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Winding angles for two-dimensional polymers with orientation-dependent interactions
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We study winding angles of oriented polymers with an orientation-dependent interaction in two dimensions.
Using exact analytical calculations, computer simulations, and phenomenological arguments, we succeed in
finding the variance of the winding angle for most of the phase diagram. Our results suggest that the winding-
angle distribution is a universal quantity, and that thpoint is the point where the three phase boundaries
between the swollen, the normal collapsed, and the spiral collapsed phases meet. The transition between the
normal collapsed phase and the spiral phase is argued to be contifBb063-651X%98)13402-5

PACS numbd(s): 05.70.Fh, 61.4%e

I. INTRODUCTION AND SUMMARY phase is complemented by the observation that at the col-
lapse transitiony assumes different values on different lat-
The study of polymers is one of the most fascinatingtices: Its value on the square lattice is different from that on
fields of current research, because of its relevance not onlghe so-called Manhattan lattice, where each bond of the lat-
for material sciences, but also for the understanding of protice has a preassigned orientation, thus naturally excluding
teins. Depending on the chemical and physical environmenparallel contacts. Numerical studies of the swollen phase
a polymer in a dilute solution can be either swollen or col-[2,4—€], however, show little indication of a variation of
lapsed, or at the® point, which is the boundary point be- with the parallel interaction strength. These studies involve
tween the two. Such polymers can be modeled by interactingxact enumeratiof2], Monte Carlo simulation4,5], and
self-avoiding random walkéSAWSs) with an interaction en- transfer-matrix calculation on a strip of finite widt@]. In all
ergy € between(nonconsecutivebonds that are on the same these studies, as well as in our own exact enumerations, the
plaquette of the underlying lattice. As the temperature is defvery smal) variation of v with the parallel interaction
creased, the SAW undergoes the above-mentioned transiti@trength decreases with increasing polymer length, making it
at a 0 temperature, provided that<0. The value of the unlikely thaty should show nonuniversal behavior for much
exponentr that characterizes the relation between the polylarger polymer length.

mer lengthN (monomer numbgrand its radius of gyration Furthermore, transfer-matrix calculations on the collapse
R, is v= 3, 4 and3 above, at, and below the temperature line [6] suggest that, whenever the antiparallel interactions
in two dimensions. energy is lower than the parallel onghas the same value as

The phase diagram for the polymer collapse becomesn the Manhattan lattice, and that thgoint (where parallel
more complex when the polymers aogiented i.e., when and antiparallel interactions are equally strpisghe point in
they look different in the two directions along the chain, as,the phase diagram where the three phase boundaries meet. If
e.g., forA-B polyester[1]. In this situation, the interaction this scenario is correct, the exponenis a universal quan-
energy between nearby monomers depends in general dity, and its value at the collapse transition depends only on
whether their relative orientation is parallel or antiparallel. whether the symmetry between parallel and antiparallel in-
When the attractive interaction between parallel monomers iteractions is broken.
sufficiently strong, the collapsed polymer winds up to form a  In this paper, we study theinding-angle distributiorfor
spiral. A phase diagram, based on numerical work and exagiolymers in two dimensions with orientation-dependent
results, was suggested in R¢R]. It contains three phase short-range interactions. Two monomers that have a parallel
boundaries, separating the swollen, the normal collapseaontact are connected by a loop that encloses one of the end
and the spiral phaséthe latter also being a collapsed phase points of the polymer, i.e., their winding-angle differs by 2
and meeting at one point. Since the winding-angle is so closely related to the occur-

