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Deflection of a cell membrane under application of a local force
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If a localized force or torquécaused by an integral protein, a receptor, a cantilever of the atomic force
microscope, a cell-kicking instrument, and sg @napplied to the surface of a cell membrane it is deflected in
a small region. Equations describing the statics and dynamics of small local deflections of the cell membrane
are deduced and the Green function of the state equation is calculated. The force-displacement dependence for
an atomic force microscope in the regime of small indentation is discugS&863-651X98)07702-3

PACS numbegps): 87.10+e, 87.22.As, 87.45.Bp, 87.22.Bt

The mechanical behavior of cell membranes attracts &éions since their contributions vanish only slowly with dis-
strong interest. We consider here such kinds of cells as antance[1]. In contrast, more simple local measurements in
mal cells andDictyostelium discoideum3hese cells exhibit which deflections vanish on distances small with respect to
a composite membrane consisting of a lipid bilayer and asthe shell size are not too sensitive to global details of experi-
sociated integral proteins. The bilayer is attached to a cellumental geometry.
lar cytoskeleton. The latter may consist of a membrane Some local micromechanical experimental methods, such
coupled actin-spectrin network, which is connected with theas the cell-kicking metho@5], magnetic tweezerfg], cell
bulk cellular cytoskeletortFig. 1). poking [7], and atomic force microscody,9] are success-

Membranes of animal cells can be considered as shells. ftlly applied to study cells. Interpretation of these experi-
is common knowledge that in some cases there can exigfents requires a theoretical description of local membrane
special types of bending that are not followed by stretchingieformation.
of a shell. Since the membrane bending energy is small with In addition, there have been many experimental observa-
respect to that of stretching, if the shell admits such kind oftions of local phenomena in cell membranes: budding,
deformation it actually takes pla¢&]. Therefore in the case blebbing, arising of invaginations, and caveold®]. Fi-
of a biological membrane, its deformation is believed to takenally, cell membranes experience local bends on a meso-
place by way of either pure bending or in-surface shear descopic scale in processes with the participation of integral
formation due to small values of the bending rigidity and thePproteins, membrane receptors, enzymes, and so on. Under-
shear modulu§2—4]. In the case of vesicles their bending is standing these phenomena requires equations describing
successfully described by the Helfrich curvature elasticitysmall deflections of cell membranes under applications of
model[2] or its modificationg3]. If a shell is subjected to local forces and/or torques.
deformation with finite stretching, the so-called “membrane The aim of the present communication is to deduce the
shell theory” can be applied in which bending moments arefree energy, and the state and dynamic equations of a cell
neglected[1]. This approach was applied by Evans andmembrane suitable to describe its small local deflections.
Skalak to the case of red blood cel#. Cell membranes are usually considered as thin shells.

The opposite situation takes place when local membrane It is generally accepted that for cell membrarkes\h?
inhomogeneities, normal local forces or torques applied to 411], wherek is the membrane bending modulus,is its
cell, are studied, since in this case local bending cannot take
place without local stretching, the contributions of bending
and stretching energies having the same order of magnitude.
(See Ref[1]. See also the discussion in this paper late) on.
If application of a local force causes a finite membrane de-
formation its state can be described by the “membrane shell
theory” taking into account moment resultafdd. The latter
is, however, rather complicated, especially if one is inter-
ested in distribution of both force and membrane deflection.

For several reasons a description of local bending of cell
membranes is of considerable interest. First of all, new ex-
perimental(micromechanicaltechniques for local deforma-
tion studies of cells are available now, while studies of glo-
bal deformations are hardly possible yet. The latter are very
sensitive to details of loading geometry and boundary condi-

FIG. 1. Schematic representation of a deflection of a cell mem-
brane under application of a localized forfg d is the dimension
*On leave from Physics Department of Rostov University, Zorgeof the deflection region(a) The bulk cytoskeleton(b) the lipid
5, 344090 Rostov-on-Don, Russia. membrane(c) the submembranous actin network.
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second Lame coefficient describing the lateral stretchinglinated and time dependeniConsider a locally isotropic
elasticity[12], andh is the membrane thickness. Latbe the  membrane. The contribution of the stretching elasticity to the
lateral dimension of the bending region. The bending ancell free energyF takes the forn{15]

stretching energied, and F can be estimated af,
~ky?d—? and Fg~\y?d’R ™2, where ¢ is the membrane

