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It has been observed that the dilution of synaptic connections in neural networks has relevance to biology
and applicability to engineering. From this viewpoint, the effects of synaptic dilution on the retrieval perfor-
mance of an associative memory model with a honmonotonic response function are investigated through the
self-consistent signal-to-noise analysis. Compared with a fully connected neural network, for which a non-
monotonic response function is known to achieve a large enhancement of storage capacity and the occurrence
of the superretrieval phase leads to an errorless memory retrieval, the nonmonotonic neural network with a
random synaptic dilution undergoes a considerable decrease in storage capacity. It is shown, however, that by
employing a systematic dilution technique characterized by a nonlinear learning rule, in which larger connec-
tions are retained, it is possible to significantly reverse the undesirable rapid reduction in storage capacity. It is
also proved that the superretrieval phase is structurally unstable against the dilution of synapses.
[S1063-651%98)04801-9

PACS numbd(s): 87.10+e, 89.70+c, 05.90+m

INTRODUCTION the monotonic neural networks, the noise arising from the
interference by nonretrieved memory patterns prevents error-
Tess memory retrieval. The occurrence of the superretrieval
R . rBﬁase is robust against the introduction of biased memory
sources of inhibition in b_|olog|c_al neur.al networks, a_md the atterns, asymmetric synaptic connections memorizing the
effective neural processing unlt's, ,W,h'Ch may consist (,)f resynaptic and postsynaptic activity, and the profile of
small number of excitatory and inhibitory neurons, possiblyyansfer functions including positive-valued orjéd]. How-
exhibit more complicated response profiles to externabyer the extent of the superretrieval phase in the phase dia-
stimuli. To explore the potential abilities of such neural SYs-grams depends significantly on the profiles of nonmonotonic
tems in biological information processing, nonmonotonic reresponse functiongl2]. Nonmonotonic neurons, which are
sponse functions were introduced to associative memoryesponsible for a considerable reduction in the number of
neural networkg1,2]. In the models, an output of each pro- spurious states, are also useful for the retrieval of temporal
cessing unit, or “neuron,” decreasdicreasers for rela-  sequence$l3] and practical applications to real-world pat-
tively large(smal) values of membrane potential rather thantern recognition by an electrically implemented neural net-
showing a sigmoidal response profile. works[14].

Several noteworthy features were found in the nonmono- Since information about a memory pattern is retained by
tonic neural networks, for which the existence of a Lyapunovmany synaptic connections, the performance of associative
function ensuring network stability is not guaranteed. Whermemory models is robust against the damage to neural cir-
standard Hebbian learning is used to define a connectioauits. In fact, the problems of synaptic dilution and nonlinear
matrix with random memory patterns, the storage capacityearning rules such as clipping of synapses have been studied
increases to about three timgk3] that of the case where a for monotonic response functions in stochastic Ising spin
step function[4] or a sigmoidal response function is used networks, including the zero-temperature cf$6—17. If
[4—6]. Such an enhancement also occurs for sparsely codexynaptic connections are eliminated at random while the con-
memory pattern$?7]. If synaptic connections are optimally nections’ symmetry is maintained, the storage capacity drops
learned, the storage capacity is enhanced by a similar nwalmost linearly with the number of eliminated synapses, im-
meral factor{ 8] compared with an optimally learned mono- plying that a neural network can still work as an efficient
tonic neural networK9]. Furthermore, in a certain equilib- associative memor{15]. Diluting synapses asymmetrically
rium state termed “superretrieval phase,” the inpyts  was investigated analytically only in the case of extreme di-
local fieldg of individual neurons do not suffer from noise lution [16,18.
component$2,10] even under extensive memory loading. In It is tempting to assume that the behavior of nonmono-

Single neurons display monotonic increases in firing rate
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tonic neural networks with synaptic dilution resembles that p

of monotonic neural networks, and accordingly their superior Tij=— 2 &rer, (6)
abilities would be expected to endure despite such damage. Vp i1