In that phase diagram, the line along which parallel andence of parallel contacts, it should be equally sensitive to a
antiparallel interactions are equally strong plays no speciathange in the parallel interaction strength as the expopent
role. If this is correct, the values of the critical exponents doln fact, we find analytically a different winding-angle distri-
not fall into universality classes that are determined by symbution at the collapse transition on the Manhattan lattice and
metries. In fact, conformal field theof8] suggests that the on the square lattice. As for the exponentthe question
exponent associated with the partition functiasually de-  arises whether the winding-angle distribution is determined
notedy) may depend continuously on the parallel interactionby simple universality criteria. Usually, winding-angle distri-
energy in the swollen phase, while the exponenemains butions depend only on universal features like symmetries
constant. This supposed nonuniversalityyoin the swollen  and interaction range, when the length of the polymer is

sufficiently large[7]. The important conclusion of this paper

is that the winding-angle distributions for oriented interact-
*Electronic address: prel@al3.ph.man.ac.uk ing polymers are also universal. The main evidence comes
"Electronic address: drossel@a13.ph.man.ac.uk from the collapsed phase. Minimizing the free energy, we
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find that the winding angle distribution in the collapsed
phase depends only on whether the symmetry between par-
allel and antiparallel contact energies is broken. Just like the
transfer-matrix calculation of Refl6], this modifies the
phase diagram suggested in Rgf] and moves the phase
boundary between the normal collapsed and the spiral phases
on the symmetry line, where parallel and antiparallel inter-
actions are equally strong. Our argument also shows that the
phase transition along this line is continuous, although nu-
merical evidencég?2,6] seems to be in favor of a first-order
transition. The# point is the point where the three phase
boundaries meet. Due to its special role, it can have an ex-
ponenty and a winding-angle distribution that is different
from all other points, without leading to nonuniversal behav-
0r. \
Certainly, this phase diagram is very appealing due to its iaﬂﬁPmlleanmt parallel contact
simplicity. Remarkably, we arrived at our results indepen-
dently of Ref.[6], and prior to learning about that work. FIG. 1. An oriented self-avoiding path on a square lattice.
While Ref.[6] provided stronger numerical evidence for the
special role of thes point, our work gives insights into the monomers are taken into account by assigning an engygy
underlying physics of oriented polymers: Whenever the anor €, to each pair of(nonconsecutivemonomers that lie
tiparallel interaction energy is more negative than the paralon the same plaquette and that have an antiparallel or
lel one, the winding angle of the polymer decreases duringarallel relative orientation. The weight for each parallel
the collapse. It is confined in the collapsed phase and bdantiparalle] contact is given by w,=exp(—¢,/kgT)
comes zero in the ground state, where the end points must lhe,=exp(—e,/kgT)], whereT is the temperature ankk is
at the surface. When the two interactions are equal, howevethe Boltzmann constantSome author$2,6] prefer to pa-
the variance of the winding angle increases during the colrametrize the model using,=Inw, and8,=Inw, instead of
lapse, and is always proportional toNh When the parallel the Boltzmann weight&, andw, .)
interaction is stronger than the antiparallel one, the collapsed The partition function for a polymer dfl steps is then
phase has an overall spiral shape, the number of parallel
contacts being proportional to the length of the polymer. Zv= S
The outline of this paper is as follows: In Sec. I, we N Mg, m
describe some basic properties of self-avoiding interacting
walks, introducing and discussing the partition function andwvherem, andm;, are the number of antiparallel and parallel
the general form of the winding-angle distribution. In Sec.contacts, andyy(m,,m,) is the number of configurations
[ll, we derive an exact expression for the winding-angle dis-<(starting at a given poiptwith these contact numbers.
tribution at the collapse transition in the absence of parallel For w,=w,=1, one has a normal SAW without any in-
contacts between monomers. We also show results of teraction except the self-avoidance, and the partition function
Monte Carlo simulation that agree well with this analytical is identical to the total number of SAWSs starting at a given
result. In Sec. IV, we conjecture the variance of the windingpoint, which is known to be
angle for most of the phase diagram, and we argue that the
transition from the normal collapsed to the spiral state occurs Zy=~AuNNTL, 2
when parallel and antiparallel interactions become equally
strong. We compare to the phase diagram obtained from exwith A~1.771, u~2.638[8], and y=4% [9]. This form of
act enumeration and explain the origin of the discrepancieshe partition function is believed to hold also for,, 0,

l<- ~ >4

< — -4

e —

gN(maamp)wranawg]pv (1)
P

Section V summarizes and discusses our results. #1, as long as the polymer is in the swollen phase, with
different values ofA and u.
Il. GENERAL PROPERTIES OF INTERACTING The mean number of antiparallel and parallel contacts in
SELF-AVOIDING WALKS the swollen phase is
A. Partition function and the critical exponent y dlnZy, JInA alnu ay
. . . <mi>=wi ~ Wi + +InN— , (3)
We model a polymer in two dimensions by a SAW on a Jwi dw; dw; dw;

