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Deflection of a cell membrane under application of a local force

A. A. Boulbitch*
Department of Biophysik E22, TU Mu¨nchen, D-85747 Garching bei Mu¨nchen, Germany

~Received 19 June 1997!

If a localized force or torque~caused by an integral protein, a receptor, a cantilever of the atomic force
microscope, a cell-kicking instrument, and so on! is applied to the surface of a cell membrane it is deflected in
a small region. Equations describing the statics and dynamics of small local deflections of the cell membrane
are deduced and the Green function of the state equation is calculated. The force-displacement dependence for
an atomic force microscope in the regime of small indentation is discussed.@S1063-651X~98!07702-2#

PACS number~s!: 87.10.1e, 87.22.As, 87.45.Bp, 87.22.Bt
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The mechanical behavior of cell membranes attract
strong interest. We consider here such kinds of cells as
mal cells andDictyostelium discoideums. These cells exhibit
a composite membrane consisting of a lipid bilayer and
sociated integral proteins. The bilayer is attached to a ce
lar cytoskeleton. The latter may consist of a membra
coupled actin-spectrin network, which is connected with
bulk cellular cytoskeleton~Fig. 1!.

Membranes of animal cells can be considered as shel
is common knowledge that in some cases there can e
special types of bending that are not followed by stretch
of a shell. Since the membrane bending energy is small w
respect to that of stretching, if the shell admits such kind
deformation it actually takes place@1#. Therefore in the case
of a biological membrane, its deformation is believed to ta
place by way of either pure bending or in-surface shear
formation due to small values of the bending rigidity and t
shear modulus@2–4#. In the case of vesicles their bending
successfully described by the Helfrich curvature elastic
model @2# or its modifications@3#. If a shell is subjected to
deformation with finite stretching, the so-called ‘‘membra
shell theory’’ can be applied in which bending moments
neglected@1#. This approach was applied by Evans a
Skalak to the case of red blood cells@4#.

The opposite situation takes place when local membr
inhomogeneities, normal local forces or torques applied
cell, are studied, since in this case local bending cannot
place without local stretching, the contributions of bendi
and stretching energies having the same order of magnit
~See Ref.@1#. See also the discussion in this paper later o!
If application of a local force causes a finite membrane
formation its state can be described by the ‘‘membrane s
theory’’ taking into account moment resultants@4#. The latter
is, however, rather complicated, especially if one is int
ested in distribution of both force and membrane deflecti

For several reasons a description of local bending of
membranes is of considerable interest. First of all, new
perimental~micromechanical! techniques for local deforma
tion studies of cells are available now, while studies of g
bal deformations are hardly possible yet. The latter are v
sensitive to details of loading geometry and boundary con
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tions since their contributions vanish only slowly with di
tance @1#. In contrast, more simple local measurements
which deflections vanish on distances small with respec
the shell size are not too sensitive to global details of exp
mental geometry.

Some local micromechanical experimental methods, s
as the cell-kicking method@5#, magnetic tweezers@6#, cell
poking @7#, and atomic force microscopy@8,9# are success-
fully applied to study cells. Interpretation of these expe
ments requires a theoretical description of local membr
deformation.

In addition, there have been many experimental obse
tions of local phenomena in cell membranes: buddi
blebbing, arising of invaginations, and caveolae@10#. Fi-
nally, cell membranes experience local bends on a me
scopic scale in processes with the participation of integ
proteins, membrane receptors, enzymes, and so on. Un
standing these phenomena requires equations descr
small deflections of cell membranes under applications
local forces and/or torques.

The aim of the present communication is to deduce
free energy, and the state and dynamic equations of a
membrane suitable to describe its small local deflectio
Cell membranes are usually considered as thin shells.