In this paper, we analytically and numerically examine how

the dilution of synaptic connections affects the performancé&ndCij
of a nonmonotonic neural network. We employ the self-
consistent signal-to-noise analygiSCSNA to investigate

the equilibrium properties of the neural network. Contrary to

the above expectation, the results show that the excellent
abilities exhibited by nonmonotonic transfer functions suffer
considerably from a random dilution compared with the per-
formance of a randomly diluted monotonic neural network.
In particular, the superretrieval phase is proved to be struc:
turally unstable for any type of synapse dilution. Conse-

takes its value as 0 or 1 with probabilities
P(cij=1)=1-P(c;=0)=c (0s=c=1l), (7

Cij =Cji 8

for symmetric dilution. For asymmetric dilutioie;; andc;;

are independently determined by the same probablhty distri-
‘bution. Moreover we can analyze a more general case, where
c,J andc;; have an arbitrary correlation such that

quently, we show how the deterioration of the retrieval abili- Cov(c;: ,cij)=k.Var(c; ) =k.c(1—c). (9)

ties of nonmonotonic neural network can be countered by b .

retaining large synaptic connections in the dilution. In this general case, the symmetric and asymmetric dilutions

correspond tdk.=1 andk.=0, respectively. Defining the
SCSNA for diluted neural networks loading level asy= p/N, and noting that Eq)5) is written as
The SCSNA starts from the fixed-point equations for the

dynamics of arN-neuron network: =N 2 gﬂg** 2 grer (10)

hi:;i JijF(h), i=1,... N, (1) we can rewrite the local fielti; for neuroni as
. aN aN N
or more conveniently h= 2 gﬂm + 2 E (c; _C)gﬂgrxj_axl,

e}
(11)

(2 J,ij), i=1,... N, 2
I wherem,, is the overlap between the stored pattéfnand

th ilibri tatex,
whereh; andx;=F(h;) are the local field of théth neuron € equilibrium St

at equilibrium and output activity of neurdn respectively. 1 N
Ji; stands for the synaptic connection from neujaw i. In m,=— 2 E4x; . (12
this study, the response function is assumed to be given by N i=

1 0<x<9 By substituting Eq.(11) into Eq. (2), we can easily see
' that x; can be formaIIy represented as a function of
F(x)=4 —1, —60<x<0 3 .
(x) 0. |x|>0 ® 5 ng”“m +(INC)ZeN SN (¢ —c)&élx;. Thus we
' obtain
for which the properties of a fully connected nonmonotonic aN
neural network were extensively studif?]. The parameter ( 2 &'m, + 2 2 (cij—C)ElElx; |,
0 can be regarded as a cutoff parameter for the membrane
potential. Random memory patterns are generated according (13

to the probability distribution -
with a certain functior(x) to be determined later.

P(¢'==*1)=3. 4 Let {&'} be the target pattern to be retrieved. Therefore,
we can assume tha;=0(1) ande=O(1/\/N)(,u>1).
In the following, we derive a set of equations for order pa-Then we can use the Taylor series expansion to obtain
rameters when the synaptic connections are randomly di-

luted. This analysis is valid for a generic response function 13 N o X
other than that given in Eq3). M.=N IZ §“F( 2 &'m, + e 2 2 (Cij—C)&/'E; x,)
Random dilution 1 N ” 1 N "
= — Moy \ _ T
The synaptic connections are given by N 2 gt um,+ Nc ;1 Xi
\/—C 1
Ji= e 0T (5) Xy ,Z‘. (Cij— C) £l El'x; (14)

whereT;; is a conventional Hebbian connection matrix for u>1, where
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aN
X#=F (E &m, +NC s E (cij— c)g.é,xj), XjHer = (E gm, +NC s E (cx—c f,kak),

vEp | # v#u Kk

(19 (19

V:#,u k#i,j

(16) (20)

(=F (Z Em,+ 2 E(C., c)g.f,x,), X =F (;ﬂ &M+ g 2 2 c,k—c)frfﬁxk).

