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Density fluctuations in vibrated granular materials
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We report systematic measurements of the density of a vibrated granular material as a function of time.
Monodisperse spherical beads were confined to a cylindrical container and shaken vertically. Under vibrations,
the density of the pile slowly reaches a final steady-state value about which the density fluctuates. We have
investigated the frequency dependence and amplitude of these fluctuations as a function of vibration intensity
I'. The spectrum of density fluctuations around the steady state value provides a probe of the internal relaxation
dynamics of the system and a link to recent thermodynamic theories for the settling of granular material. In
particular, we propose a method to evaluate the compactivity of a powder, first put forth by Edwards and
co-workers, that is the analog to temperature for a quasistatic powder. We also propose a stochastic model
based on free volume considerations that captures the essential mechanism underlying the slow relaxation. We
compare our experimental results with simulations of a one-dimensional model for random adsorption and
desorption[S1063-651X98)07602-9

PACS numbg(s): 81.05.Rm, 05.40:j, 46.10+z, 81.20.Ev

I. INTRODUCTION indicate that the compaction process is exceedingly slow: the
density approaches its final steady-state value approximately
One of the salient features of noncohesive granular matdegarithmically in the number of taps. A typical example of
rials is that they can be packed over a range of densities arglich behavior, in Fig. 1, shows that in excess of fdps
still retain their resistance to shear. For example, a stablgay be required before the density has relaxed to its steady-
conglomeration of monodisperse spheres can exist with atate value. However, if one vibrates for a long enough time
packing fractionp ranging fromp~0.55 (the random loose
packed limi} to p~0.64(the random close packed lim&nd

even top=~0.74 (the crystalline staje Because thermal en- MW
. O . 0.63} Al
ergieskgT, are insignificant when compared to the energy it
takes to rearrange a single particle, each metastable configu- 0.62}
ration will persist indefinitely until an external vibration p
comes along to knock it into another state. Thus, no thermal 0.61} A
averaging takes place to equilibrate the system. The density top
of the material is determined both by its initial preparation ' ' ' =
and by the manner in which it was handled or processed, 0.63¢ ]
since such activities normally introduce some vibrations into L
the material. The phase space for the granular medium is 0.62¢
explored not by fluctuations induced by ordinary temperature ¥
but by fluctuations induced by external noise sources, such 0.61f
as vibrations. It is the goal of this paper to provide an ex- middle
perimental foundation for the use of such fluctuations as a ’ ’ ’ ’
probe of the dynamics as well as the microstructure of granu- 0.631 W
lar media in the quasistatic, densely packed limit.
Granular compaction involves the evolution from an ini- 0.62¢
tial low-density packing state to one with higher final density p 061k
and provides a model system for nonthermal relaxation in a : -
disordered medium. In a previous stufdyl, we focused on 0.60 =7 , , bottom
the approach to a final steady-state density as vibrations were 10 ' 102 100 10 10°

applied to the system. In particular, we studied the density of
monodisperse spherical particles in a tall cylindrical tube as a
series of eﬁterna,ly excitationg, consisting of djscrete, vertical FIG. 1. The time evolution of the volume densipyat three
shakes or “taps,” were applied to the container. Such dat"i'jifferent depths near the top, middle, and bottom of the pile of
beads. The curves represent a single(nmensemble averagingt
a vibration intensityl"=6.8. The pile settles slowly from its initial
*Present address: Department of Physics, Princeton Universityow density configuration towards a higher steady-state density at
Princeton, NJ 08540. long times,t>10* taps. The dashed lines are fits to E#j) with
"Present address: Theoretical Division and Center for Nonlineatypical values of parameter€.637<p..<0.647, 0.036Ap,,
Studies, Los Alamos National Laboratory, Los Alamos, NM 87545.<0.044, 0.26<B<0.40, 10<7r<18.
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a steady-state density, depending on the intensity of the tapsally reduced by the free volume, which captures many of
will be attained. Even after the density reaches the steadythe significant features of our experiments. A model address-
state value, one can discern fluctuations in the density aboifng the compaction of binary mixtures consisting of grains
that value: after each “tap,” the density will be slightly Wwith very different sizes was recently proposed by de Gennes
higher or lower than it was before. These fluctuations ard13]. That model is similar to ours in that it incorporates free
reminiscent of thermal fluctuations about an equilibriumV0|Ume constraints and also exhibits a similar inverse loga-