It is generally accepted that for cell membranesk;lh2

@11#, where k is the membrane bending modulus,l is its

e

FIG. 1. Schematic representation of a deflection of a cell me
brane under application of a localized forcef 0•d is the dimension
of the deflection region.~a! The bulk cytoskeleton,~b! the lipid
membrane,~c! the submembranous actin network.
2123 © 1998 The American Physical Society
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2124 57A. A. BOULBITCH
second Lame coefficient describing the lateral stretch
elasticity@12#, andh is the membrane thickness. Letd be the
lateral dimension of the bending region. The bending a
stretching energiesFb and Fst can be estimated asFb
;kc2d22 and Fst;lc2d2R22, wherec is the membrane
deflection. The order of magnitude ofd is given by the con-
dition where the sum of these energies is a minimu
whence d;(hR)1/2. Taking h;1029 m, R;1025 m one
getsd;1027 m andd/R;1022!1. One finds the energie
of bending and stretching to be of the same order of ma
tudeFb;Fst;lc2hR21. This means that under applicatio
of a localized force membrane local bending is always
companied by its stretching and in order to describe the p
nomenon one should take into account both contribution

Several models are used to describe the bending energ
lipid bilayers ~Refs. @2,3#!. It is believed that it is well de-
scribed by the Helfrich bending energy:

Fb5E F k

2
~c11c22c!21s GdA1p0E dV ~1!

with the spontaneous curvaturec and the main curvaturesc1
and c2 . p0 and s are the difference between the outer a
the inner pressurep05pout2pin and the tensile stress,A is
the surface area. In the case of vesiclesk, c, p0 ands char-
acterize the properties of the lipid bilayer and its enviro
ment. They are considered to be independent of surface
ordinates and time.

In the case of a cell membrane the bending modu
spontaneous curvature, and surface tension can vary a
the surface. In general they depend on time. In this case
describe the properties of the whole cell membrane with
complex structure in a phenomenological way rather th
only of the lipid bilayer. Whereas erythrocyte has a smo
surface@4,11#, another kind of eukariotic cell~in particular
leukocytes and endothelial cells! possess a store of mem
brane surface in folds, buds, blebs, and ruffles@13#. Most
cells have internal membranes and vesicles. The latter
join to the cell membrane and fuse when it needs the mate
~or break away from it in the opposite case!. In the case of
erythrocytes the characteristic time of this process is abo
few hours@4#. However, for the other kind of cells it can b
much smaller. Recent experiments withDictyostelium dis-
coideumsshowed that numerous internal vesicles fused
the cell membrane under aspiration of a part of its surf
into the micropipet, which was followed by jumpwise in
creases of the surface of the aspirated cell part. The cha
teristic time necessary for the individual vesicle to join t
membrane and fuse was observed to be of the order of 0
s @14#. In the case of this kind of cell in experiments lastin
from several minutes to hours one should take into acco
the existence of internal reservoirs of the membrane surf
Besides, lipids and other membrane molecules can be
thesized or metabolized by an active cell. Thus the us
constraints for vesicles of a constant surface area and vol
cannot be applied here and in the case of a cells plays the
role of a ‘‘chemical potential of the membrane area’’ d
scribing the property of the area reservoir andp0—the pres-
sure difference rather than the Lagrange multipliers.

The cell membrane possesses a lateral elasticity with
eral elastic modulil andm ~which in general are also coor
g
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dinated and time dependent!. Consider a locally isotropic
membrane. The contribution of the stretching elasticity to
cell free energyFst takes the form@15#

Fst5E l1m

2
~dA/A!2dA. ~2!

HeredA is the variation of the surface area under stretch
@16#.

Consider a membrane that is described by the radius
tor R of the points on its surface. Under application of
localized force that is normal to the membrane surface
main contribution to the small membrane displacemen
made by its normal componentC5C(R). Under a deflec-
tion the new radius vector of the surfaceR8 can be thus
defined asR85R1nC, wheren is the surface outer norma
@17#. Though all results can be obtained in a general c
~not fixing the surface shape!, we consider here the case of
cell, which is initially spherical~with the radiusuRu5R! for
which all the expressions take the simplest form.

