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Density-functional theory of pair correlations in metallic hydrogen
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The pair correlations in the metallic phase of hydrogen are reconsidered on the basis of a simple density-
functional formulation of the free energy of the ion-electron plasma, which includes a square-gradient correc-
tion to the Thomas-Fermi kinetic energy of the degenerate electrons. A robust prescription is given for the
prefactor of the square-gradient correction. The functional leads to a hypernetted-chain—like closure for the
ion-ion and ion-electron correlation functions, which is solved iteratively, in conjunction with the coupled
Ornstein-Zernike equations relating the matrices of pair and direct correlation functions. The resulting structure
agrees well with available@b initio simulation data based on the Kohn-Sham functional. A density- and
temperature-dependent effective ion-ion pair potential is obtained by formally reducing the initial two-
component system to a one-component fluid of pseudoatoms. The results show strong deviations of the present
nonlinear theory from the standard linear screening approach,fet (wherer is the usual inverse density
parameter equal to the ratio of the electron sphere radius over the Bohr)ratheslong-wavelength ion
density fluctuations are strongly enhanced as the density drops, and at the lowest dgasitg) the ion-ion
pair structure and effective potential exhibit an unusual behavior, at the lower temperature explored in this
paper T=3%10° K), which may be interpreted as a precursor to an incipient plasma-insulator transition.
Thermodynamic properties are estimated from the pair structure. The influence of nonlinear electron polariza-
tion on the equation of state is found to be surprisingly small, but the isothermal compressibility increases
sharply at the lowest densit}S1063-651X%98)03501-4

PACS numbgs): 05.30.Fk, 61.20-p, 31.15.Ew

[. INTRODUCTION instanteneous configuration. This inhomogeneous electron
fluid is most efficiently described within the density-
Metallic systems, including metals under normal condi-functional theory(DFT) developed by Hohenberg, Kohn,

tions and pressure-ionizéthetallic) hydrogen, are basically and Sham[1,2] and generalized to finite temperatures by
two-component plasmas made up of an ionic species anillermin [3]. A conceptually similar formulation has been
“free” conduction electrons. The ionic species may be eitherproposed by Percy#] for classical inhomogeneous fluids.
fully stripped, i.e., reduced to bare nuclei, or retain tightly For a number of applications, it is convenient to consider
bound core electrons; except under high-density conditionboth components, i.e., the classical ionic fluid and the degen-
(as may occur in degenerate stellar mattéie de Broglie erate electronic fluid, to be inhomogeneous on average. In
thermal wavelength associated with the ions is much lessther words, the equilibrium state of a metallic system may
than the mean interionic spacing, so the ionic componenbe characterized by two spatially varyiripcal) densities
may be safely described by classical statistical mechanicg,(r) andp,(r) associated with the ionspecies Land the
On the other hand, the density of metallic systems is usuallglectrongspecies 2 This point of view has been be adopted
sufficiently high for the Fermi temperaturg- associated in a DFT description of freezing of an ion-electron system
with the free electrons to greatly exceed the thermodynamif5] or to derive a set of equations for a quantitative descrip-
temperatureT. In other words, the degeneracy parametertion of pair correlations in a dense ion-electron plasma. A
0=T/Tg<1, so, to a good approximation, the electronicnumber of papers deal with this second application. They
component may be regarded as fully degenerate: For angiffer by the treatment of the kinetic-energy part in the en-
“frozen” ionic configuration, the inhomogeneous gas of ergy functional of the degenerate electrons. In the work of
conduction electrons is in its ground state. The fact that meDharma-wardana and Perii@] and Chihard 7], the Kohn-
tallic systems may, over a broad range of physical condiSham independent-particle orbital point of viej2] is
tions, be assimilated to a neutral mixture of two chargedadopted, while in the more recent work of Ofral.[8], the
fluids, one classical and the other degenerate, must of coursémpler Thomas-Fermi approximation to the kinetic energy
be traced back to the large mass ratio of ions and electronis used. The two types of electron energy functionals are
This large mass ratio also justifies the adiabatic or Borncombined with a hypernetted-cha{RiNC) closure relation
Oppenheimer approximation, whereby the electronic compof9] for ion-ion correlations. It is interesting to note that these
nent may be regarded as readjusting its ground state quagwo points of view also show up in theb-initio simulations
instantaneously to the much slower ionic motions. On theof ion-electron systems: In the method of Car and Parrinello
time scale of the latter, the electrons may be regarded d40], the Kohn-Sham representation is used, while the
forming an inhomogeneous, degenerate, interacting Fernfihomas-Fermi kinetic-energy functionl1] or improve-
fluid in the “external” field provided by the ions in their ments thereof12] have been successfully used in “orbital-
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free” first-principles simulations. The latter seem to be par-wherer; , is the position of theth particle of species, and
ticularly well adapted to metallic systems, for a number ofnoting thatZ,=Z and Z,=—1, the potential-energy term
technical reasond 3]. Both Kohn-Shani14,15 and orbital- V,z may be cast in the compact form
free[11] simulations have been applied to metallic hydrogen,
which is the object of the present paper. Vo Z,

We adopt the orbital-free point of view for the electronic af ] 4
kinetic-energy functional, going beyond the Thomas-Fermi
approximation 8] (which is expected to be particularly poor
for hydrogen, by including a square-gradient correction
[16], which is crucial for a proper description of the electron
density very close to the nuclei. The approach may be furthelrull ionization has been assumed in writing &4, i.e., the
improved by going to a hybrid functional proposed by Perrotinteractions between all particles are purely Coulombic. In-
[17], which incorporates the correct linear response of thdegrations are over the total volunveof the system.
eletron fluid. The DFT formulation is restricted to fully ion- ~ To discard any divergence problems of the separate con-
ized plasmas in this paper, i.e., the ions reduce to bare nucldributionsHy, H,, andV, in the thermodynamic limit, it is
the presence of bound statésore electronsmay be ac- convenient to add and substract a unifofmeutralizing
counted for by the use of ion-electron pseudopotentials or bpackground, of(charge density no=n, [19]. The Hamil-
a self-consistent DFT scheme as proposed by Chife8h  tonian(1) is then recast in the form
within the Kohn-Sham formulation. As in Ref6—-8|, the , , ,
HNC closure is used to determine ion-ion correlations. H=H;+H>+Vy,, 5