two-dimensional square lattice, as shown in Fig(ld.some

cases, also a hexagonal lattice is chos&he steps of the withi=a ori=p. While A can depend on both, andw,,
walk, which coincide with lattice bonds, can be viewed asthe free energy per monomer does not change with, .
monomers. Each site of the lattice can only be visited onceThis was exactly proven in Reff2] for w,<w, with w,=1,

This condition models the excluded volume effect of theand—assuming the scaling form E&)—it implies that the
polymer. Starting at one end point and stepping along the@umber of parallel contacts increases not faster than logarith-
trajectory of the SAW, each bond can be assigned the direanically with N. This is not surprising when one realizes that
tion in which it is passed. By this procedure, the polymera SAW can have antiparallel contacts anywhere along its
obtains an orientation. Short-range interactions betweetrajectory(i.e., (my)=N), while the average number of par-
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W, The following argument suggests that the number of par-
allel contacts saturates in the limit—c. We consider the
casew,=w,=1 (i.e., no interaction and assume that the
polymer is radially scale invariant, i.e., that it is statistically
mapped onto a polymer of lenghiN, when the coordinates

r of all monomers are scaled t¥r with b>1 (the starting
point of the polymer being the origin of the coordinate sys-
o tem). Under such a radial rescaling, a parallel contact be-

o tween two monomers becomes a ‘“close encounter” at a
(mean distanceb, which means that the contact survives
under rescaling only with a probability i/ On the other

1

hand, a single monomer becomes a chaif¥f monomers
under rescaling, an¢assuming largd) thus might have a
number ofxb* multiple parallel contacts instead of a single
one. If we make the very plausible assumption thatl, we
O find that the number of parallel contacts within a narrow ring
o , ) , . _between radir andr(1+ €) is proportional toe/r~*. The
FIG. 2. Qualitative phase diagram of interacting self-avmdmgtota' number of parallel contacts is then proportional to
walks. 5'””(1/rlfx)d(lnr) and converges fdl— . This argument
is in agreement with the numerical observation in R&f.
allel contacts should not increase faster than the number ahat the total number of “loops” saturates for large It
windings, which in turn increases logarithmically might be that the conformal field theory in Rg8] does not
On a more phenomenological level, one can make theorrectly capture the difference between parallel contacts and
following entropy consideration: as long ag<w,, thereis  “close encounters.”
no energetic disadvantage for the polymer to have its end At the 6 point w,=w,=w,, the value ofy (denotedy,)
points at the surface, in which case it has no parallel congg known to bey,=2 [10]. It is also known thaty,= ¢ for a
tacts. Such configurations correspond to the ease0. We  so¢ ayniding walk that is part of a percolation cluster hull

can therefore assume that the probability that a randoml d theref h el Si _ag
chosen configuratiofor w,=w,>0) has both end points at nd therefore has no parallel contaftd]. Since =7 for

the surface is not smaller than the square of the ratio of thi1€se walks, they are at the collapse transition. The authors
surface area to the volume, proportionalRo2cN~2”. The  of Ref.[6] argued thaty,=$ for all wy<w,=w,. If this is
entropy loss per monomer due to the restriction of the endorrect, the partition function contains a crossover term close
points to the surface is of the orderl2N/N, and vanishes in  to the 6 point w,= w,=wy,

the thermodynamic limiN—o<, and so does the change in

free energy per monomer. This argument is not restricted to

~ ,, NN 2/7 v
the swollen phase. Consequently, the phase boundary be- Zy~=p N (AoNT), 4
tween the swollen and collapsed phases cannot depend on
@p where f(x)~const for smallx, f(x)xx2¥'7 for large x,