The inner part of most of animal cells contains a bu
cytoskeleton composed of filaments—actin fibers, interme
ary filaments, and microtubuls. The filaments form a bran
ing and interlacing meshwork that connects with micro
buls, nuclei, organelles, and the network near the cell bord
@18#. We take into account two contributions of the bu
cytoskeleton to the membrane energy. First, the cytoskele
can produce a pressurepcyt5pcyt(R) onto the membrane in
ner surface. Second, the cytoskeleton has its own rigid
which can be roughly characterized by a Young’s modu
Ecyt and a Poisson’s ratiovcyt . Deflection of the cell mem-
brane is followed by deformation of the bulk cytoskelet
~Fig. 1!. The energy of its deformation must be also includ
in the membrane energy. The contribution of the cytosk
eton to the membrane energy can be roughly taken in
form

Fcyt5E S 2pcytC1
Ecyt

2~122vcyt!R
C2DdA. ~3!

Cell membranes contain different impurities dissolved
the bilayer such as integral proteins. Integral proteins
give rise to torques bending the membrane. In the case
flat symmetric lipid bilayer inclusion can cause its loc
bending only if the inclusion is asymmetric with respect
the bilayer, while symmetric proteins have no effect on d
flection of the flat symmetric membrane@19#. In contrast, in
the curved and structurally asymmetric cell membrane, e
sort of integral protein gives rise to a local torque. The lat
can be described by the dependence of the spontaneous
vature c on the surface coordinatesR: c(R)5c01dc(R),
wherec0 is a constant. It plays the role of the spontaneo
curvature of the cell membrane far from integral protein
The lateral size of integral proteins is typicallyL;1028 to
1029 m. Since L!d one can representdc(R) as dc(R)
5ad(R), wherea is a constant describing the power of th
internal torque induced by the individual integral protein a
d~R! is thed function on the surface. The bending rigidity o
integral protein is different with respect to that of the me
brane, hence it changes locally the membrane bending m
lus @20#: k5kc1bd(R), wherekc is the bending modulus o
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57 2125DEFLECTION OF A CELL MEMBRANE UNDER . . .
the membrane far from impurities andb is a constant. Inser
tion of a new protein into the cell membrane results in a lo
membrane dilatationsd(R) ~wheres is a protein lateral area!
in addition to the dilatation that is caused by the membr
bending. The latter is obtained in Ref.@17#. The effective
dilatationdA/A takes the form

dA

A
5sd~R!1~c11c2!C1c1c2C21gi j ¹ iC¹ jC/2

2$~c11c2!gi j 1c1c2Li j %C¹ iC¹ jC, ~4!

where¹ i is the covariant derivative along the surface,gi j is
the surface metric tensor, andLi j is the surface second fun
damental form tensor~the definitions ofgi j andLi j and some
details one can find in Ref.@17#!. In the case of a spherica
surface they have the formg115R22; g225(R sinu)22;
g125g2150; L1152R23; L2252R23 sin22 u; and L12

5L2150, whereu is the spherical polar angle. Finally, if
local force f5f0d(R) is applied to an integral protein, to
receptor or directly to the membrane one has to take
account its work, which takes the formW5*(fn)C dA.

Now let us consider nonlinear contributions~proportional
to C3 andC4! to the free energy. The latter must be tak
into account when local shape bifurcations are studied o
the case of nonharmonic deformation. The contribut
;C3 originating from Fb was obtained in Ref.@17#. The
free energy must be positively defined~Ref. @25#! and thus
one should extend the expansion at least up to the fo
degree inC. The latter term was not obtained yet for a me
brane of a general shape. Assume that it is the geomet
nonlinearity that makes the main contribution to the free
ergy. In this case it is possible to find the main terms of
third and fourth orders inC. One has two contributions to
the nonlinear terms. The first of them arises due to the be
ing energyFb Eq. ~1!. The dimensional considerations sho
that the main terms of the third and fourth order that app
in the expansion of the energyFb ~1! can be estimated a
kcC

3R21d24 andkcC
4R22d24. The main terms of the con

tribution of the stretching energyFst @Eq. ~2!# with dA/A
given by Eq.~4! are the order of (l1m)C3/Rd2 and (l
1m)C4/d4. It is easy to verify that the two latter terms a
much larger than the two former ones.