The present DFT of ion-ion and ion-electron correlations,
expounded in Secs. II-IV, is applied to hydrogére., a where
mixture of protons and electronm Secs. V and VI, over the

4 - ~
5fﬁfdrfdr'[pa(r>pﬁ(r'>

_ 1
—Oappo(r)o(r—r')] =k (4)

i j Hi=H;+Vgo+Vor, 6
range of densities;<1.5, where hydrogen is expected to be 1T T o (63
metallic (no bound statgsIn Sec. VIl we consider the prob- Hi=H.—V (6b)
lem of calculating thermodynamic properties of metallic hy- 2=z Yoo
drogen, a question that has received very little attention in NIRVERY 6
previous DFT and simulation work. Concluding remarks are 127 Y12 Yol (60
contained in Sec. VIII. with

Il. IONS AND ELECTRONS n3 1

- . . . . VOO__ f drf dr’ o (7a)
Within the “two-fluid” picture, a metallic system is made 2 [r=r’|

up of a classical ionic componefgpecies }, containingn,

ions (nuclej of chargeZ,e and massn,; per unit volume, ,
and a degenerate electronic compon@pecies 2 contain- Vo1= _”Ozlf er dr r=r|" (7b)

ing n, electrons of charge-e and massn, per unit volume.

Charge neutrality implieZn; =n,. It is convenient to adopt Note thatH ] is precisely the Hamiltonian of the widely stud-
atomic units, where=1, m,=1, and#i = 1; lengths are then jed (classical one-component plasm@CP [20], while H)

in units of the Bohr radiusds=7%/m,e*=1) and energies s that of jellium, introduced by Wigndi21] as a model for
are expressed in hartrees’(ag=1), i.e. multiples of 27.2  glectrons in metals. In the ultrahigh-density limjt—0, the

eV. The radius of a sphere containing, on average, one elegatio of the TF wavelength 1= 1/kTF*f§/2 over the mean
tron ist_=(3/47Tn2)1/13;3Wh"e the corresponding ion-sphere gistance between electrons, approximately equal,todi-
radius |51/3a1=rSZ_ . The Fermi wave number yerges, so the electronic component behaves like a rigid
ke=(97/4)™"Ir, while the Thomas-FerniiTF) wave num-  (nonpolarizablg background; the ion-electron coupliri§c)

a(r
r_

ber iskrg= (12/m) ¥ 2. becomes negligible, so that the two fluids decouple; and the
The Hamiltonian may be decomposed into ionic and elechydrogen plasma behaves like the superposition of a classi-
tronic parts and an ion-electron coupling term cal OCP and a fully degenerate jellium. As increases,
electron polarization effects become increasingly important.
H=H;+Hy+Vy, (D A linear screening treatment of the ion-electron coupling is

expected to be accurate uprtg=0.5[22,14]. At lower den-

sities, nonlinear screening becomes important, which re-

quires the use of a nonlinear DFT, like that proposed in this
aa’ 2) paper. In compressed hydrogen a metal-insulator transition
to the molecular phase is expected beyogd 1.5 (see, e.g.,
Ref.[15]), which means that bound states become important.
Their quantitative treatment is beyond the scope of the
simple DFT used in the present work, so that explicit calcu-

and
H,=K,+V

whereK, andV,, denote the kinetic and the potential en-
ergy of interaction of species. Introducing the microscopic
density operators

N,, lations will be restricted to the range &5,<1.5, which
P S(r—r: ), 3 corresponds to a decrease by a factor 27 in density. The
Pal) 2’1 (r=ria) ® degeneracy paramete®=2(4/97)%r2(kgT) a.u~1.72
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10 ®rZT K for hydrogen. The range of the calculations will Where h,(r,r')=g,4(r,r')—1 is the two-point(or pain

be limited to temperatures, such th@&0.08, so that the correlation function, whileg,z denotes the pair distribution
electron fluid can always be assumed, to an excellent agunction (PDP for particles of species and g.

proximation, to be in its ground state. A convenient dimen- A standard Legendre transformation takes us from the
sionless Coulomb coupling parameter is that routinely usegrand potential to the dimensionless intrinsic Helmholtz free

for the OCP, namelyl’=e?/agr kg T=1/r((kgT) a.u. energy, a functional of the density profiles
lll. THE FREE-ENERGY FUNCTIONAL Flp1.p2]=—Q[V,,¥,]+ >, f PNV (r)dr.
If the ion-electron plasma is subjected to external poten- (15

tials ¢,(r) that couple to the microscopic densiti@3, extra . ] o
terms must be added to the Hamiltonighy denoting the F admits the functional derivatives
unperturbed Hamiltonian defined in Eq4) or (5) by Hy,

the total Hamiltonian now reads 5F5[p—1(,;;2]:\y (r), a=1,2 (163
Palr o ’
H=Ho+ :Elzf%(r)ﬁa(r)dr- (8) SFp1,p2] OV ,(1)

_ o,
Spal1)Spg(r’) 5p3(r/)—xag(r,r ), (16b

The external potentials will induce spatial inhomogeneity in . . )
the plasma, characterized by the one-particle densities d¥here the matri ™~ is the functional inverse of the suscep-

density prof”es: t|b|l|ty matriX in Eq (12b)
The free-energy functional is separated into ideal and ex-
Pa(1)=(pa(r)), a=12. (9)  cess(nonideal parts in the usual way:
The grand partition function is Flp1.p2]=F P [p]+FY Lol +Fp1.p2].  (17)

The inverse susceptibility matrix splits accordingly into two
E(Boa,m2) =20 2 Texp{— B(H—uiNi—poNo), parts
1 2
(9 Xad =X = Caplrr), (18
where B=1/kgT. The trace is over the phase space of theW
ions and over the quantum states of the electrons, and the
sums oveN,; andN, are restricted by the charge neutrality X&Oﬁ)_l(rvr,):X;O)_l(hr,)ﬁaﬂ! (19
constraintN,=ZNy; u, is the chemical potential of species
a. The ground potential divided by-kgT, Q=InE, is a  while the secondnonidea) term is the matrix of direct cor-

here the firstideal) term is diagonal

functional of relation functiong DCF’s). For the classical ionsa(=1)
\I,a(r)::B[/*La_(ﬁa(r)]v a=l,2. (11) _ 1
XA = s s =), (20
The first and second functional derivatives @fyield the P1

one-particle densities and the matrix of nonlocal "near'Expressing the fact that the matricgsand y~* are func-

response functions or susceptibilities: tional inverses of each other and using Et) for y,, and
SQ[W,,W,] X12, together yvith Eq(20), one easily arrives at the coupled
N—(’r)=0a(f), (129  Ornstein-ZernikgOZ) relations(see, e.g., Ref18))