1 N Substituting Eq(18) into the r.h.s. of Eq(14) and averaging
N E 1w (17)  the resultant expressions ov&f andc; shows that the last
= term vanishes. Thusp, can be expressed as

If the averages ovef(u>1) andc;; are taken in the right- 1 N
hand side(rhs) of Eq. (14), the last term vanishes. To show m, =1 > &x®+um,
this, the¢f* andc;; dependences of; are extracted fron; =1

before averaging is performed: 1 N
S Ky (1)
xj=x"" W+ ghm, E (Cijk—C)EFEEX, - ,
for u>1. Similarly, by using Eq(18), we can show that the
1 second term in Eq(11) is expressed as
+ — Ci —C)EVErX:
N 2, (Ci—CE& L N N e ati-o)
N Z E. (Cij—O)ErEx T ke — X .
N (G O)&r g x4, (18) (22
Equations21) and(22) give the following expression for
where the local field:
|
aN N
a(l—c) 1
hi=&m; — ax+ke —— Ux;+ N(l 0y E F(VE 6+ e 2, 24 (GO kak)
aN N
o 2 H2 (e o)gfF (E gm,+ o 2 2 (Cj—C)éj€ kxk)
pn=1 j#i V?ﬁ,u
aN N aN
+ & “F m,+ NG Cj X 23
o 26T 67 S ame e 3 3 o ogen 2
|
Note that the second term in E@3) arises from theth term Finally, the results of the SCSNA for the symmetric dilu-

of the summation over neurons, which results from substituttion are summarized by the following order-parameter equa-
ing Eq.(21) into the “naive noise’ termz Z¢fm, . Inthe  tions:
last term in EqQ.(23), we expandF Wlth respect to ¢;

—c¢). Then the lowest order term yields a noise term that has
a vanishing mean. The higher order terms can be dropped m=< DZ§Y(Z §)> (26)
from Eg. (23), since they only yield vanishing means, vari- 3
ances, and cross-talk correlations with the third term, which
is another noise term. Thus, we finally obtain
q=< DzY(z §)2> (27)
1 1 —c N 3
hi=§im1+ozi+ m-i—kc—aUXi, (24)
,  of a(l-c) U:< DzzY(z 3] > (28
o _(l—U)2+ c d, (25 - P
where the noise terms in ER3) are replaced by the Gauss- 1 2
ian noise oz;, with z; obeying the normal distribution Dz=dz — ex;{ _ _)’
MO,D. V2w 2
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where(---), implies averaging over the target pattern. The X, |x|<é
effective response functiovi(z; &), or F(x), is obtained im- fx)= 0, |x|=54,
plicitly from F(x) by solving

(36)

the connections in the ranges-fo,— 8], [5,) are elimi-
1-c nated(“top-cut-off dilution” ). The cutting rate is easily ex-
+ ke — aUY(z;g)). pressed in terms of: e.g.,

(29

1
Y(z, &)= F( Em+oz+ 1-U

R.= ﬁ:Dx, (37)

It is remarked that the order parametéris well defined for
nondifferential response functions in the final expression
given in Eq.(28). The order-parameter equations for thefor the bottom-cut-off dilution. We note that for the above
asymmetric dilution can be obtained simply by omitting thetwo cases
c-dependent term in Eq29).

Sompolinsky showed that adding symmetric noise to syn- J,w

aptic connections Dxf(x)=0, (38

N . . . . .
< which is assumed in the following analysis.

‘]'IZN Zfl e+ o, (30) As a first step, we apply a naive signal-to-noi&N)
analysis to the nonlinear learning rule E84) in order to
) estimate the signal and noise terms. Assuming that the state
5—-~A<O A_) S5 31) {x;} with componentsx;=¢' is stable and thatF(u)
g N T e =sgn(), the local fieldh; in the equilibrium{x;} is

is equivalent to diluting the connections symmetriclli].