The free energy has the formF5Fb1Fst1Fcyt2W.
Making use of the above considerations one gets the exp
sion of the free energy describing small local deflections o
cell membrane:

F5E H 1

2
C~kcD

2C1BDC1DC!2q~R!C

1~l1m!FCgi j ¹ iC¹ jC

R
1

~gi j ¹ iC¹ jC!2

8 G J dA,

~5!

whereD is the Laplace-Beltrami operator on the sphereB
5pR/21kc(21c0R)R22; D5pR2112kcc0R2314(l
1m)R221Ecyt(122ycyt)

21R21; p5pcyt1p05pcyt1pin
2pout. The function q(R)5qd(R) with q52kc(1
2c0R)R22a22(l1m)R21s2(22c0R)R22b1(f0•n) is
determined by the properties of the impurities. We assuma,
l
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b, s, and the forcef0 to be small and to give rise to a sma
deflectionc of the membrane. Hence the productqc is of
the second order of magnitudeqc;c2. q plays the role
analogous to that of a charge in electrostatics, therefor
what follows it is referred to as ‘‘elastic charge’’@24#.

In the case of a local displacement caused by the local
force in order to describe the membrane stretching it is s
ficient to consider the linear part of Eq.~4! ~with s50!,
which has the formdA/A5(c11c2)c since the tangentia
surface displacement is small. It shows that under the app
localized force the local bending of a curved membrane
always followed by its local stretching~if c11c2Þ0!. This
phenomenon manifests itself only due to the surface cu
ture and in the flat casec1→c2→0 (R→`) it disappears. At
first glance it seems to contradict the condition of a const
total area usually applied in the theory of vesicles@3,17#. In
principle Eq. ~4! is consistent with the constraintrdA
5const. The latter condition, being applied to the membra
together with Eq.~4!, demands the membrane deformati
be nonlocal. However, the conditionrdA5const is an ap-
proximation resulting from thea priori assumption that this
constraint gives a minimum to the total energy. As we ha
discussed above, in the case of the local deflection cause
the localized force the correct approach is to take into
count both the stretching and the bending energies an
demand that the total free energy Eq.~5! is a minimum,
rather than to use the approximationrdA5const.

Note that the structure of the square part of the free
ergy Eq.~5! is completely prescribed by the membrane sy
metry. Namely, for the spherical membrane it always has

form r 1
2 c(kcD

2c1BDc1Dc)dA with kc , B, and D un-
equal to zero. This form of the free energy takes place
ready in the case of a spherical vesicle~which has neither
cortex nor cytoskeleton! ~Ref. @17#!. Therefore it is of inter-
est to understand what mechanisms make contribution
these constants in the case of an animal cell. The solutio
given by Eq. ~5!. It is also important to estimate relativ
values of these constants.

Relations between the values of the parameters usu
met in experiments make it possible to simplify the expr
sion for the free energy. For cell membranesl@m @4,11#.
The order of magnitude of the bending modulus
kc;10219– 10220 J @4#; the lateral elastic modul
l;1025 J/m2 for flaccid erythrocytes@4#, l;0.3 J/m2 for
swollen erythrocytes@21# andl;1024 J/m2 for unfertilized
sea urchin egg.c0;R21; R;1025 m. The membrane sur
face tension can take values between zero
s;1025 J/m2 @21,22# and the corresponding pressu
difference—between zero andp;10 Pa. Ecyt;103–105 Pa
@8#. Consider the regime of a small value of the press
differencep'0. In this case using the above estimations o
gets D;109 to 1010 J/m4; B;10210 J/m2. EstimatingDc
;cd22 one gets kcD