state, yet such a connection so far has not been investigatéghmic dependence for the density relaxation.
experimentally. In the next section we will describe the experimental de-

In statistical mechanics the study of fluctuations is oft@ilS of the system, review how to obtain reproducible and

great physical interest. The fluctuation-dissipation theorenj€Versible densities, and present our results for the density
relates the dissipative response of a system to an extemgpctuatlons._ln Sec. Il we discuss s_,everal models in relation
perturbation with the microscopic dynamics of the system irfo our experlmeptal results and motivate t.he relevance of free
a state of equilibrium. Energy fluctuations in thermal system&/©/ume constraints for granular compaction. In Sec. IV, we
can be used to investigate the set of distinct, microscopi®r€Sent the theoretical model and the results of related simu-
states that are accessible to a system maintained at a fixedions of compaction. Finally, in the last section we discuss
temperature. Likewise, a study of density fluctuations inth€ central result of this paper, namely, how our data can be
granular media may provide a framework for understandind€!ated to thermodynamic approaches for understanding
the physical phenomenon of compaction, i.e., how a vibrate@'anular media.
powder, that is not in a steady state, finally approaches a
steady state. Il. EXPERIMENTAL RESULTS

In a granular system, density fluctuations from the steady
state represent the different volume configurations accessible
to particles subject to an external vibration. It is desirable to The details of the experimental apparatus and measure-
develop an analogy between the role that vibrations play iment technique were published elsewhdre Monodisperse,
nonthermal systems, such as granular media, and the role spherical soda-lime glass beaflsf 2 mm diameter were
temperature in thermal systems. Theoretically, this issue wasonfined to a 1.88 cm diameter Pyrex tube meagutim in
addressed by Edwards and co-workés4] who introduced height. The tube was subjected to discrete vertical shakes
a statistical mechanics for powders. The idea is based on tH#aps”) each consisting of one complete cycle of a 30 Hz
assertion that an analogy can be drawn between the energy sihe wave. The vibration intensity was parametrizedihy
a thermal system and the volunveoccupied by a powder. which is the ratio of the peak acceleratidn that occurs
The entropyS of a powder is defined in the usual sense, byduring a single tap to the gravitational acceleratign
the logarithm of the number of available configurations. Ed-=9.8 m/$: I'=A/g. The beads were baked prior to loading
wards and co-workers then put forth the concept of an effecin the tube and precautions were taken to minimize compli-
tive temperature for a powder, called the compactivity  cations resulting from electrostatic charging, convection, and
which is defined aX=gV/dS. The significance of this ef- external humidity fluctuations. The column of beads was pre-
fective temperature is that it allows for the characterizatiorpared in a low density initial state by flowing high pressure,
of a static granular system. This is distinct from the case ofdry nitrogen gas from the bottom to the top of the tube. The
rapid granular flows where a “granular temperature” giventop layer of the beads was free to move, i.e., there was no
by the mean-square value of the fluctuating component of thimad or dead-weight surcharge applied to the column of
particle velocities can be written dows-7]. The compac- beads. The density, or equivalently the packing fraction
tivity is then a measure of “fluffiness” in the powder: when which is the percentage of volume occupied by the beads,
X=0, the powder is in its most compact configuration,was determined either by a measurement of the total height
whereas foiX= the powder is the least dense. of the beads within the tube or using capacitors that were