B AN u )
deflection. The order of magnitude dfis given by the con- Fst_f 2 (GAIA)"dA. )

k
5 (ci+cy—C)%+o

dition where the sum of these energies is a minimum,
whenced~ (hR)Y2. Taking h~10"°m, R~10"°m one HeresA is the variation of the surface area under stretching
getsd~10 ' m andd/R~10 2<1. One finds the energies [16].

of bending and stretching to be of the same order of magni- Consider a membrane that is described by the radius vec-
tudeF,~F¢~\y¢?hR™1. This means that under application tor R of the points on its surface. Under application of a
of a localized force membrane local bending is always aclocalized force that is normal to the membrane surface the
companied by its stretching and in order to describe the phenain contribution to the small membrane displacement is
nomenon one should take into account both contributions. made by its normal componeft=%¥(R). Under a deflec-

Several models are used to describe the bending energy tibn the new radius vector of the surfa€ can be thus
lipid bilayers (Refs.[2,3]). It is believed that it is well de- defined aR’ =R+ n¥, wheren is the surface outer normal
scribed by the Helfrich bending energy: [17]. Though all results can be obtained in a general case

(not fixing the surface shapewe consider here the case of a
cell, which is initially sphericalwith the radiugR|=R) for
Fb:J dA+ pOJ dv (1) which all the expressions take the simplest form.

The inner part of most of animal cells contains a bulk
with the Spontaneous curvatureand the main Curvatureﬁ_ CytOSkeleton Composed of filaments—actin fibers, intermedi-
andc,. p, and o are the difference between the outer andary filaments, and microtubuls. The filaments form a branch-
the inner pressur,= pou— Pin and the tensile stresg, is  iNg and interlacing meshwork that connects with microtu-
the surface area. In the case of vesides, po, ando char-  buls, nuclei, organelles, and the network near the cell borders
acterize the properties of the lipid bilayer and its environ-[18]. We take into account two contributions of the bulk
ment. They are considered to be independent of surface c&Ytoskeleton to the membrane energy. First, the cytoskeleton
ordinates and time. can produce a pressupgy;= Pey(R) onto the membrane in-

In the case of a cell membrane the bending modulusNer surface. Second, the cytoskeleton has its own rigidity,
spontaneous curvature, and surface tension can vary aloNglich can be roughly characterized by a Young's modulus
the surface. In general they depend on time. In this case thefcyt and a Poisson’s ratio.,,. Deflection of the cell mem-
describe the properties of the whole cell membrane with it@rane is followed by deformation of the bulk cytoskeleton
complex structure in a phenomenological way rather thartFig. 1). The energy of its deformation must be also included
only of the lipid bilayer. Whereas erythrocyte has a smoothn the membrane energy. The contribution of the cytoskel-
surface[4,11], another kind of eukariotic celin particular ~ €ton to the membrane energy can be roughly taken in the
leukocytes and endothelial cellpossess a store of mem- form
brane surface in folds, buds, blebs, and ruffl28]. Most
cells have internal membranes and vesicles. The latter can :f (_ W+ Eeyt 72| dA ®)
join to the cell membrane and fuse when it needs the material ot Poy 2(1-2vWR '

(or break away from it in the opposite castn the case of
erythrocytes the characteristic time of this process is about a Cell membranes contain different impurities dissolved in
few hours[4]. However, for the other kind of cells it can be the bilayer such as integral proteins. Integral proteins can
much smaller. Recent experiments witlictyostelium dis- give rise to torques bending the membrane. In the case of a
coideumsshowed that numerous internal vesicles fused tdlat symmetric lipid bilayer inclusion can cause its local
the cell membrane under aspiration of a part of its surfac&ending only if the inclusion is asymmetric with respect to
into the micropipet, which was followed by jumpwise in- the bilayer, while symmetric proteins have no effect on de-
creases of the surface of the aspirated cell part. The charafiection of the flat symmetric membrah&9]. In contrast, in
teristic time necessary for the individual vesicle to join thethe curved and structurally asymmetric cell membrane, each
membrane and fuse was observed to be of the order of 0.1-Sbrt of integral protein gives rise to a local torque. The latter
s[14]. In the case of this kind of cell in experiments lasting can be described by the dependence of the spontaneous cur-
from several minutes to hours one should take into accountaturec on the surface coordinatds®: c(R)=cy+ dc(R),
the existence of internal reservoirs of the membrane surfacavherec, is a constant. It plays the role of the spontaneous
Besides, lipids and other membrane molecules can be sywurvature of the cell membrane far from integral proteins.
thesized or metabolized by an active cell. Thus the usualhe lateral size of integral proteins is typically~10 2 to
constraints for vesicles of a constant surface area and voluni® ° m. SinceL<d one can represenéc(R) as 6c(R)
cannot be applied here and in the case of a eégllays the =ad(R), wherea is a constant describing the power of the
role of a “chemical potential of the membrane area” de-internal torque induced by the individual integral protein and
scribing the property of the area reservoir ang—the pres-  &R) is the § function on the surface. The bending rigidity of
sure difference rather than the Lagrange multipliers. integral protein is different with respect to that of the mem-
The cell membrane possesses a lateral elasticity with latsrane, hence it changes locally the membrane bending modu-
eral elastic modulh and u (which in general are also coor- lus[20]: k=k.+bd&(R), wherek; is the bending modulus of
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the membrane far from impurities adis a constant. Inser- b, s, and the forced, to be small and to give rise to a smalll
tion of a new protein into the cell membrane results in a |°CaHeerction¢ of the membrane. Hence the produpt is of
membrane dilatatioss(R) (wheres is a protein lateral ar¢a  the second order of magnitudes~ 2. q plays the role