We note that such an equivalence can also be proved by theh J. &= £ (T F(T() gl
SCSNA in the general cases covered by F9j, including qun i Z ga41 Ty 2 (T4,
the asymmetric dilution case to which the conventional rep- (39

lica calculation is not applicable. In the general case, the
variancesA? of the synaptic noise equivalent to the dilutions p
are found to be )= E et (40)

| J T

A2= *(1-¢) , (32  The first term in Eq(39),
C
1 N
A2 S X EeEt (T =ag, (41)
k=k, where Coysj,5;)=k 1. (33 N =i
from Egs.(24) and(25). JEJ Dxf’(X)=f Dxxf(x), (42)

Systematic dilution
és the signal, while the second one is the noise, of which the

The systematic dilution of synaptic connections can b
dnean and variance are

achieved by introducing synaptic noise with an appropriat
nonlinear functionf(x) [15]:

" 2 f(T{P) & =0, (43)
p
\/_ N 27

Note thatT;; obeys the normal distributionv(0,1) for p <_ E f(T<1>)§J) =ad 2, (44)
= aN—< [in the finite loading case, i.ep~0(1), another N {7 ]
treatment is need€d 5,19,2Q]. If we definef(x) as

Cx K 3 2= pxcor, @9

(x)= 0, |x|=4, (39

respectively, wher&[ -- -] implies averaging over all of the
the connections in the rande- 8, 5] are eliminatedwe call random memory patterds!'}.
this case “bottom-cut-off dilutiony [21]. On the other hand, According to this naive S/N analysis, we rewrite the con-
if nections as



57 RANDOM AND SYSTEMATIC DILUTIONS OF SYNAPTLC . .. 2099

J < Jp J o 13 N 12
L= mety | " f(T ) — — Hgp =— — iy (Tii) ()
= 2, S (T 2, & =5 2 X 2 Mt g 2 )
Vp J N
= UTi Ty —IT 1} (46) — = > gy
N iZi Xi
The following derivation suggests that the residual overlap 1 N N
m* for the first term in Eq(46) is enhanced by a factor of N Z §{‘X§")+Jmﬂu— N(l 30) Z EExim (53

1/(1—U), while any enhancement of the last part is canceled

because of the subtraction. It also implies that the last parft

corresponds to the synaptic noise. or u>1, where
For the SCSNA of the nonlinear learning rule, we obtain

x{“'=F (JZ &m, +@E [F(Ti) = 3T ]an),
p \/B vFE R j#
h=32 &m,—adx+- 2 [F(T)=3T;lx;. (54)
u=1 J#i
(47)
: - f(,u)_ : \/B ()
In the last term in Eq(47), the output activityx;=F(h;) 192 gm N [f(Ti#)—JT, ]X :
(T“) vE U J#I
generally depends on the connectibn. We deflnex by (55)
subtractingT;; dependences from; at the leading order:
1 N
O VP U= 2 %™, (56)
xj=x§T“)+xj i) N LT = Tjilxi, (48) NS
where (
Ti =Ti— T & §“ (57)
g - 3P pgr -7 49 itut i i
X =Ry (T =Tyl | (49 Substituting Eq(53) into Eq.(51) and averaging E(q51)
over ¢ (u>1) yield
W(Ti)_ e _‘/_5 _ N
Xj '=F (hi N LFCTii) Tii]xi)- (50 hi=J§ﬁm1+%§ [F(Ty) = 3T, X~ adx
j#I

Substituting Eq(48) into Eq. (47) gives T
x.E [F(Ty) = ITy RT3 = ITx,

p Jp
P (Tip) p N
hi=32 &'m,—adx+— > [F(T)-JIT;lx 1
= N = ! | - w (1)
u=1 J# +N(l—JU) MZZ §| jzl gJ XJ
o
x> [FH(Ti) = IT (T — 3T Ix i) N
N ! ! ! at =J§i1m1+wp st&l [f(Tij)—JTij]X}T”)
(51
J T2 2
Then Eq.(51) and the relatiorx;=F(h;) indicate that the 1130 +(J =3 %) |aUx;
output activity can be formally expressed as
,u ,u (M
=F le gm,+ ; [F(Ti)—IT]x; " )
a ) (52) The second and last terms in the rhs of Esf) yield the