) hya(r,r")=cqy(r,r") +hy*x (p1Cr(r,r’)
6 Q[\Plv\PZ:I _ 6pa(r)

SV (oW 1) oW,y Xeslhr). (12D +hiz (paCi) (1,1), (219
According to linear response thedr33], hi* (p2xs) (1, )=Caor,r") +hy* (p1C)(r,r")
+hyg* (paCao)(r,r"), (21b

Bh d\ - _
Xap(T 1) = | = (Apa(r;—iNAp(r')), (13
fo ph (Xa2= X (X1 (r,1") = (p1h12)* (p2C1) (r,F")

whereAp (r;—i\) is the deviation of the local-density op- +x22% (C)(r,1"), (210
erator from its mean at the imaginary time \ (Heisenberg ] )
representation In the classical §—0) limit, applicable to  Where the asterisk denotes a convolution product. These OZ

ion-ion and ion-electron correlations relations will be used later in their form appropriate for a
homogeneous fluid, for which translational invariance im-
X(Zylﬁ(rrr’):<;a(r);[3(r,)>_<;a(r)><’53(r’)> plies that p,(r)=n, and f,g(r,r')="f,z(r—r’") for any

two-point function. Fourier transformatiaffrT) reduces the
=po(Npp(r )hye(r,r’), (14 above OZ relations to the form
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Ry 1(K) = C14(K) + Ny Ry 1(K) C11(K) + Moy o(K) Cpo(K), sity correlation function requires an additional approxima-
11(K) =Ca1(k) #1113k Ca1(k) +Moh (k) Caz(k) tion to be made to arrive at a closed set of equat[@hd).

The approximation made in the present work is most eas-

NP 1K) ily understood by rewriting the dimensionless intrinsic free

Tog o0 w08 K) i 082 ), energy in the form
2
@20 Flpy,pal=F O pi]+ FOLp ]+ FEX(ny,ny) + AFS  py]

K k) . +AFSY pq,p,]+AFS . 28
X22(K) = X2 k) _ 80 Ran) 4 a0 B) 2LP1.P2] 22 p2] (28)

X2 (K)
X 220 N Eq.(27), F{[p4] for the classical ions is known exactly:
The susceptibility of noninteracting electrons is the well- 0 s
known Lindhard functiorj24] F{ [Pl]:f p1(N{In[py(r)A7]—1}dr. (29
K21 1 1+
(O (k)= — _F [E + 4qq In ﬁ (23)  The contribution®\F{} andAF3} are given by the HNC-like
2 _

approximation(27). The remammg terms, which are func-
tionals of p,, are proportional to the intrinsic ground-state

whereq=k/2Ke . energy of the inhomogeneous electron gas, as lorgak:

By integrating the excess part of E{.6b) along a linear
path in one-particle density space, starting from a uniform
reference state, with the same macroscopic demsity KeTAF[po]=ke T{AFS [ po]+AFS po]}

PalliE) =Nt o) - ] =0t E4p, (1), 0L ~Elpz]=E(nz). 80
4
The terms corresponding to the homogeneous ion-electron
one arrives at the following, exact expression for the intrinsigplasma are funtions of the macroscopic densitieandn,,

excess free energy of the ion-electron system: not functionals ofp; and p,, and are hence irrelevent for
what follows.

AF®=F*{py,p,]—FgX(ny,ny) In Refs.[6] and[7], E[ p,] is calculated within the Kohn-
1 Sham approximation. In this work a simpler, orbital-free rep-
-—>> f dg(l—f)f drf dr'Ap,(r) resentation is used. The functional is split into its kinetic
a g Jo “ (noninteractingg Hartree, and exchange contributions, ac-

, cording to
X Caplp1(§),p2(8);r, 1" JAp4(r'). (29
The direct correlation function associated with the interme- Elp2]1=Ek[p2]+Enlp2l+ Exlp2l. (31

diate one-particle densiti€24) may be expanded in powers
of £ around those associated with the uniform densitigs  For the kinetic-energy functional, we adopt either of two
In the HNC approximatiof9], only the lowest-order term is approximations.
retained, i.e. (a) One is Thomas-Fermi plus square-gradient correction
(von Weizsaken approximation TF-W(\)]
Caplp1(£),p2(€)ir, T I=Cop(ny,Npir—1").  (26)

Vpo(r)|?
The corresponding, approximate, expression for the excess Eg[p,]= CKJ [pa(r)1%%dr + %dr,
free energy reads P2 (329
1 . .
AF®=— 5 > > f drf dr'Ap,(r) with C=3(37%)?%10. The precise value of has been the
“« object of a long-standing debate in atomic phydit§]. A
XC B(nl,nz;r—r’)Apﬁ(r’) rigoroys gradient expansion predicts=1/9, while in von
“ Weizsaker's original derivatiolx=1. This value leads to
=AFI+AFD+AFS). (27)  the exact linear response of the noninteracting electron gas

on the short-distancélarge-wave-numberscale, whereas
For a purelyclassical mixture, the free-energy functional \=1/9 guarantees the correct linear response at large dis-
(27) yields, via Eq.(16a and the Percus identification of the tances(i.e., small wave numbersEmpirically it is known
external potential as that due to a fixed particle of speeies that A=~1/5 yields the best ground-state energies of many
[4], to the well-known HNC closure relatid®]. These, to- atoms[16].
gether with the OZ relation$21) adapted to the classical (b) The other is functional proposed by Perrot, which in-
limit, form a closed set to compute the three PD§ s(r). terpolates correctly between these two regimes and guaran-
In the ion-electron case, where the electrons are degenerategs the exact linear respor{ss described by the Lindhard
the nontrivial relatior(13) betweeny,, and the electron den- susceptibility(23)] on all scales:
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Lindhard susceptibility23) (the index 2 has been dropped

| p (r 5 — T T [ v v v [ vt | v T T T T3

Eklp2]= CKJ [p2(r)]¥dr + 5 f z—dr 1
p2(r) ]

N \Y, D 1 1 . 0 ‘ i ]

E 7 Xw(k) X(O)(k) p2( )p2( ) 4 _— —_

(32b I ]