Recently, another approad8-1Q that describes the mounted on the outside wall of the tube. For the latter, the
static packing of powders has adapted a statistical model thagpacitance was found to vary linearly with packing fraction.
contains geometric frustration as an essential ingredient. Fdgach capacitor averaged the density over sections containing
granular materials, frustration arises in the form of hard-coreépproximately 6000 beads. Measurementgs wokere taken as
repulsive constraints and the interlocking of grains of differ-a function of time, i.e., number of tapsand as a function of
ent shapes, which prevents local rearrangements. Both thbe intensity of the vibrationd;. Corrections for instrumen-
static and dynami¢in the presence of vibration and grayity tal drift were made by using simultaneously acquired data
properties of this model exhibit complex behavior with fea-from a second, stationary tulfielentically prepared with the
tures that are common to granular packing, such as the loggame type of beads and connected to the same vacuum sys-
rithmic relaxation of density under tappir]. tem). Our instrumentation allowed shaking intensities up to

In this paper, we make contact with these ideas through &~7 and provided a resolutiod p=0.0006 in measured
detailed study of the process of granular compaction. In parpacking fraction changes.
ticular, we propose a method for evaluating the compactivity The desired outcome of a shake cycle is to provide clearly
of a vibrated powder through a definition of a “granular defined periods of uniform dilation of the bead assembly.
specific heat” and measurements of density fluctuations obBuring these periods of dilation the beads have some free-
served in the reversible regime of steady-state behavior. Wdom to rearrange their positions relative to their neighbors
also elaborate on a theoretical modli#l, 12, based on the and thereby replace one stable close-packed configuration by
idea that the rate of increase in volume density is exponeranother. Previously1,14], we have shown that the overall

Experimental method
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: : : run, and separate runs starting from the same initial density
reversible differ in the details of the density fluctuations but show a
0.65 " ] similar overall behavior. The behavior p{t), obtained by
] averaging many runs of this kind, appears to be homoge-
063 ] neous throughout the pile at these high accelerations. As dis-
p cussed in Refl1], the time evolution of this ensemble aver-
- \ ] aged density is well fitted by the expression

0.61} irreversible , A
r* —,— increasing p(t):p — P
L =0~ decreasing i * [1+B |n(1+t/7’)] ’
¢ B increasing again
0.59 | I I ! ! !

0 1 23 4 5 6 7 where the parameters,, Ap.., B, andrdepend only on the

T accelerationl’. Equation(1) was found to fit the ensemble
averaged density over the whole range D<7 better than
FIG. 2. The dependence pfon the vibration history. The beads other functional forms that were tried.e., exponential,
were prepared in a low density initial configuration and then thestretched exponential, or algebraic forms, see Réf. The
acceleration amplitudE was slowly first increasesolid symbol$ dashed lines in Fig. 1 show a fit to E@). Here, the value of

and then decreasddpen symbols At each value of” the system o fina| densit is approximately equal to the observed
was tapped 10times after which the density was recorded dhd steady-state dgﬁ;ty P yeq
Ss*

was subsequently incremented Ay ~0.5. The upper branch that For small values ofl’, however, p.. corresponds to a

has the higher density i ible to ch dj . .
s;\r?wboles 1“IEJ deernoteensSItgeIisrrcre?/\;er:tlaili(tey Soﬁ(saer;gteexzrsee SAUA®  etastable state and not the steady-state density. In particu-
’ lar, for values of the applied acceleratibr< 3, it is difficult,
behavior of the compaction process is qualitatively similar afrggfé|§X§§Fr>'|§iﬁgtglIgu'fr;;ggiit)lgr;% rﬁﬁrcnhbter;eo?tg%iy:ft%:nby
ifferen hs into th ntain Iso Fig. ri o= X ] )
different depths into the containésee also Fig. JL Spurious ical intensity. In this case, the steady state can be reached by

effects from continuous vibrations, such as period doublin ‘annealing” [14] the system. The annealing is controlled by
or surface wave$12], were avoided by spacing the taps the ramp rate AT'/At, at which the vibration intensity is

sufficiently far apart in time to allow the system to come to~ . : . .