Whenw, is increased beyond,, there must be a point 45 (= o, — w,. ¥ is a crossover exponent. A calculation

where the free energy becomes dependenbpnas proved : N :
. - . i P analogous to Eq(3) gives then(m,)«N™ at the § point.
in Ref. [2]. This point, which is a nonanalyticity of the free Since the mean number of parallel contacts saturates in the

energy, marks t.he phase transition to the spiral pliasne .. swollen phase and increases @ in the collapsed phase
assumes the simplest scenario of only one phase transition

along a linew,=cons). The qualitative phase diagram is (S€€ beloy we expect 6<W <3. For a related problem, the

shown in Fig. 2. adsorption of a self-interacting polymer at a surface, the
So far, we have not yet discussed the last term in(Bg.  corresponding exponent has the vaille= 5 [12]. Since the

It seems implausible that a critical exponent, which is a uni-adsorption of a polymer at its own surfage., spiral forma-

versal quantity, should vary within one phase, and this termion), is somewhat different, the two crossover exponents

should therefore vanish. In particular, a repulsive interactiomeed not be the same.

between monomer§.e., w, ,<<1) is nothing else than an In the low-temperature phase, the polymer has a finite

increased excluded volume, which can hardly modify thegensity. Therefore:=1, and surface effects become impor-

value of a critical exponent. 1#y/dw, vanishes, the mean 50t The partition function is assumed to have the general
number of parallel contacts is independent\ofor largeN,  ¢5rm [13]

i.e., it saturates, in agreement with the above-mentioned nu-

merical result§2,4-6. If 9y/dw, did not vanish, as sug-

gested by the conformal field theof$], the number of par- Zn~AuNkINT-1, (5)
allel contacts would increase logarithmically iN. An

increase in the excluded volume foarallel contacts, i.e., an

increase inw, by dw,, would then have a similar effect as We will argue below that, fow,=w,, the number of par-
an increase in polymer length frold to N+a InN in the  allel contacts is proportional ta/N, while it saturates for
expression foZy above, witha= (dy/dw,)(dwy/Inw). wp<w,.
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B. Winding-angle distributions

For self—-avoiding walks, the winding-angle distribution is
generally described by a Gaussian

p(8) <exp(— 6#2/2C InN), (6)

with a varianceC InN [14,15. Such Gaussian distributions
with a variance proportional to Khoccur generically for ra-
dially scale invariant polymers, given that the winding center
is visited only a finite number of timgdg]. The value ofC is

C=2 in the swollen phase, and=%" at the # point of a
polymer with no orientation dependence in the interaction
[15], as obtained from an analytical calculation on an hex-
agonal lattice. The valu€=2 is nicely confirmed by an
exact enumeration on a square lattice, where we obtain
C=2.0005(6) for polymers up to length= 26, using a dif-
ferential approximant analysj4.6].

The value ofC in the collapsed phaséor w,= w,) is not
known, but it is larger than the previous two values, since the
winding angle apparently increases during the collapse. For
dense SAWSsC is known to beC=4 [15]. Since they have
no self-interaction apart from self—avoidance, dense poly-
mers have their finite density due to an external pressure and
are “hot,” in contrast to collapsed polymers, where the at-
traction between monomers determines the density. For this
reason, the density of monomer-monomer contacts is differ-
ent in both cases, and it is not clear whet@rcan be the
same.

In the next section, we will deriveCc=2 for a self—
avoiding walk that is part of a percolation cluster hull, and
therefore, has no parallel contacts. Singe 3 for these

walks, they are at the collapse transition. The valu€adh

most other parts of the phase diagram will be discussed in ) . o
Sec. IV. FIG. 3. An interacting self-avoiding walk on the Manhattan lat-

tice at the collapse transition.

11l. WINDING-ANGLE DISTRIBUTION
AT THE COLLAPSE TRANSITION ZO(n):f [T avs T (1+85-$)=3 gn®. ()
. . - - K G
In this section, we calculate the winding-angle distribu- 0y
tion for a SAW on a Manhattan lattice at the collapse point.