in addition to the dilatation that is caused by the membran@najogous to that of a charge in electrostatics, therefore in
bending. The latter is obtained in R¢fl7]. The effective \ynat follows it is referred to as “elastic chargd?24].

dilatation 6A/A takes the form In the case of a local displacement caused by the localized
force in order to describe the membrane stretching it is suf-
%=35(R)+(c1+cz)llf+clc2\1f2+g”Vi\IfV-\If/2 ficient to consider the linear part of E@4) (with s=0),
A . which has the forméA/A=(c,+c,) ¢ since the tangential

surface displacement is small. It shows that under the applied
localized force the local bending of a curved membrane is
always followed by its local stretchin@f c;+c,#0). This
phenomenon manifests itself only due to the surface curva-
ture and in the flat casg —c,—0 (R—) it disappears. At
details one can find in Ref17]). In the case of a spherical first glance it seems to contradict the conditio_n of a constant
surface they have the forg*'=R~2; g??=(R sin 6) 2 toFaI area usually fapphed in the thgory of vesuj]@)sr/]. In
g?=g?=0; LM=-R 3 L?=-R3sin26 and L? principle Eg. (4) is cor_1§|stent_W|th th_e constrainfd A

— L2120, whered is the spherical polar angle. Finally, if a =const. Th_e latter condition, being applied to the membr_ane
local forcef=f,6(R) is applied to an integral protein, to a together with Eq.(4), demands th(f“ membrane Qeformat|on
receptor or directly to the membrane one has to take int(l?e n_onlo_cal. How_ever, the cond|_t|qi_'rdA: cons_t IS an ap-
account its work, which takes the fori= [ (fn)¥ dA. proximation resulting from tha priori assumption that this

Now let us consider nonlinear contributiofiroportional cpnstraint gives a.minimum o the total energy. As we have
to w3 and W*) to the free energy. The latter must be takend|scussed above, in the case of the local deflection caused by

into account when local shape bifurcations are studied or "I\he localized force the correct approach is to take into ac-

the case of nonharmonic deformation. The c:ontributionCount both the stretching and the bending energies and to

~W3 originating fromF, was obtained in Ref[17]. The demand that the total free energy H§) is a minimum,
free energy must be positively defingdef. [25]) and thus rather than to use the approximatigd A= const.

one should extend the expansion at least up to the fourth Note tha’g the structure of th? square part of the free en-
degree in¥. The latter term was not obtained yet for a mem- %Y Eq.(5) is completely prescribed by the membrane sym-

brane of a general shape. Assume that it is the geometricQi€try- Namely, for the spherical membrane it always has the

nonlinearity that makes the main contribution to the free enform $3¢(k.A%y+BAy+Dy)dA with k., B, andD un-

ergy. In this case it is possible to find the main terms of theequal to zero. This form of the free energy takes place al-

third and fourth orders in?. One has two contributions to ready in the case of a spherical vesi¢iehich has neither

the nonlinear terms. The first of them arises due to the bendsortex nor cytoskeletonRef.[17]). Therefore it is of inter-

ing energyF,, Eq. (1). The dimensional considerations show €st to understand what mechanisms make contributions to

that the main terms of the third and fourth order that appeathese constants in the case of an animal cell. The solution is

in the expansion of the enerdy, (1) can be estimated as given by Eq.(5). It is also important to estimate relative

k.¥3R™1d~* andk,¥*R~2d~*. The main terms of the con- Values of these constants.

tribution of the stretching energf [Eq. (2)] with SA/A Rglations _between the _values. of the _pargmeters usually

given by Eq.(4) are the order of X+ u)¥3/Rd? and ( met in experiments make it possible to simplify the expres-