complete rest between taps. Also, by using a tall containeYarled over time. Experlmentally,*wg s]owly raise the value
with smooth, low-friction interior walls shear-induced dila- cf 0F5fr1m 0 toha. value ggyond‘ | n Lr&crements FfAAF
tion and granular convection were suppreddes. Although 2% t each intermediate value we apply At

friction between beads and with the tube walls can affect the_ 10° taps. I'* defines an “irreversibility point” in the

mechanical stability of a bead configuration, we argue below€"S€ that, once it has been exceeded, subsequent increases
that the motion of beads is limited primarily by geometric @ Well asdecreasesn I" at a sufficiently slow ratd\ I'/At
constraints imposed by the presence of other beads, particlf@d to reversible, steady-state behavior. We found fHat
larly at the high densities investigated here. ~3 for 1, 2, and 3 mm bead44]. A typical run is shown in

The ratio of the container diameter to the bead diametef9- 2- Here we have used 2 mm beads, and started with an
can also influence the compaction process. For small valudgitial density ofp~0.59. The highest densities are aChLEVEd
of this ratio, ordering(crystallization induced by the con- PY annealing the system, i.e., decreasinglowly from I
tainer walls[16] will increase the measured packing fraction back down tol'=0. If I' is rapidly reduced to Qlarge
over its bulk value, leading to densities that can exceed thé I'/At) then the system falls out of “equilibrium.” This
random close-packed limit. This may be responsible for thd€@ds to lower final densities and a curve f¢F) that is not
high maximum packing fractions seen in Fig. 2. Previous'€versible. A crucial result emerging from data such as in
studies[1,14] indicate that the qualitative behavior of the Fig- 2 is that along the reversible branch, the density is
compaction process is similar for varying bead sizes. Thénonotqnlcally related to the accel_eratlon. We note that in 3D
container walls can also place constraints on the density flugimulations of granular compaction by Mehta and Barker
tuations. Since it is our aim to investigate these density flucl17] @ similar monotonic decrease in steady-state volume
tuations, the choice of bead size was a compromise betwedfction as a function of shaking intensity was found. Thus,
maximizing the container-to-bead diameter ratio and noPnly once the steady-state has been reached is there a single-
having the amplitude of the density fluctuations be obscurey@luéd correspondence between the average density and the
by statistical averaging over a large number of particles. applied acceleration.

()

Reaching the steady state Density fluctuations about the steady state

At a high acceleratiod” the steady-state density,s can After the granular material has been vibrated for a suffi-

be approached by simply applying a very large number otiently long time, it reaches a steady-state dengity Al-

taps (often greater than £0-10°). An example is shown in though there is a well-defined average density, Fig. 1 already
Fig. 1 forI'=6.8. The three panels correspond to the capacihints that there are large fluctuations about this value. The
tively measured density near the top, middle, and bottonmagnitude of the fluctuations depends on the vibration inten-
sections of the pile of beadéThe tap numbet is offset by  sity and depth within the container. Figure 3 shows in more
+1 tap so that the initial density can be included on thedetail an example of these fluctuations as a function of time,
logarithmic axis) Note that these curves represensiagle  dp(t)=p(t) —pss. In Fig. & we plot dp(t) for a fixed
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rence D(8p) versus W2=(p—psd? sgnp—ps) SO that a