Fig. 3 shows such a walk. The Manhattan lattice is an array,j, andk are lattice sitegi,j) are nearest neighbors, aBd

of alternating one-way streets, thus not allowing para]lel CONis ann vector: |§T2=n. In the second line, the sum is per-

. . C ; ormed over all graphg of P nonintersecting polygons of
SAWSs on this lattice can be grown kinetically in a very ef- total lengthl. For ne[—2,2], the loop model has a critical

ficient way, since they are trapped only through loop forma- oint B.=[2+(2—n)¥2"Y2 For n=1 and B=1, each

tlon.hOrt]e starts at thfetgr|g|r|1| and(;:c:jr)strt:_cts a F\’/\%h bytrgljomg ¢ op has the same weight. These loops can be interpreted as
each step in one of the allowed directions. en the pa Igercolation cluster hulls for site percolation on the dual tri-

closes to a !oop, it iS. c_anceleq. Since this procedure give ngular lattice at the percolation thresh@ig=1/2. In fact,
contacts a higher statistical weight than free steps, the pol he scaling indices at this point are identical to those com-

tmhgr r:;ﬁ Sgneggcrﬂ\;e 'gtgr:r?ttc')o?ﬁ;n z%e(tjgreocfa; Sgrcc):vc\)llat?o uted for the Manhattan lattiog point[19], which therefore
P PP per P 194 in the same universality class.

cluster[11], which in turn is known to have an exponent We are interested in the winding-angle distribution of a

v=7 [17]. This means that the polymer is at the collapsesegment of a loop. Figure 4 illustrates the following calcula-

point. tion. We look at the function
In order to find its winding-angle distribution, we have to

calculate the winding-angle distribution of parts of percola-
tion cluster hulls. The procedure is similar to the one in Refs.
[15,17], and is conveniently performed using th@(n)

model on an hexagonal lattice. We start with @én)- loop )
model[18] with the partition function +ieym(ny+ny)]. ®

GO(n)(X_ \?191 ,82) = ; Wom)(Gr)exdie;m(ng+ny)
1



57 WINDING ANGLES FOR TWO-DIMENSIONAL POLYMERS . .. 2049

Now, at3=1, the SOS model renormalizes onto the low-

temperature phase of the Coulomb-gas modelger (if
n=1) [18], and

Gsod €] ,€3) =|X— V|e1e2/9+9mm;, 9

The magnetic charges, andm, arem;=—m;=3[17], due
to the vortex pair.
The winding angle is finally extracted from

(exdiem(ny—ny+nj— né)])o(N):exp(—ezgflln|)2—\?|).

_FIG. 4. lllustration of the calculation of the winding-angle dis- Foyrier transformation yields immediately a Gaussian distri-

tribution. bution forn, —n,+n;—nj. Each of the two path§ andS’
has the same number of intersections witrend L', and
g, are like the graphg above, but with both pointsandj  thereforen,=n; andn,=nj. (In certain situationsp, and
lying on the same loop. Both pargandS' of the loop are ! gffer by one, but this effect can be neglected in the ther-
given the same orientation fromto j. n, (ny)andn, (N;)  modynamic limit, where the number of intersections be-
count the number of intersections of the oriented p&hs comes very large. In terms of the angle
(S") with L, andL,, respectively, crossing in different di- 9= m(n;—n,+n.—n}) the resulting distribution reads
rections having a different sign. Without the phase factor, rorein TR
Gon is a four-spin correlation function, with two spinsiat e TR I T - . -
and two spins af. P(8)=(16mwg In|X—Y|) Y%exp —g6%/16INX-Y]).
To calculate Eq(8), we transform it into a solid-on-solid

(SOS model. Height variableg are defined on the centers Since both paths make exactly the same contributios, to
of the hexagons, such that two adjacent heights are equal gfe winding angle of one path is given @/2. For large

g|fferent ;y = Th”e pqggon?, or;:c:e arbg\rarlllyﬁor]:ented, distance$X — Y], the windings aroun& andY are indepen-
?COTZ I'Omairll wa;‘ Wlt E'ifnelp ™ on t'eﬂgte Y? fhny dent of each other, and have the same probability distribu-
orientead fin€. Along the straight iin€ connectiiglo ¥, I 45, *paplacing|X— Y] by N* (N being the length of the
height changes by2. In the SOS Ieinguage, this CorrESpf’ndsponmer), we arrive at the winding-angle distribution of path
to a dislocation line with a vortex & and an antivortex at S around point)?
[17]. At the vertices of the honeycomb lattice, the SOS walls '
turn by £ 7/3. The SOS weighiVgos is calculated as the
product along the walls of local factorsB exp(u)
[B exp(—iu)] at each left(right) turning vertex. Summing
over the two independent orientations of each polygoa Insertingg=2 andv=2, we findC=2.