In this equatior\ has been chosen to be equal tgi(k) is =3 . -
the FT of the electron density profile,(r), x(©(k) is the » | ]

and y,,(K) is the approximate susceptibility of the noninter- N\
. . A . 2 ig.‘
acting electron gas, as derived from the kinetic-energy func- RN
tional (329 (with A=1), namely, I \\
= ~
=5 2 33 Y =
XW( )_ 7T2 1+ 3q2 ' ( ) C 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
] . 0 0.2 0.4 0.6 0.8 1
where again q=k/2kg. It is easy to check that r/a,
xw(K)— x©(k) when g—=, as indicated earlier. The re-
maining terms in the energy functiondl) are taken to be FIG. 1. g1r) from the ion-sphere model with TFW) and
Perrot kinetic-energy functionals, a=0.5 andr;=1. The long-
Eulp,]= dr | dr’ APz(r APz(r ) (34) dashed lines represegi,(r)’s from the Perrot functional, the solid
HLP21= | ' lines those from the TFW functional with=0.41, and the dotted

lines those withh =1. For each functional used, the lower curve is
i3 for r¢=0.5 and the upper curve fog=1.
Ex[p2]= fo [po(r)]™=dr, (39

a
2 =
where the local-density approximatiolDA) has been 47Tj0 rpa(r)dr=2. (36)

adopted for the exchange term a@ig= — 3(3/7)3/4.

Within the same approximation, an electron correlationThe “external” potentialg,(r) is provided here by the cen-
term could be easily added; in the range<1.5, which has tral ion. When the kinetic-energy function@2g is adopted,
been explored in this work, this term is expected to be venghe Euler-Lagrange equation associated with Ebga),
small and has been neglected for the sake of simplicitywhereW(r)=u,+Z/r, reads
Equations(28)—(35) completely define the free-energy func- ) .
tional of the ion-electron plasma used in the present work. )‘[ (r)} ~2p,"(r) 4 p(n)
Criteria for an optimum choice of the factarin the square- po(r) po(r) r po(r)
gradient correction, when the kinetic-energy functiof32a

5
] 2 Culp2(r) 1R

: ; ) X 4
is used, will be spelled out in the subsequent sections of the + §Cx[Pz(r)]1/3: wo—®(r), (37)
paper.
where the total electrostatic potenti®l(r) is a solution of
IV. A PRELIMINARY APPLICATION: Poisson’s equation
THE ION-SPHERE MODEL
The functional defined in Sec. Il will be applied first to a d"(r)+ qu(r)zzwpz(r), r>0, (38)
r

highly simplified model of the ion-electron plasma, namely,
the so-called ion-spher@S) model. The IS model is itself a

simplification of the Wigner-Seitz model for the description 21d satisfies the boundary conditions

of ionic crystals, where the total volume is divided intig I d(r)=7 39
identical, space-filling polyhedra, called Wigner-Seitz cells, ,m re(r=2, (399
having an ion in their center. In the ion-sphere model, the

Wigner-Seitz polyhedron is replaced by a sphere of identical ®'(r=a,)=0. (39h)

volumev =V/N and hence of radiug;. The ion, of charge

Ze, is fixed at the center, whilg electrons are nonuniformly A similar albeit integro-differential Euler-Lagrange equation
distributed over the volume. Each sphere being electrically holds if the Perrot kinetic-energy function@2b) is adopted.
neutral, the total Coulomb interaction between different ion Numerical solutions of the coupled equatiof3y)—(39)
spheres vanishes, according to Gauss’s theorem. It is henege easily obtained for any value &f Examples for a few
sufficient to consider a single IS and to minimize the corre-values of\ are compared in Fig. 1 to the density profile
sponding total-energy functional with respect to the spherip,(r) derived from the Perrot functional in the case of hy-
cally symmetric electron density profife(r), subject to the drogen £=1). Only the valuex =1 yields the exact cusp
constraint condition
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TABLE I. Internal energy per iorfe) and the pressur®/n, of the hydrogen plasma dt=3x10° and
10* K, for r¢=0.5, 1, and 1.5. The various theories presented here are denoted as fGHOV&D), the
simple homogeneous electron gas moga);IS(P), the ion-sphere model of Sec. IV using the Perrot kinetic
energy functional{c) IS(W), same agb) except that the von Weizsker functional is used\=0.41); (d)
HNC, energy and pressure calculated frgg(r) andgq,(r) of the present HNC-TFW theoriSec. \j and
Eqgs. (60)—(62).

€ (hartree P/n; (hartree

T (K) rs I1S(0) IS(P) IS(W) HNC-TFW 1S(0) IS(P) IS(W) HNC

10t 0.5 1.703 1.629 1.646 1.910 2.041 2.013 2.048 2.224

3x10° 1.703 1.629 1.646 1.773 2.041 2.013 2.048 2.132

104 1.0 -0.2532 -0.2969 -0.3283 —0.1755 0.2839 0.2854 0.2941 0.4216

3x10° —0.2532 —-0.2969 -0.3283 —0.2534 0.2839 0.2854 0.2941 0.3558

10* 15 —0.4144 -0.4571 —-0.4993 —0.4446 0.0256 0.0357 0.0442 0.1334

3x10° —0.4144 —-0.4571 —-0.4993 —0.4959 0.0256 0.0357 0.0442 0.0817
o d the “responding” electron-gas results is surprisingly small,
lim =1 py(r)=-2, (400 as was already concluded from the linear screening results of
r—0 Ref.[22].

which is also satisfied by the Perrot functional. The latter,
although presumably more accurate, is numerically much
more demanding, particularly in the context of the HNC |n order to determine the ion-ion and ion-electron pair
theory developed in Sec. V. For the sake of simplicity, it isdistribution functionsgy;(r) and g,,(r), we resort to Per-
natural to seek the “optimum” value of, which would lead  cus’s identification of the latter with the spherically symmet-
to the best agreement between the results based on the, normalized density profilep;(r)/n; and p,(r)/n, of
kinetic-energy functional§32a and(32b). A possible crite-  jons and electrons in the “external field” due to one ion
rion is to seek the value of that matches the ground-state assumed to be held fixed at the ori§i#j. The dimensionless