Gaussian noise which has a vanishing mean. The variance of

. . the noise term is given b
Let {1} be the target pattern. We substitute E5Q) into g y

the definition of the pattern overlap and expand the resultant )
expression by&‘m, (u>1), which has the order of 5 J

= T2_ 92
O(1//N). This leads to o =la=gur e (59



2100 MASATO OKADA, TOMOKI FUKAI, AND MASATOSHI SHIINO 57

Thus, after rewritinggil—>§i and m;—m, we finally ob- 0.4 - - '
tain the following implicit relation for the effective response
function: r 0=1 ——

03[ 0=2 ----e- 1

U3 +32—JZ}QUY(§;Z)), i |

(60) &

Y(z;§)=F(§m+az+

wherem, q, andU are given by Eqs(26)—(28).

Reduction in storage capacity “~~\\

The equilibrium properties of the partially connected non- 0.1
monotonic networks can be obtained by numerically solving
the equations for the order parameters. Accordingly, we use
an additional rule, which is similar to the Maxwell rule in the
thermodynamics, to solve the effective response function in 04 02 04 06 08 1
terms ofz. We do not repeat the detailed analysis here since
it can be found in Ref[2]. The order-parameter equations @) Re
are studied for two values @ i.e., /=1 and#=2, to com-
pare the effects of synapse dilution between different extents
of nonmonotonicity. For the latter value, the response func-
tion can be regarded approximately as a step function owing 1F ]
to the fact that the distribution range of the local fieldsis | —===mm e
practically limited. The choic&=1 gives the smallest pos- \
sible value, since the storage capacity obtained by the
SCSNA for the fully connected nonmonotonic network tends
to be larger than the actual values obtained by simulations 065 =1 — 1
for <1 [10]. This discrepancy seems to imply that the SC-
SNA describes unstable fixed points of the nonmonotonic =2 =-=----
network for these values af 04r1 1

When the synaptic connections are randomly eliminated,
the symmetric and asymmetric dilutions yield almost identi-
cal results by the SCSNA. Therefore, the following only pre-
sents results for asymmetric random dilution.

Figure 1a) shows the storage capacity, of the non- 0
monotonic network ford=1 and #=2 as functions of the
cutting rateR.=1—c. In both casesg. decreases aR is (b) R¢
increased. However, the reduction rateaqfis small for 6
=2, i.e., when the response function is regarded as a step FIG. 1. SCSNA results fofa) storage capacity an) tolerance
function. On the other hand, wheh=1 and the degree of pattern overlap as a function of cutting ra®e when synaptic con-
nonmonotonicity is highg, decreases rapidly. For instance, nections are diluted randomly and asymmetrically. Solid and

a, becomes the half value of the fully connected case aflashed curves are for nonmonotonic response function with cut-off
RCZO 3 for=1. and atR.=0.6 for 9=2 activity =1 and 6=2, respectively. Random symmetric dilution
C . ’ C . .

gives results that are almost identical to those presented here.

gc

027

0 0.2 0.4 0.6 0.8 1

The values of the tolerance pattern overtaplefined in

terms of the local fieldh; as synapse dilution. The cutoff parameter is fixedéat 1 in
LN both cases. We see that the storage capacity for the bottom-
_ = 1 _ cut-off dilution remains much larger than that for the random
9 N Zl &sgrthi) G dilution. Indeed«. becomes half its value for the fully con-

nected case at a cutting rate as largeRas 0.75. On the

can also be easily obtained by the SCSNA and the results atgher hand, the reduction i, occurs much more rapidly for
shown in Fig. 1b) as functions oR,, for the two values oh,  the top-cut-off dilution than it does for the random dilution,
when the network is maximally loaded witla,N patterns. as expected.
The reduction rate ofj is also larger ford=1, but the dif- To confirm the results of the SCSNA, numerical simula-
ference between the reductions for the t@walues is not tions of the retrieval dynamics of the nonmonotonic neural
very large. Since the tolerance overlap is always close tmetwork are conducted for two cases, i.e., the random and
unity unlessR.~1, the quality of retrieved patterns is not bottom-cut-off dilutions. The results are shown in Fig&)3
significantly influenced by the dilution of connections in and 3b) for a., m, and the tolerance overlagp, respec-
both cases. tively. «. is obtained by evaluating the loading rates at