P(0)=(4mvrg InN)~Y2exp(—g#?/2v InN). (10

cept, of course, the special polygon connectiagdj) gives Our numerical simulations confirm this result nicely. Fig-
a phase factor 2 cosdor each polygon. The SOS weight of ure 5 shows the winding-angle distribution for polymers of
a graphg, is then length up to 18, and the variance of the winding angle for
length up to 16. The solid line is the analytical result.
W =g'nP i —n_))+iu(n’ =n’ In the swollen phase, we believe that the constans
sadGy)=Fnexliu(n, —n-)+iuln, —n-) C=2 for a SAW on the Manhattan lattice, i.e., the winding-
+6iu(P.—P_)]. angle distribution is the same as for the normal SAW. The

above calculation cannot be repeated in the swollen phase,
n, andn_ (n/, andn’) are the total number of local left since <1 in Eq.(7) above. Although there exist still two
and right turns of patts (S'). P, and P_ are the total Paths connecting andj, they now have different weight. A

number of right and left polygons surroundingndj. In the  Path ofN steps will close to a loop after a mean number of
asymptotic limit, we haven,—n_=6(n,+n,) and Steps that diverges, and therefore the second path has in fact

n’, —n’ =6(n}+n}). Let us define the SOS correlator no weight at all. We expect to arrive at the same situation as
for a normal SAW, which was discussed in REgf5]. Con-
formal field theory[3] suggests also th& does not depend

Gsod X—Y.e1,€7) on the strength of the parallel interactions. Only the magnetic
charges in Eq(9) are affected by it, and these drop out when
=, Wsod Gr)exdie] ¢(X)+iesd(Y)]. the winding-angle is calculated.
91 The calculation of this section can easily be generalized to

“watermelon configurations,” where the pointsandj are
Equating this correlator with E¢8) above givesi=2 cos@i,  connected byL paths. The constan€ characterizing the
ande;=e;+ey, e;,=e,+ey, ande;+e,=0. The new con- winding-angle distribution for one of these paths is then
stante, is eg= — 6ul/ . C_=4v/L?g.
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10000 (x), 100000 (¢)
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510° 7 N
101 | ‘
L) : .
2 3 4 5 (]
1010 1'3 10" 10 FIG. 6. A spiral composed of globules.
angle decreases during the collapge., with increasing
10" L1 | : : : wz), While it increases during the collapse along the line
4 2 o 2 4 wp=w,. The constanC should therefore be smaller than 2
-1/ . . . .
8 (In N/N,) for wp<w,=wy, and assuming universality, the conclusion

FIG. 5. Winding-angle distribution at the collapse transition onC=% follows naturally. It is the equivalent of the transfer-
the Manhattan lattice. When rescaled, the distributions collaps&hatrix result that the exponentassumes its Manhattan lat-
onto a Gaussian. The unit lengiy is determined from a linear it~ tice value$ for all wy<w,=w,, and that it jumps t§ at the
of (62) vs InN (see inset ¢ is a constant. 6 point wp=wa=wy.

Our universality conjecture finds its strongest support
when one studies the collapsed phase of the polymer. In the
following, we argue tha€=0 in the collapsed phase when-
ever o,<w, (C=0 should also hold for a collapsed poly-