V. ION-ION AND ION-ELECTRON CORRELATIONS

energies: potentials¥ ,(r) appearing in Eq(16a are correspondingly
B(uy+2Z2Ir) and B(u,—Z/r). Adopting the approximate
Eo=Ex+Ec+Ex ion-electron functional defined by Eq&7)—(31), with either
a a Eqg. (32a or (32b) for the electron kinetic energy, the com-
:EK_ZWJ po(0)r dr—27rf po()®(r)radr bination of the four equation& 63, (16b), (213, and(21b)
0 0 forms a closed set for the calculation gfi(r), gi(r),
a c14(r), andc,(r). The DCFc,,(r) that enters the OZ rela-
+C><47Tf [po(r)]*32dr, (41  tion (21b is uniquely determined by the choi¢81), with
0 the LDA form (35) for Ex, namely, according to Eq$16b)
and(18),
whereE is calculated from either E4323 or (32b) andE
denotes the total Coulomlpotentia) energy. This yields S Enl p2]+Exl p2]}
A~0.3 atr,=0.5 and\~0.70 atr =1. Ground-state ener- KeTCor—r')=———= ) opa1)
gies are listed in Table I, together with the corresponding p2 P2
values of the pressure, as deduced from the virial theorem 4 S(r—r")

TS T W

ny
P_§[2EK+EC+EX]' (42) Note that within the present approximation for the free-
energy functional, the third OZ relatiof21¢) is not needed

One can notice that the energy and pressure values predicté@ close the system. Substituting Eq&7)—(29) into Eq.
from either Eq.(329 or (32b) are quite close. Note that the (163 for a=1, Percus’s identification, together with the OZ
predictions of the ion-sphere model may be looked upon agelation(21a), leads directly to the HNC closure equation for
representing approximately the zero-temperature limit of the11(r):

ion-electron plasma, since each ion is assumed to be held

fixed at the center of its sphere. It is interesting to compare gu(r)=expg—Buy(r)+hy(r)—c(r)}, (44
our predictions to those of a simple IS modél, where

electron polarization is completely neglected, so that theiwherev (r)= ¢, (r)=2Z/r.

contribution to the internal energy reduces to that of a uni- Similarily, substitution of Eqs(28)—(30), (31), and(323
form electron gas occupying the volume of the IS. The totainto Eq. (168 for a=2 leads to the following integro-
energy and the virial pressure obtained from this model arglifferential equation, which generalizes E(37) to the
shown in Table I. The difference between the “rigid” and present, multi-ion case:
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o3 with rg, but is independent df (zero-temperature limit An
+3Cxlpa(r)] alternative criterion is based on the observation that linear-
response theory yields an adequate description of electron

ﬁHPz'(r)r_ 2pp"(r) 4 p2'(r)
8 (| par) po(r) r pa(r)

4 s , - screening at very high densities;&1), where the degener-
+3Cxlpa(r)] —f CiAr—r')— = pa(r')dr ate electrons are only weakly polarized by the external po-
tential due to the ionic charge distributi¢id]. The mean
=u,—D(r), (45 response of the Fourier component of the electron density to
) . the latter is
where the electrostatic potential
r! r’ p2(K)={pa)2=x2(K) p1xv 1K), (50
d(r)=—vq(r)+2 ﬁl_(r,)|dr’— |[;2—(r')|dr’

(46) where p,(k) is the FT of the electron density profil®),
which is obtained by averaging the FT of the electron density
with v1,(r)=¢,(r)=—2Z/r, is a solution of Poisson’s equa- operator(3) over electronic degrees of freeddsymbolized

tion by ( ),) for a given ionic configuration characterized by the
5 Fourier componenElk of the ionic density operator. For
B"(r)+ = &' (r)=4m[ py(r) — Zpy(F)] (47)  T's<1, local-field corrections are quite negligible, so the sus-
r ceptibility y,(k) is well approximated by the random-phase
satisfying the boundary conditions approximatiori 25]
lim rd(r)=2, (483 . X (k)
r—0 x2(k)= AZ—A(O), (51
1-vAk) x5 (k)
¢’ (r=R)=0. (48b

] ) . Where)}(zo)(k) is the free-electron susceptibility, given by the
Ris the radius of a sphere around the central ion, chosepinghard function(23). The resulting expression for the ion-

sufficiently large for the density profiles to have reachedgjectron PDF within the linear-response approximation reads
their bulk values; andn, within a given accuracy; in prac- [14]

tice, R was chosen to be about ®Qin the numerical calcu-
lations. 1 1
Equation (45), with p,=n,g;,(r), provides the second NgiN(r) = ——3 f dke'™* "= (p1pa_i)
closure relation. The associated OZ relations are given by (2m) N
Egs. (229 and (22b) in their k-space representation. In the 1 o R
Appendix some details are given concerning the iterative so- ~ a3 f dke™ " x,(K)S1i(K)v15(k). (52)
lution of the closed set of equatiorid4), (45), (228, and
(22b.

A convenient but uncontrolled shortcut is provided by the
mean-field approximation

S;1(k) is taken to be the structure factor of the OGHth
electrons just providing a uniform backgroynd order to
obtain gq,5(r) consistently to first order in the ion-electron
7 coupling. A is now adjusted so that the first minimum of
KeTCiAr)~—v1r) =, (49)  gh(r) coincides with that ofgiX(r). We found that this
procedure reproduces the overall structure of the electronic
which greatly simplifies Eq(45), since the latter now con- PDF better than a direct fitting by minimization of the mean-
tains only the unknown functionsp(r)=n_,g.(r) square deviation because of a slight dephasirg;}g(f) with
(a=1,2). With the ansatz49), only three out of the four respect tayi;(r) that appears at=a; for \<1. The fitting
equationg44), (45), (229, and(22b) are needed to close the to the linear-response result is justified rgt=0.5, where
system, but the latter is no longer self-consistent. For the&lectrons are only weakly polarized by the ionic charge dis-
sake of a comparison with the fulkelf-consistenttheory, tribution. The optimization procedure yields=0.41, nearly
we have solved the set of equatio@®)), (45), and (223, independently of". This value will be kept throughout the
assuming49). The results from this set will be referred to as subsequent calculations. A similar fitting carried out for
“mean-field” theory. They generally provide the input for rs=1, where linear response is much less justifibd], leads
an iterative solution of the full, self-consistent theory. to an optimum value\ close to this adopted value of
For the latter, we have systematically adopted the simpleny, =0.41. Explicit calculations of the pair structure were car-
Thomas-Fermi plus square-gradiefTF-W(\)] kinetic-  ried out forr¢=0.5, 1, and 1.5 along two isotherriis= 10*
energy functional32a rather than the more acurate Perrotand 3<10° K and along a constant coupling pathi< 10).
functional (32b), which greatly complicates the numerical  The relative inadequacy of the mean-field approximation
work. This leaves open the choice of the optimum value ofembodied in Eq.(49), relative to the full self-consistent
the parametek in Eq. (329. An energy criterion within the theory, is illustrated in Fig. 2, where the ion-ion structure
ion-sphere model was proposed in Sec. IV. Equating thdéactors are shown. The observed differences, particularly at
ground-state energies derived from the two kinetic-energgmall k (which governs the equation of state via the com-
functionals(323 and(32h) leads to an optimum that varies  pressibility equatioy are sufficiently large to warrant com-
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FIG. 2. S;;(k) from the mean-field approximatiaflotted ling
compared to that obtained by the full self-consistent theeo}id
line) with A =0.41.