Similarly, . is shown in Fig. 2 as a function &, forthe  which the network succeeds to retrieve memory patterns
two types defined by Eqg35) and (36) of the systematic with approximately 50% probability. A trial is regarded as
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0.4 ' ' - - . ;
! bottom-cut-off 12
0.35 top-cut-off ~----- &c
1 ;-h-'--’-‘""w--‘--l-.t__,_‘ .+
o3f N 1T —
1 S
i Feo mec \"
0.25 _|‘| 038 _.__\_,;L.u-.u 8 %80 gg500
o | ——lC
S K ~——.—
0.2 “ 06" \\\ J
015f \ \
\ 0.4 & ]
L AN O
005t “\\ 0271 1
0 1 L [T O I ] 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Re (a) Rc
FIG. 2. Storage capacity obtained by the SCSNA for bottom- 12 ' ' " "
cut-off (solid curve and top-cut-off(dashed curyesystematic di-
lutions. gc
1 N fm b e - + + i anhalnl TS PR i
successful ifg is more than 0.96 after the network evolves . /,.x"\\‘
into a stationary state. It is found that the results of the 08 % o8 md & i
SCSNA fora, andg are in good agreement with those of the e
simulations. Relatively large discrepancies in valuesrof
between the results of the analytical and numerical studies 06]
are due to the fact that they vary significantly with the values
of a neara, . Taking this fact into account, we can conclude 04k o
that the discrepancies are at an acceptable level. ‘ ° . ¢
Instability of superretrieval phase 0zr 1
So far, the superretrieval phase has been found only for
associative memory models with nonmonotonic response 0o 0'2 0'4 0'6 0'8 ]
functions. In this phase, the noise from uncondensed ’ ’ ' ’

memory patterns in the local fields disappears, and conse- (b) Rc

guently an evoked activity pattern coincides with a memory

pattern without error. In the framework of the SCSNA, the FIG. 3. Comparison between the SCSNAIrves and simula-
occurrence of the superretrieval phase is indicated by th#on (plots) results for(a) random synaptic dilution ang) bottom-
disappearance of the variane® of the Gaussian noise in the cut-off systematic dilution. In both figures, solid, dash-dotted, and
solution to the order-parameter equations. From(E§., we  dashed curves show storage capacity, pattern overlap, and tolerance
see that|U|—= implies thato?—0 if the varianceA?, ~ pattern overlap, respectively, as a functionFaf.

given in Eq.(32) and which arises from the random synapse
dilution, is zero. This is indeed the case for fully connecte

: 2
nonmonotonic neural network2,10,13. However, forA gest thatr<eke (k>0) for this value ofA2. This implies

2 - . . - )
#0, o° never disappears for any retrieval state sigeel in  that the superretrieval phase never occurs when a small but
the state. This implies that the superretrieval phase iS Urfinite number of connections are eliminated.

stable against random dilution. The disappearance of the superretrieval phase can also be

Although ¢* cannot be zero due to the noise from theseen by numerical simulations. To this end, the distribution
synapse dilution, the noigefrom uncondensed patterns may P(h) of the local fields in the retrieval states is calculated for
still vanish. To examine this possibility, we solve the order-the random dilution by numerical simulations. The results
parameter equations fak?=0 (the fully connected cage are shown in Figs.®) and §b) when the cutting rat®, is
andA2=0.01 and investigate whether the parametdisap- 0% and 1%, respectively. The SCSNA predicts ) has
pears at a certain value of We fix # at 0.7, a value that four peaks represented by the delta functionfhbt 6= a/2
ensures the existence of the superretrieval phasa 4er0. whenN—c [2]. These sharp peaks are clearly seen in Fig.