The above resul€=$ was obtained in a situation where Mer on the Manhattan lattiteandC = whenw,>w,. We
the polymer could not make any parallel contacts. We thereStart with the assumption that the winding-angle distribution
fore suggest that this corresponds to the caséloes not ch_ange when one goes sllghtl)_/ to the rlgh_t or to the
0,=0, w,=w,. However, a SAW on a square lattice that left of thel line w,=w,, and we lead this assumption to a
has no parallel contacts is different from a SAW on a Ma-Contradiction. o o
hattan lattice, since it can be trapped without loop formation, ©On the diagonaly,= w,, the winding-angle distribution
Only if the range of the repulsive parallel interaction is ex-iS Gaussian with some unknown but finite const@ntSince
tended to next-nearest neighbors does the way back to tife increases when going from the swollen phase to dhe
origin always remain open. If one assumes that all thes@oint, it certainly becomes even larger in the low-
situations are equivalent to each other, one must draw th&mperature phase. A polymer in the collapsed phase on the
conclusion that the precise range and form of the repulsivéliagonalw,=w, has a finite density of contacts along its
interaction between parallel bonds is not important, and thafajectory, leading todm,>Rd#, and (with d¢=dInN and

1/ 1/2
C=2 holds on a finite part of the transition line. Assuming RN to mP.OCN : . .
Let us first consider the casewp,>w,, with

only one nonanalyticity on this line, we conclude tig 3 wp—w,=Aw<1. We compare the free energy of a col-
on the entire linew,<w,, and that it jumps t€C = Z atthe lapsed polymer in a globule configuration similar to the one
¢ point. The ¢ point is consequently the point where the on the line w,=w, to the free energy of a spiral that is
three phase boundaries meet. composed of globules af monomergsee Fig. 6. The dif-

Of course, other interpretations are in principle possibleference in internal energy between the two(ieglecting
e.g., that the interacting SAW on the Manhattan lattice fallsconstant coefficienis
into a separate universality class. Our argument, however, is
supported by our exact enumeration data. Although they do AUzTAw[\/N—(N/n)\/ﬁ].
not allow a good estimate of the value 6f they show
clearly that for both case&,=1 and w,=0 the winding When one transforms a globule to a spiral, one breaks

IV. WINDING ANGLES FOR COLLAPSED POLYMERS,
AND THE PHASE DIAGRAM



57 WINDING ANGLES FOR TWO-DIMENSIONAL POLYMERS . .. 2051

O(/N) parallel contacts, and one crea@gN/\/n) new par- Wy
allel contacts. The leading contribution to the difference in
entropy is

AS=—(N/n)Inn.

This is the number of globules times the entropy loss per
globule when the end points of the polymer are restricted to
the surface of the globulésee Sec. Il A The entropy dif-
ference between one large globuledfmonomers andN/n
globules ofn monomergwithout any constraint for the end
pointg increases more slowly tha@(N), since the entropy

is an extensive quantity. For anyw, the gain in binding
energy —U is larger than the loss in entropy, whenis
sufficiently large. By minimizing the free energy
AF=AU-TAS, we find (to leading order 1 oy

]

ncAw™ 2. (11) FIG. 7. Value of the constant in most parts of the phase
diagram.

The correlation lengthte\/n, which is proportional to the
globule radius, diverges a&x(Aw) *. These results are these findings: Assume again that a spiral near the transition
correct forN>n>1. line is composed of finite—entropy “balls” of a certain
Spirals have a considerable entropy close to the transitiormonomer numben and a radius proportional t”. When
However, it is difficult to see the continuous character of thisthe parallel interaction is sufficiently strong to induce a col-
phase transition in simulations. The spiral shape can only b&pse, we can expect that the number of parallel contacts
seen when the polymer length is much larger than the globbetween two neighboring balls increases with some power of
ule sizen. The transition appears to be shifted to the right bythe ball radius(For a parallel interaction strength that cannot
a distance\ w=0(1/{N), as in Ref[2]. induce a collapse this power is zeér@erforming a calcula-
Now, we consider the casew,<w,, With tion similar to the one above, we again find the optimal ball
wa—wp,=Aw<1. We compare the free energy of a col- size that minimizes the free energy. In contrast to the above

lapsed polymer in a configuration similar to the one on thecalculation, the internal energy difference between the two
line w,=w, to the free energy of a polymer that has its endPhases does not vanish at the transition line, leading now to
points at the surface. Bringing the end points at the surfaca finite optimal ball size. It diverges only when thepoint is
replacesO(+/N) parallel contacts by antiparallel contacts, @PProached.