FIG. 4. S;4(k) from the self-consistent HNC-TFW theory
(A=0.41) versuka,; along the pati”=10 forr =0.5(solid line),
1 (dotted ling, and 1.5(dashed ling

p!gte self-consistent ca_llculatlons throughout, despite the SiQiithin the present theoretical framework.
nificantly larger numerical effort.

- Results along th@=10" K isotherm are shown in Figs.

Results along thé' = 10 path are shown in Figs. 3-5and g_g ~ A5 expected, the ion-ion structure, represented by
are Compafed with Chihara's quantum HWHNC) results g14(r) in Fig. 6 andS;4(k) in Fig. 7, diminishes dramatically
where ayaﬂablg[?]. The quahtat!ve andenues are as ex- asrg increases, i.e., with increasing electron screening. The
pected, in particular the dra}ma_'uc p|||ng up of the eIectronHNC results forr;=0.5 exhibit slightly less structure than
densny near the protons W'th Increasing, as shown by 46 ap initio molecular-dynamic§MD) data[14], as might
91(r) in F|g_. > F|gur_e 4 exh|b|_ts strongly enhanced I_ong- be expected from HNC theory. The enhancement of long-
wavelength ion density fluctuations ag Increases, Wh'Ch. wavelength density fluctuations a{=1.5 is again very sig-
may be interpreted as precursors to atomic recombinatio ificant, as seen from Fig. 7. The HNC results fp(r)
Le., of a p_Iasma phase transitipR6]. Note, hov_vever, th_at agree well with theab initio MD data for ion-electron dis-
the formation ofH, molecules cannot be easily descr'bedtancesrzo.Sa. The large differences at shorter distances
result from a combination of two errors: The MD data, which
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FIG. 3. gy4(r) from the self-consistent HNC-TFW theory r/a,

(N=0.41) versus/a; along the path" =10 forr =0.5(solid line),
1 (dotted ling, and 1.5(dashed ling The QHNC results of Chihara FIG. 5. Same as Fig. 4, but representing(r) versusr/a;. The
[7] are also shown at,=0.5 (@) andr,=1 (A). QHNC results of Chiharg7] are also shown at;=0.5 (@).
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FIG. 6. g14(r) along the isothernT=10 000 K forr;=0.5, 1, FIG. 8. Same as Fig. 6, but representomg(r).

and 1.5. Curves for differemt, are denoted as in Fig. 4. Also shown

are results from the MD simulatiofi4] for r=0.5 (@). ment of Sy;(k) at smallk. We are clearly in a situation

where a naive electron screening picture is insufficient to
are seen to have zero slope at the origin, are strongly affecteskplain the observed behavior, which may be, loosely speak-
by the energy cutoff in the plane-wave expansion of theing, associated with a plasma-insulator transition.
Kohn-Sham orbitals, while the HNC results, although they
correctly exhibit a nonzero slope, do not satisfy the exact
cusp condition, which holds only if the choide=1 is made VI REDUCTION TO AN EFFECTIVE
in the square-gradient term. ONE-COMPONENT SYSTEM

Finally, Figs. 9-11 display the results for the lower- |n asymmetric binary mixtures it is often instructive and
temperature isotherii=3x10° K. The ion-ion pair struc- convenient to reduce the initial two-component system to an
ture forrs=0.5 andr =1 [whereg(r) agrees well with the  effective one-component system involving only the properly
MD data, although the HNC results appear to be slightly‘dressed” particles of the larger or heavier component by
more structured in this cab®oks again as expected, but the integrating out the degrees of freedom of the smalighter)
results ar = 1.5 do not follow the pattern observed at higher species. This is a customary procedure in the theory of met-

temperature since they exhibihore structure than their als, where averages are taken over the ground state of the
r<=1 counterparts. There is once more a clear-cut enhance-

1.5
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FIG. 9. Same as Fig. 6, but along the isothéfm3000 K. The
FIG. 7. Same as Fig. 4, but along the isothéFm 10 000 K. @ denote the MD simulatioh14] results forr=1.
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wheren=n; . By identifying h(k) with hyy(k) (the fluid of
pseudoatoms is required to have a pair structure identical to
that of the ions in the initial ion-electron plasjnane arrives
immediately at the following expression for the DCF of the
effective fluid in terms of the correlation functions of the

1.5 ion-electron plasma:

nohya(K)Cya(k)
s 9

S,(k)

c(k)=cqy(k) +

To extract the effective pair potential between pseudoatoms,

veri(r), one compares the exact closure relationsdgp(r)

0.5 andg(r), namely,

P O B U L B A L R S B B S B B R

guu(r)=exp{— Bv1a(r)+hyy(r)—cqy(r)+Byy(r)},
(564

~

T
!
\

Lo e 0 e o by s e

[«
8}
—
(=)
[
(o)}

g(r) =exp{— Buen(r) +h(r)—c(r)+B(r)}, (56b
k*
o whereB(r) andB,(r) are the(unknown bridge functions
. _ associated with the one and two-component representations
FIG. 10. Same as Fig. 4, but along the isothdrm3000 K. of the plasma. Making once more the identification
conduction electrons, for any given configuration of the ionsg(r)f%ﬂ(r)’ ?r?d t;n_zkmgf thet_ reasonal_:)lef aststunl:ptlotn tbhat
leading to an effective, screened interaction between dress&%l(r)._ 11(r) ( e bridge functions are in fact taken 1o be
ions or “pseudoatoms’[27]. A formal reduction of the ini- ' _ent|caIIy zero in the HNC approxmatlaznone arrves,
tial ion-electron system to a one-component system oYv't.h the he]p of Eq(55), at the expression for the effective
pseudoatoms can be carried out by a simple manipulation i potential
the Ornstein-Zernike relatiof28], and an expression for the A8 (K
effective pair potential between pseudoatoms can then be B oK) = B0 14(K) — N2h1o(K) C1o ). (57
derived from the HNC closurf29]. The FT of the OZ rela- € S1a(k)
tion (219 reads i ) )
With the help of Eq.(21b), one easily checks that this ex-
hy4(K) = C1(K) + Nqh14(K) C1y(K) + Nohiyo(K) Cra(K). pression for the FT of the effective potential is identical to
(k) =12k + Nshasho) ool 2Niak)Caz(k) that derived by Chiharg29]. It can be shown from the OZ