2c;Dc@BDc and d;$kc /D%1/4

;1027 m. Thus the termBcDc of the free energy Eq.~5!
can be omitted@23#. The quadratic part of the free energ
takes the form

F5E $ 1
2 kccD2c1 1

2 Dc22q~R!c%dA. ~6!

Note that the elastic chargeqd(R) describes one isolate



ca

li-
ic
ov

h

-
te

he

lle
n
k
o

te
In

n

u
th
i

s
e

o

e

t

al

rg
-

lvin

r

in

pe

l
-

on-
the

anti-

is
od is
ut it
ton

ver

the

2126 57A. A. BOULBITCH
protein or a local force. One can consider also a general
with distributed proteins or a distributed forceq5q(R).

The inequalityd!R enables us to make a further simp
fication in the expression for the membrane energy, wh
we refer to as the quasiflat approximation. It is easy to pr
that under the condition of local bendingd!R one can use
the free energy Eq.~6! as if it were defined on a plane wit
the Laplace operatorDc']2c/]x21]2c/]y2 and the area
elementdA'dx dy, wherex andy are the in-plane Carte
sian coordinates. Since the integral converges one can ex
the integration in Eq.~6! up to infinity.

The motion of the membrane is mainly controlled by t
energy dissipation by the surrounding water@26#. Besides,
the membrane is connected with the internal cell organe
and one should expect that this also makes its contributio
dissipation. The whole phenomenon therefore can be ta
into account in a phenomenological way by introduction
the dissipative functionQ of the cell membrane:Q
5 1

2 *g(]c/]t)2 dA, whereg is the kinetic factor andt is the
time. The value of the dissipative factorg can be estimated
within the assumption that energy dissipation by wa
makes the main contribution to the dissipative function.
the flat geometryg5hq whereh is the viscosity of water
(h;1023 J s/m3) andq is the wave vector@26#. As accurate
as it can be obtained within the quasiflat approximation o
can takeq;d21 and getg;h/d;104 J s/m4. This estimate
gives a lower limit of the value ofg since it does not take
into account dissipation by cytoskeleton. In fact, one sho
probably expect that it is just the cytoskeleton that makes
main contribution to dissipation of the membrane energy
animal cells and that its contribution can be several order
magnitude larger than that of water. However, at the mom
it is not enough information to estimate it.

The equation of motion can be obtained by making use
the variation principle for dissipative systemsdQ/d(]c/]t)
52dF/dc @25#. In the linear approximation it takes th
following form:

g
]c

]t
52kcD

2c2Dc1q~r !. ~7!

Within the quasiflat approximation Eq.~7! is considered on
the infinite plane:r5(x,y) is the in-plane radius vector. In
the steady state the membrane displacement is subjected
simple equation of equilibrium:

kcD
2c1Dc5q~r !. ~8!

One can try its solution in a form of the Fourier integr
c(r )5*cq exp(iq•r )d2q/(2p)2:

c~r !5E qq exp~ iq•r !

kcq
41D

d2q

~2p!2 , ~9!

whereqq5*q(r )exp(2iq•r )d2r . The solution~9! is valid in
a general case of distributed elastic chargeq(r ) ~distributed
integral proteins or of some distributed force!. In the case of
an isolated protein or of a localized force the elastic cha
takes the simple formq(r )5qd(r ). In this case the deflec
tion is proportional to the Green functionG(r ) of Eq. ~8!:

c~r !5qG~r !, ~10!
se
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where the Green function is expressed in terms of the Ke
function kei(r /d):

G~r !5E exp~ iq•r !

kcq
41D

d2q

~2p!2 52
d2

2pkc
kei~r /d!. ~11!