decreasing the internal energy by an amount proportional to 1he shape of the phase boundary between the swollen and
AU=AwN. The entropy loss due to this restriction is of SPiral phases is not easy to guess. When one ass#yeS§

the order N, as shown previously. Having the end points atthat the spiral has no or little entropy, the transition from the

the surface means always a decrease in free energy in tifé/ollen to the spiral phase occurs for smaller valuespf
thermodynamic limitN—-. This means that the winding whenw, decreases. However, we have shown earlier in this

angle and the number of parallel contacts must saturate in tiREction that the spiral state has considerable entropy close to
thermodynamic limit. Only initial and finite segments of the ¢ point, and the argument in Ref2,4,5 cannot be used

lengthn(Aw) 2 of the polymer may behave like a poly- for that part of the phase diagram. An alternative argument

mer at the transition line. As for the spiral phase, the correfollows from comparing the adsorption of a self-interacting

lation length diverges a&= (A w) 2. polymer at a surface with spiral formatidine., adsorption of
Thus we have shown that the constanbf the winding- the polymer at its own surfagelt is known [12] that the

angle distribution in the collapsed phase has the same Vah?és]sorp;[]lon of a poly_mer ata surfa;]qe l%ecomles more difficult
C=0 for all wy<w,. It would be rather surprising if this when the attractive interaction within the polymer increases.

universal feature did change at the collapse transition or irimilarly, one can expect that the spiral formation becomes
fore difficult when the antiparallel interactions within the
yolymer are stronger, thus confirming the shape of the phase

The study of the collapsed phase therefore provides convin oundary suggested in Ré2].

ing support for the hypothesis that the winding-angle distri-
bution is a universal quantity. The const&htharacterizing
the winding _angle distrik_)uti_on can now be given for most of V. SUMMARY AND DISCUSSION

the phase diagram, as indicated in Fig. 7.

We have also seen that the number of parallel contacts In this paper, we have studied oriented polymers with
saturates in the collapsed phase fof<w,. This result orientation-dependent interaction. We have argued that both
should also hold in the swollen phase, where contacts are winding-angle distribution and the exponenare uni-
less important, leading to a universal expongnt versal quantities, in agreement with transfer-matrix calcula-

Finally, let us discuss the phase transition between th&ons for the exponeny [6]. This result is closely tied to the
swollen and the spiral phase. Numerical results indicate abservation that thé@ point is a special point in the phase
first-order transitiorf4,5]. The following argument supports diagram, where three phase boundaries meet. When parallel
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contacts have a different energy than antiparallel contacts, ia Eq. (4) needs to be determined. Only if thepoint is a
symmetry is broken, and a phase transition takes place. Wa&pecial point in the phase diagram, does the number of par-
predict that this phase transition between the collapsed arallel contacts increase witN" at the 6 point. Otherwise, it
the spiral phase is continuous. The existence of this phasacreases logarithmically iN, i.e., ¥ vanishes. Finally, the
transition is particular to two dimensions, since in highertransition from the swollen phase to the spiral phase is not
dimensions a parallel contact can locally be transformed intwery well understood. In particular, the precise shape of the
an antiparallel contact, without changing the conformation otransition line and the laws by which the “ball” size di-
the polymer at a large scale. verges at the point, are unknown.

We succeeded in obtaining the winding-angle distribution Note added After submission of this paper, a report by
for the case where antiparallel contacts dominate, at the coBarkema, Bastolla, and Grassberg@ond-mat/9707312,
lapse transition as well as in the low-temperature phase. Wsubmitted to J. Stat. Physappeared, where polymers with
have also argued that the number of parallel contacts satwrientation-dependent interactions are studied numerically.
rates in the thermodynamic limit whenever the antiparallelThe results are in full agreement with the conclusions of this
energy is larger than the parallel one. paper.

There are three challenges left: The winding-angle distri-
butlon_along the _pha_se boundary between the Qollapsed and ACKNOWLEDGMENTS
the spiral phase is still unknown. As mentioned in Sec. Il B,
collapsed polymers are different from dense polymers, for We thank A. Owczarek for alerting us to R¢6]. This
which C=4. Second, the crossover expondntintroduced work was supported by EPSRC Grant No. GR/K79307.
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