. ) . relations(22b) and(220) that if h,,(k) is approximated by its
Thr?] c2rr§tspontd|rrr119 fOZ r(e;latlto r:n f?r the effective ON€jinear response limit52), thenf:lz(k) reduces to the mean-
component system of pseudoatoms 1 field limit (49). Substituting these results into E@7), the
oL A P familiar temperature-independent expression for the effective
h(k)=c(k)+nh(k)c(k), (54) ion-ion potential is recoverefd 9], namely,

12

~ “ “ 47 1
Verf(K) =0 12(K)[ 1= x2(K)v 1K) = a %' (58)
where €,(k) is the dielectric function of the homogeneous
electron gag25].

The HNC results for the pair structure of the ion-electron
F\ plasma, presented in Sec. V, have been used to compute the
= state-dependent effective pair potential. The variation of
: : ver(r) With rg along the isotherm3 =10* and 3<10° K is
i 0 02 shown in Figs. 12 and 13. As expected, the range of the
N effective interaction between dressed ions is seen to decrease
dramatically asrg increases. The importance of nonlinear
screening as well as of temperature effects is illustrated by a
comparison with the effective potentidd8) valid in the lin-
ear screening regime, which is identical for the two tempera-
tures. At the lowest densityr{=1.5), the nonlineap .x(r)

L exhibits a shallow attractive well at the higher temperature
and a marked oscillatory behavior at the lower temperature;
the latter should not be confused with the familiar Friedel
oscillations, which occur at larger distances and are a conse-
guence of the singularity of the Lindhard functi¢®3d) at

10

=TT
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r/a,

FIG. 11. Same as Fig. 9, but representqg(r).
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B ™ A LB e classical systems, there exist three routes to thermodynamics,
} starting from the distribution functions, namely, the energy,
virial, and compressibility routd®]. The latter still holds for
metallic systems composed of classical ions and degenerate
electrons, as considered here; for a hydrogen plasma, the
isothermal compressibility follows accordingly frof@]

lim Sll(k):“m Slz(k):“m Szz(k):nlkBTXT
k—0 k—0 k—0

BV ae(r)

(59

In practice, the structure factors calculated within the
HNC-TF plus von Weizszker (TFW) scheme of Sec. V are
extrapolated t&k=0 and the values of according to Eq.
(59) are listed in Table Il. The equation of stafgressure
versus density along isotherjmequires a numerical integra-
] tion of X{lzn(aP/an)T. Turning to the energy route, it is
I T T I clear that the(purely Coulombig¢ ion-ion and ion-electron
1 2 3 4 5 6 contributions can be calculated frogq,(r) andgq,(r). The
r/a, HNC-TFW theory does not yield,,(r), which would allow
the electron-electron Coulomb energy to be evaluated, while
FIG. 12. Effective ion-ion pair potentiab.(r) reduced over the kinetic and exchange contributions cannot be expressed
kgT along the isothermiT=10000 K for r¢=0.5, 1, and 1.5. in terms of pair distribution functions alone. Approximate
Curves for differentrs are denoted as in Fig. 4. Also shown are estimates of these contributions are obtained by substituting
results from the linear-response the@gg. (58)], with @, A, and* p2=N,01,(r) into the energy functional defined by Egs.
forrs=0.5, 1, and 1.5, respectively. (31), (323, (34) and(35), restricting the domain of integra-

o o tion to the volume of an ion sphere. The proposed expression

the strong ion-ion and ion-electron correlations at low tem-

peratures and may be a signature of an incipient plasma- E 111 12 2 o2 o
insulator transitiorf15]. N, egtectectextectey, (60)
VIl. THERMODYNAMIC PROPERTIES where
Explicit calculations of thermodynamic properties of ion- 5&: 3kgT, (613

electron plasmas within the DFT framework have not been
considered so far, except within the ion-sphere m¢adel. o
This is due to the difficulty of deriving exact and operational €= 277n1f v1(F)[gya(r) —1]r?dr, (61b)
expressions for the internal energy, the pressure, etc., from 0
the pair distribution functions obtained in Sec. V. For purely

€é2=477n2J':012(r)[912(r)_1]r2drv (619

3 TI I..:I I T T T ; I T T T T I T T T T I T T T T
L . 2 4 5/3,2
L ‘ eg=4mCyn, . [g1r)]>"r=dr
2 :- .o TN fal [giz(r)]z 24 619
e —n —————r~“dr,
; 2 2 %)o " gudn)
3 i ..o n 2
] = % 2 ' ’
s 'l eé2=—f drf dr'vaa([r=r'Dlg1r) — 1]
o | 2 r<a; r'<ap
i X[g1ar')—1], (618
°I o - 2 4 43,2
I i EX:47TCXn2 0 [glz(r)] r dr. (61f)
-1 T T The same approximation leads, via the virial route, to the
1 2 3 4 5 6 expression for the equation of state
r/a,
P =1+ ! [ell+ €2+ 2€2+ €2+ €2]. (62
FIG. 13. Same as Fig. 12, but along the isoth@m3000 K. nkgT 3kgT- ¢ °C Ko=e =X
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TABLE Il. Isothermal compressibility)(T) of the hydrogen plasma @t=3x10° and 10 K, for r,=0.5,
1, and 1.5. Columns 4—6 are obtained by a numerical differentiation of the virial equédi®)nand (62),
while the values of columns 3-5 are based on ion-sphere méefel$able | for notationsand those of
columns 6[denoted HNQ@v)] are based on our HNC-TFW theofgf. Egs. (60)—(62)]. The last column
[HNC(c)] representsyt given by the fluctuation relatio(b9).

xt (a3/hartree)