+u)W4d*. It is easy to verify that the two latter terms are Sion for the free energy. For cell membranes u [4,11].

much larger than the two former ones. The order of magnitude of the bending modulus is
The free energy has the fori=Fp+Fg+Fqo—W. K™ 107 °-102°J [4]; the lateral elastic moduli

Making use of the above considerations one gets the expred— 10> Jin? for flaccid erythrocyteg4], X\~0.3 J/nf for

sion of the free energy describing small local deflections of #Wwollen erythrocyte§21] and\~10~* J/n? for unfertilized

cell membrane: sea urchin eggco~R ™ 1; R~10"° m. The membrane sur-

face tension can take values between zero and

—{(c1+C2)g" +CiC LWV WV, W, (4)

whereV; is the covariant derivative along the surfag8, is
the surface metric tensor, and is the surface second fun-
damental form tensdthe definitions ofy" andL" and some

1 5 o~10"°% J/in? [21,27 and the corresponding pressure

F:f 5 V(AT +BAV+DW)—q(R)W difference—between zero angh-10 Pa. E,~10°~1C Pa
3 B [8]. Consider the regime of a small value of the pressure
vg'v,wv,¥ (g"Vi\Iij‘I’)2 differencep~0. In this case using the above estimations one

+(Ntp) R + ) dA, getsD~10° to 10'° J/nf; B~10 1% J/n?. EstimatingAy

~yd~? one getskA?y~Dy>BAy and d~{k./D}'
) ~10"" m. Thus the ternByA ¢ of the free energy Eq5)
can be omitted23]. The quadratic part of the free energy

where A is the Laplace-Beltrami operator on the sphdse, takes the form

=pR/2+k(2+CcoR)R™2; D=pR 142k, coR3+4(\
+w) R+ Ecyt(l_ ZYCy‘) IR P=Pcytt Po= Peytt Pin

—Pout- The function q(R)=qd&(R) with q=2k(1 F=f {3kepA2Y+ 3D Y2 —q(R) yHdA. (6)
—¢oR)R 2a—2(A+ u)R 1s—(2—coR)R 2b+(fy-n) is

determined by the properties of the impurities. We assame Note that the elastic charggd(R) describes one isolated
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protein or a local force. One can consider also a general casehere the Green function is expressed in terms of the Kelvin
with distributed proteins or a distributed forge=q(R). function kei(/d):

The inequalityd<R enables us to make a further simpli-
fication in the expression for the membrane energy, which explig-r) d’q
we refer to as the quasiflat approximation. It is easy to prove G(r)= f k.g*+D (2m)2 T on
that under the condition of local bendinggR one can use
the free energy Eq(6) as if it were defined on a plane with The dimensiord of the bending region id= (k,/D) The
the Laplace operatoh ¢y~ d?yl 9x*+ #*l dy? and the area deflection amplitudes=¥(0) caused by the local force or
elementdA~dx dy, wherex andy are the in-plane Carte- py the isolated protein has the form
sian coordinates. Since the integral converges one can extend
the integration in Eq(6) up to infinity. q

The motion of the membrane is mainly controlled by the =—.
energy dissipation by the surrounding waf@6]. Besides, 8\/kc_D
the membrane is connected with the internal cell organelles ) ) ] ]
and one should expect that this also makes its contribution to We estimate the range of the deflection amplitude in
dissipation. The whole phenomenon therefore can be takefhich the quadratic free energy E() and corresponding
into account in a phenomenological way by introduction of
the dissipative functionQ of the cell membrane:Q
=1[y(aylat)? dA, whereyis the kinetic factor andlis the
time. The value of the dissipative factgrcan be estimated
within the assumption that energy dissipation by water
makes the main contribution to the dissipative function. In
the flat geometryy= nq where 5 is the viscosity of water
(7~10 2 J s/n?) andq is the wave vectof26]. As accurate
as it can be obtained within the quasiflat approximation one
can takeq~d ™! and gety~ »/d~10* J s/nf. This estimate
gives a lower limit of the value ofy since it does not take
into account dissipation by cytoskeleton. In fact, one shoulc
probably expect that it is just the cytoskeleton that makes th
main contribution to dissipation of the membrane energy ir
animal cells and that its contribution can be several orders ¢
magnitude larger than that of water. However, at the momer
it is not enough information to estimate it.

