+7)]} L. Hence

V(D7) + €]

h'(®)= A5
(@) f Y[ f(P+7)] (A5)
Letu:=f(®+ 7). Then Eq.(A5) is of the form
f(u+e)
h'=————. A6
f*l/(u) ( )

By hypothesis, f"">0 and >0, so f Y(u+e)
>f~1"(u) Vu. Finally, the hypothesis of strict monotoriic
thusf~1’(u)>0, implies thath’ <—1, as claimed.

Proposition 1:There exists a unique fixed point f& in
Ex5*, and it is a repellor.

The fixed point equation fdn isH(®):=® —h(®d). Itis
easy to check thatl(5)>0 andH(h~(8))<0 [Eq. (A4)].
From Lemma 1 we havel’(®)=1—h'(Pd)>0. Henceh,
and thereforeR, have a fixed pointby. SinceR(®y)=d
andR'(®)>1 by Lemma 1, we have

R®)>® if &>d,,

(A7)

R®)<D if D<d,.
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le|<f(r+D)—f(27), (B1)

domain In4 is given by Inﬂzeoz]a,b[ with a:=f"1(| ¢
+f(27))—7 and b:=1- 7. First, we show thah(®)<1
—7=b:

h(®)=1-f1f(r+D)—|e))+7
<1-f"Yf(27)+7r withEq. (Bl)=b. (B2)
Then, we prove that(P)>a.

h(®)>1—f"1(f(1)—|e)+r=1—F"11—|e))+7
(B3)

Now, we define®*: =f"1(1—|¢|). With 1=f"1(f(d*)
+|€|), we write Eq.(B3):

h(D)>f 1(f(D*)+]|e])—D* + 7. (B4)
Since®* >27, we can write Eq(B4) usingA7:
h(®)>f"1(f(27)+|e])— 27+ r=a. (B5)

The interval J,b[ is not empty, becausé™ (f(27)+|€|)
<1 for all € within In4.
Lemma 2: 0>h'(®)>-1 and R'(®)<1Vd ein4g.

Lemma 2 can be shown using the same techniques as in

Appendix A. The only difference is that the sign efis
negative.

Proposition 2:There exists a unique fixed point f& in
Ind*, and it is an attractor.

The fixed point equation fdn is H(®):=® —h(d). Itis
easy to check thatl(b)>0 andH(a)<0.

H(a)="f"(le[+f(27)—r—h[f (|| +f(27)— 7]
=f "¢l +f(27)-1
<f }1)-1=0, (B6)

H(b)=1—7—1+f Y (1—7+7)—|e})—r=F"1(1—|¢|)

—2r>f"11-1+f(27)—27=0. (B7)

From Lemma 1 we havel’(®)=1—-h’'(®)>0. Henceh,
and thereforeR, have a fixed pointb,. SinceR(®y)=d,
andR’'(®)>1 by Lemma 1, we have

R(®)>® if &<dy,

(B8)

R®)<® if O>dy.

Hence the fixed point foR is unique, and is an attractor.

APPENDIX C: FIXED POINT IN Ex2, >0

The only domain where we cannot determine the posi-
tions and stability of fixed points whithout explicitly know-
ing the functionf is Ex2. Nevertheless, we prove that fixed
points in Ex2 always exist and derive sufficient conditions
for their stability.

The firemaph in In4 is identical to Eq(A1). The reason Lemma 3:V7€]0,0.5,V® € ]0,7{Jex(7,P) such that
for the discrimination between In4 and In5 is that[ep(7,®),P]eEx2 andR(P)=>.
h:In4—In4, which we want to check first. Since First of all, we choose

Hence the fixed point foR is unique, and is a repellor.

APPENDIX B: FIXED POINT IN In4, e<O
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er(7,®): =f(1—2D)—f(r— D). (C1) c5)

Then we have to prove th&) [ eg(7,P),P] e Ex2 and(b) R@)<® if e>ef.
R(®)=0.

Obviously, all initializations “above” or “below” the func-
(a) It can easy be seen that

tion (C1) lead to a decrement or an increment in the phase

er=f(1—20)— f(7—®)>f(1— 20 + 20) difference, respectively:
d , D
—f(r—®d+2d) (A5) —GF(;:I; )<0 (P is an attractor.
=1-f(r+®)=¢ (C2)
dep(7, D) .
and T>O (P is a repelloy. (Co)
=f(1-20)—f(7—D)<f(1-D)—f(7—D)=¢,,
er= 1 )= Hr=d)<K )=Hr=®) E“(C3) APPENDIX D: R(7)=7 FOR O<e<1—F(27)
wheree ande, denote the lower and upper bounds of Ex2, 't suffices to show thah(7)—Ex6 sinceh(¢i)1= vV ®
respectively. e Ex6. Sincee<1—1f(27), the relation®*: =f"*(1—¢)
(b) The dynamics starts in Ex2 changing to Ex0 such that™ 27 holds true, and it follows fronA7 that
Ris given byR(®)=h=h=#®)]: £ (@% )+ ) — 0* > X(f(21)+ ©)—27.  (DI)
R(®)=1-h"%®)=1-F (- D,ex(7,D))~ Thus we can estimate a lower bound fof7) using Eq.
(D1):

due to Eg.(16)
q h(r)=1—-f"1f(2r+e)+7 [Eq. (9]

_1_¢—1 _ _ _ _ _
=1 (= @)+ (1 -28) ~ T(r=®))~ @ >1+d* —fL(f(®*)+e)—2r+7 [Eq. (Dl()] )
D2

—1-14+20—-D=0. (o2 =t 1-¢-1
We conclude with a remark on the stability of the fixed The conditione>1—1f(7+®) (lower bound of Ex§ can be
points in Ex2. From Eq(16), it follows that transformed into a condition fod, &>f"*(1—¢€)— T,
which is also true foh(7) as can be seen in E(P2). There-
R(®)>d if e<ep, fore, h(7)—EXx6.
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