T (K) re 1S(0) IS(P) IS(W) HNC(V) HNC(c)
104 0.5 0.1416 0.1423 0.1402 0.1353 0.1489
3108 0.1416 0.1423 0.1402 0.1470 0.1495
10t 1.0 6.725 6.712 6.646 5.539 8.418
3X10° 6.725 6.712 6.646 6.109 17.83
10t 15 99.04 101.2 98.30 60.54 1215
3X108 99.04 101.2 98.30 75.62 506.3

Estimates of the thermodynamic properties based on these thek—0 limit, and the marked oscillatory behavior of the
approximate expressions are listed in Table | and compareefffective ion-ion pair potential shown in Fig. 13. A further
with the predictions of the simple ion-sphere model intro-indication is the rapidly increasing difficulty of achieving
duced in Sec. IV. Compressibilities obtained by numericalconvergence of the HNC-TFW equationsrasncreases be-
differentiation of the virial pressuré62) are compared in yond 1.5. Such a lack of convergence is usually associated
Table Il with the compressibilities calculated from the exactwith the proximity of a phase transition.
fluctuation relation(59). The agreement is satisfactory for ~ Despite many efforts in that direction, the plasma-
r<=0.5 andr,=1 at the higher temperatur@ £ 10* K), but insulator transtion in hydrogen is far from being understood.
deteriorates forr,=1 at the lower temperatureTE3  Because in its present form the DFT theory put forth in this
X 10° K) and generally for ;=1.5, whereyt increases rap- paper cannot properly account for the molecular phase, the
idly. This large discrepancy may be ascribed to the approxiobserved low-density behavior can only be looked upon as
mate nature of the virial expressi@¢d2) for the pressure and indicative. To obtain a clear picture of the scenario of the
to the familiar thermodynamic inconsistency of the HNC plasma-insulator transition, we plan to consider the simpler
closure[9]. situation of spin-polarized hydrogen, which excludes the for-
mation of H, molecules from the outset; this case will re-
quire only minor modifications of the present theory. We
also plan to extend the DFT theory to H-He mixtures under
The present paper introduces a simple DFT of ion-very high pressures, for which a demixing transition has
electron plasmas, which avoids using the Kohn-Sham orbitbeen predictedi31,32 and for whichab initio MD data re-
als and yet compares favorably with earlier formulationscently have become availabl83].
based on the latter. The good accuracy of the theory, evalu-

VIIl. CONCLUSIONS

a}ted rglative to the_ scarcely availatmlb'initio MD s'imula- ACKNOWLEDGMENTS
tions, is due to the introduction of gradient corrections to the
TF theory, provided the crucial prefacthris determined by The authors are grateful to D. Chandler and J. Kohanoff

a confrontation with the predictions of linear-response theoryor their help in the early stages of this research and to G.

of very high densitiesr;=0.5). The theory is easily imple- Pastore for providing an efficient HNC code.

mented numerically. An attempt has been made to derive the

equation of state of the ion-electron plasma from these cor- APPENDIX

relation functions; the calculated energies and pressures are

surprisingly close to the predictions of the much simpler ion- We give here some details concerning the numerical so-

sphere model, which ignores ion-ion correlations and henctution of the self-consistent theory for the pair correlations

cannot provideg4(r). displayed in Sec. V. The closed set of equations containing
The pair structure calculated at the lowest density considthe unknown pair functioniyo(r), hyx(r), c1a(r), ci(r),

ered in this work (;=1.5) exhibits a marked qualitative and c,y(r) are given by Eqs(22a), (22b), and (43)—(45),

difference between the high- TE10* K) and low- complemented by the definition of the potentiar) in Eq.

temperature T=3%10° K) results. Although the present (46) and the Poisson equatiad@7) obeyed byd(r). We

theory cannot, of course, account for genuine bound statesptice also that Eq(43) gives directlyc,,(r) in the LDA

the low-T data may be interpreted in terms of an incipientapproximation.

plasma-insulator transition, where the insulator phase con- To start the iteration loop, an initial guess ofy(r),

tains recombined ion-electron pairs, i.e., atoms. The “symph,(r), andy(r)=hq4(r) —cq4(r) is made. A convenient ini-

toms” of such a recombination are the enhanced ion-iortial guess for ci5(r) is its mean-field approximation

structure observed at,=1.5, relative to that obtained at ci,(r)=—Buv,(r). The following steps are then taken at the

higher densities, the significant enhancement of long{n+1)th iteration.

wavelength ion density fluctuations, as evidencedshyk) (a) The HNC integral equatiofd4) is solved by following
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the numerical method proposed by IN8#], except that we then to the solution of the finite-difference equations. We
use here the Anderson mixing schefi3®]. TheR space is have divided the system lengtR into segments of size
discretized with segments of siZ&=0.05,. Convergence h=R/2048=0.02%, in order to have a good resolution of
is achieved if the norm of the difference ¢{r) (as defined Egs.(45) and(46). The tolerance parametéontrolling the

by Ng) between two consecutive iterations is less thanconvergenceis set to 10 This step gives ug{} 2(r) in
107 1°. This step yieldh{3"(r) andc{3V(r). the iteration process.

(b) With g44(r)=hy(r)+1 obtained in(a), we solve the (c) The Fourier transforms oh{]"")(r) and h{%"¥)(r)
coupled second-order ordinary differential equatidds)  obtained by(a) and(b) are injected into the right-hand side
and (46) for gi5(r) and the auxiliary function®(r). The of a slightly rearranged form of the OZ relati¢22b), i.e.,
boundary conditions for the potential functioh(r) are
given by Egs.(483 and (48b); those forg,,(r) are simply R n2ﬁ12(k) 1
lim,_ o r2g.x(r)=0 andg,,(r =R) =1, whereR is the radius Cio(k)= S (K { 0
of the larger sphere surrounding the central i&~(50a,), 1) [ x27 (k)
representing the boundary of our system. The numerical . . _ . . .
method used is a “relaxation method'36] consisting of The sel.f—con3|stency_ of t(rrwﬁls)olutlons is achleved if the right-
first replacing the ordinary differential equations by approxi-hand side[representingcy; *(r)] and the input from the
mate finite-difference equations and then solving the lattePreceding iterationc{?(r), agree within 0.01%. Otherwise,
using a multidimensional Newton’s method by taking intoa mixing of c{3"* andc{) is processed and the iteration
account the boundary conditions. The initial guess “relaxes”loop returns to pointa).
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