The equation of motion can be obtained by making use o
the variation principle for dissipative systerd®/ 5(dyil dt)
=—6F/8y [25]. In the linear approximation it takes the
following form:

2
i kei(r/d). (1)

(12

o , -'
Y or = ~KATY—Dy+a(n). (@)
. . o . . (b)
Within the quasiflat approximation E¢7) is considered on
the infinite planer=(x,y) is the in-plane radius vector. In  F|G, 2. Schematic view of action of atomic force microscope
the steady state the membrane displacement is subjected t@ahtilever on the surface ¢& animal cell andb) bacterial cell. 1:

simple equation of equilibrium: the cantilever to which the forck, is applied; 2: the animal cell
) membrane with the cortef@); 4: the deflection region of the mem-
kcA“y+Dy=q(r). 8 brane; 5: the filamentous part of the cytoskeletoonsisting of

actin and intermediate filaments$: the microtubule; 7: the actin

One can try its solution in a form of the Fourier integral bundle; 8: the intracellular organelle. Since the effective spring con-

()= ¢q expa-r)da/(2m)*: stant of the animal cell membrane is much smaller than that of the
. 2 cantileverk,,<kagy , in order to balance the fordg applied to the
1,0(r)=f Aq expiq-r) a (9) cantilever the membrane displacement should be large. The canti-
kcq4+ D (2m)?% lever meets some relatively rigid cell organe(8, microtubule(6)

or actin bundle(7) well before this magnitude of displacement is
whereq,=[q(r)exp(-iq-r)d?r. The solution(9) is valid i reached. Therefore presently the atomic force microscope method is
a general case of distributed elastic chagge) (distributed  unable to characterize the animal cell membrane properties, but it
integral proteins or of some distributed foyctn the case of makes it possible to distinguish the rigid part of the cytoskeleton
an isolated protein or of a localized force the elastic chargend cell organelles. In contragh) the bacterial wall(9) is much
takes the simple forng(r)=qd4(r). In this case the deflec- more rigid. It is able to balance the force applied to the cantilever
tion is proportional to the Green functida(r) of Eq. (8): (1) by its own elasticity and bacterial internal pressure. Sikge

>kapm ONe can study the bacterial wall elastic properties with the

P(r)=qG(r), (10 atomic force microscope.
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linear equationg7) and (8) are valid. Under the condition ~10~4 N/m. This is smaller than the spring constpg, of
KetpA2y~D P> (N + u) * IR, (\+p)*/d* the nonhar-  the atomic force microscope cantilevén modern cantile-
monic terms can be neglected. If the cytoskeleton is sofyers the valudry~10~2 N/m is reached29]), therefore in
(Eey~10°-10" Pa) the limitation for the ratio of the deflec- the present state of art the contribution of the membrane of
tion to the cell radius)/R<(d/R)°~10 " is given. In the  anima cells to the cantilever displacement cannot be mea-
case of a r|g|d_clytoskezlet0|EQyt~1Q5 Pa) one gets the limi-  greq by atomic force microscopkSig. 2@]. The present-
tation /R<10""-10 “. Note that in the case of a swollen a5y atomic force microscope is sensitive to the membrane
erythrocyte there exists one additional limitation of the aP-properties in the case of a much more rigid membrane as
plication of the above theory since its membrane breaks uny, e of bacterigFig. 2(b)]. Making use of the Young's
der dilatation of few percen4]. This gives the limitation 4 1us~10° Pa and width~10-8 m of the sheath of the
condition y/R<10"2. For a flaccid erythrocyte and for a Methanospirillum hungatebacteria[30] one gets the esti-
cell with a reservoir of surface area this limitation is ”Otmatekw~1 N/m of the effective spring constant of the bac-

valid. Thus though the above approach can be applied 05 wajl. In this case the present approach should be ap-
each kind of cell, the range of deflection amplitude is widerp”ed ' P PP P

n ar:'g'd ceI.I rfeg|on. . v handl To summarize, we obtained simple dynamic and static
_ The atomic force microscope data are usually handled ussqations describing the small local deflections of the cell
ing the Hertz approach to the contact problgll, which  yemprane under the action of a local force or a local torque

YAd discussed the possibility of application of this approach
solids[27,28. In the case of cells this approach gives a 9004 atomic force mic?oscope%xperiprgents. PP
approximation if the bulk elastic energy of the cell deforma-

tion under indentation is much larger than the energy of | am grateful to E. Sackmann, M."Baann, and M. Rad-
bending of the cell membrane. The membrane spring conmacher for stimulating discussions. This work was supported
stant k,=fy/6=8Jk;,D can be estimated ask, by the Alexander von Humboldt Foundation.
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