The results are shown in Fig. 4. For the fully connecteds(a) for the superretrieval states of the fully connected net-
nonmonotonic networky disappears very rapidly whea  work. However, in Fig. &) the peaks are significantly
approaches a critical value=(0.125) from above. This indi- smeared by the dilution of only a small number of the syn-
cates that the superretrieval phase appeara fess than the aptic connections.

critical value. However, wherA?=0.01,r does not show a
dsingular behavior for any value of Rather, the results sug-
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107 ; .

loglor

-3.5

0 005 01 015 02 025 03 035 04 s . ;
o -1.5 -1 -0.5 0 0.5 1 1.5

FIG. 4. Behavior of order parameteris obtained by the SC-
SNA as a function of loading rate for a fully connected nhonmono- 14 ; ; . : .
tonic neural network(solid curve and randomly diluted one ‘
(dashed curve In a fully connected networkf —0 as a— «ag

~0.125 from above, which implies the appearance of a superre- 127 : Py 1
trieval phase fora<ag. Such singular behavior is not seen for :
diluted network. 101 : 1
By using Eq.(59), the disappearance of the superretrieval | |
phase can be shown for a much wider class of synapse dilu- 8
tion. We definef (x) as
6 j
fo={ X X2 62 |
(X) - 0 X e S, ( ) n : |
where S is an arbitrary subset dR that satisfies Eq(38). ,
With this f(x), a synaptic connection is eliminated if its 27 ; i
value does not lie ir5. We show that the necessary condi- :
tion, J2=J2, for the occurrence of the superretrieval phase is 0 PR . ‘ ,

-1.5 -1 -0.5 0 0.5 1 1.5
(b) h

satisfied only ifS=R. This is easily shown by noting that

= = 232 2<
J L,DX xf(x) LDXf(X) J LDX x=1 FIG. 5. Numerically obtained distributions of local fieltls at

(63) equilibrium states foKa) fully connected andb) 1%-diluted non-
monotonic neural networks. Values of parameters were fixe#l at
Therefore, =0.7 anda=0.1, for which the fully connected neural network
_ operates in the superretrieval phase.
J°<J=J2 (64)
for the conventional associative memory models with a
The equality in Eq(64) holds only wherd=1 namely, when —monotonic response function. This result contrasts with the
S=R and neurons are fully connected. Although the aboveaesults of a similar study that suggested an oscillator neural
definition of f(x) does not include all types of synapse dilu- Network of associative memory was more robust against di-
tion (for instance, one may cut half the connections randution than the standard Hopfield mod&2]. To retain as
domly and the other half systematicallghe superretrieval large a storage capacity as possible in dilution of synaptic
phase is presumably unstable to any type of synapse dilutioponnections, we proposed bottom-cut-off dilution, in which

done at a finite cutting rate. the synaptic connections are systematically eliminated ac-
cording to the order of their magnitudes. Although other at-
CONCLUSIONS tempts to consider robustness with respect to the dilution

exist[18,23,2], this method of dilution is relatively simple
This paper has shown that the enhanced storage capaciyd significantly minimizes the loss of the nonmonotonic
of the associative memory model with a nonmonotonic reneural network’s excellent retrieval abilities. In both cases,
sponse function is considerably reduced by random dilutionfiowever, the superretrieval phase, in which noise from un-
of synaptic connections. The reduction rate is larger than thatondensed memory patterns disappears in the local fields of
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neurons, does not appear if a finite humber of connectionbeen suggested by the fact that the shape of response func-
are eliminated. These results clearly show that enhancemetibns has a large influence on the extent of the superretrieval

of the storage capacity of non-monotonic neural networks igphase but not on the maximum values of the storage capacity
not achieved by disappearance of noise, which has already2].
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