The dimensiond of the bending region isd5(kc /D)1/4. The
deflection amplituded5C(0) caused by the local force o
by the isolated protein has the form

d5
q

8AkcD
. ~12!

We estimate the range of the deflection amplitude
which the quadratic free energy Eq.~6! and corresponding

FIG. 2. Schematic view of action of atomic force microsco
cantilever on the surface of~a! animal cell and~b! bacterial cell. 1:
the cantilever to which the forcef 0 is applied; 2: the animal cel
membrane with the cortex~3!; 4: the deflection region of the mem
brane; 5: the filamentous part of the cytoskeleton~consisting of
actin and intermediate filaments!; 6: the microtubule; 7: the actin
bundle; 8: the intracellular organelle. Since the effective spring c
stant of the animal cell membrane is much smaller than that of
cantileverkm!kAFM , in order to balance the forcef 0 applied to the
cantilever the membrane displacement should be large. The c
lever meets some relatively rigid cell organelle~8!, microtubule~6!
or actin bundle~7! well before this magnitude of displacement
reached. Therefore presently the atomic force microscope meth
unable to characterize the animal cell membrane properties, b
makes it possible to distinguish the rigid part of the cytoskele
and cell organelles. In contrast,~b! the bacterial wall~9! is much
more rigid. It is able to balance the force applied to the cantile
~1! by its own elasticity and bacterial internal pressure. Sincekw

@kAFM one can study the bacterial wall elastic properties with
atomic force microscope.
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57 2127DEFLECTION OF A CELL MEMBRANE UNDER . . .
linear equations~7! and ~8! are valid. Under the condition
kccD2c;Dc2@(l1m)c3/Rd2, (l1m)c4/d4 the nonhar-
monic terms can be neglected. If the cytoskeleton is s
(Ecyt;103–104 Pa) the limitation for the ratio of the deflec
tion to the cell radiusc/R!(d/R)2;1024 is given. In the
case of a rigid cytoskeleton (Ecyt;105 Pa) one gets the limi-
tation c/R!1021– 1022. Note that in the case of a swolle
erythrocyte there exists one additional limitation of the a
plication of the above theory since its membrane breaks
der dilatation of few percent@4#. This gives the limitation
condition c/R,1022. For a flaccid erythrocyte and for
cell with a reservoir of surface area this limitation is n
valid. Thus though the above approach can be applied
each kind of cell, the range of deflection amplitude is wid
in a rigid cell region.

The atomic force microscope data are usually handled
ing the Hertz approach to the contact problem@1#, which
considers the cantilever and the cell as homogeneous el
solids@27,28#. In the case of cells this approach gives a go
approximation if the bulk elastic energy of the cell deform
tion under indentation is much larger than the energy
bending of the cell membrane. The membrane spring c
stant km5 f 0 /d58AkcD can be estimated askm
s

L.
d

P

n,

G

u

ol
ft

-
n-

or
r

s-

tic
d
-
f

n-

;1024 N/m. This is smaller than the spring constantkAFM of
the atomic force microscope cantilever~in modern cantile-
vers the valuekAFM;1023 N/m is reached@29#!, therefore in
the present state of art the contribution of the membrane
animal cells to the cantilever displacement cannot be m
sured by atomic force microscopes@Fig. 2~a!#. The present-
day atomic force microscope is sensitive to the membr
properties in the case of a much more rigid membrane
those of bacteria@Fig. 2~b!#. Making use of the Young’s
modulus;1010 Pa and width;1028 m of the sheath of the
Methanospirillum hungateibacteria@30# one gets the esti-
matekw;1 N/m of the effective spring constant of the ba
teria wall. In this case the present approach should be
plied.

To summarize, we obtained simple dynamic and sta
equations describing the small local deflections of the c
membrane under the action of a local force or a local torq
and discussed the possibility of application of this approa
to atomic force microscope experiments.
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