51 top () Gaussian random process will have a triangular shape. In that
0 figure we plotD(8p) for the entire range of accelerations,
= , 4<TI'<7, for which fluctuations could be reliably measured
5 with our equipment. All data records were corrected for in-
0 strumental drifts using the reference capacitor. As can be
cg' -5 %WWWWWWW seen in Fig. 4, the majority of data shows Gaussian character.
middle . .
o For a small fraction of runge.g.,I'=5.9), however, we find
- 3 significant deviations from Gaussian behavior, particularly
(5) WWWWWWWAWWW near the middle and bottom of the pile. When such devia-
™| bottor tions are present they tend to preferentially occur for positive
5 ] values of¥2, i.e., higher densities. The deviations could be
0 due to a metastable state, away from the mean, in which the
-S| reference system gets trappgd. Fluqtuations ab_out this _metastable state
0 1000 2000 3000 4000 may even be distributed in a Gaussian fashion. The reason
Time (taps) why such metastable states fa}vor the Iowgr portion _of the
column and why they are prominent at certain valueF of
unclear.
10 (b) We can qualitatively check whether the distribution func-
0 MWWM“WW tions correspond to a stationary random process or whether
43 they conceal a slow drift away from an originally well-
'}8 r=4 defined mean densityStrictly speaking, a stationary Gauss-
ian process is one for which correlation functions of order
o 0 WMMWWMMWN higher than second are zero, see R&€]). This is done by
e -10lr=5.1 dividing each time record into two equal length halves and
< 10 then determining the distribution functions for each half
0 MWWWWW% separately, as shown for selected value$' @ind depths by
the open symbols in Fig. 4. We find that in practically all
'%8 [=3.9 cases the fluctuations do appear to be stationary and, more-
over, that in the very few nonstationary cases observed, the
0 Gaussian character is recoveredlater times (i.e., in the
-10tr=6.8 second half of the recoyd
0 1000 2000 3000 4000 By assembling 132 successive time traces of the type
Time (taps) shown in Fig. 3, we can obtain continuous time records con-

taining 540 672 data points. From such records we calculate
both the density autocorrelation function and the power spec-

FIG. 3. Fluctuations in the volume densifip(t)=p(t) —pss . : _
after the system has had sufficient time to relax to a steady-statterum for the density fluctuatlonsSp(w), where the fre

density pss. In (a) the fluctuations at three different depths are duencye is measured in units of inverse tap§. In Fig. 5 we
shown forl'=5.9. The reference capacitor is used to correct for an lot Sp(w)_ versusw for the three depths at various values .Of
instrumental drift. The dependence of the fluctuations Ioris a_lcce_leratlonI‘=4.3, 5.1, 5.9, and 6.8. We note s_everal dis-
shown in(b) for the beads near the bottom of the pile. Fluctuationstinctive fgat_ures tc,) these power Spec”?' In p_art'CUIa_r’ three
over a broad range of time scales are evident. characteristic regimes emergé) a white noise regime,
Sp(w)ocw0 below a low-frequency cornew,, (i) an

value of acceleration'=5.9, but measured at different intermediate-frequency regime with nontrivial power-law be-
depths in the container. Note that the rate at which the derhavior, and(iii) a simple roII—offSp(w)ocw*2 above a high-
sity varies in time decreases with depth into the pile. That isfrequency cornerpy, . This classification appears to apply to
the top of the pile has more high frequency noise than thell traces shown in Fig. 5. It is most pronounced for the
bottom. The curve marked “reference” is the reference ca-spectrum in the lower right hand panel. For spectra whgre
pacitor to which no vibrations are applied. This last curve isandwy are sufficiently separated in frequency, the data show
essential to compensate for drifts that could occur in thdhat the spectral dependence betwegnand wy cannot be
electronics over the very long period of our measurementsapproximated by just a simple superposition of two separate
Each record shown here is 4096 taps long and up to 13Rorentzians each having a frequency dependeBee/(1
successive such records were assembled to produce one veryw?72) but different characteristic times A comprehen-
long time sequence. Figurél8 shows the fluctuations in the sive analysis of this region reveals that the most consistent
density measured at the bottom capacitor as a function alescription for all the data is obtained with a Lorentzian tail,
acceleratiorl’. As I is increased both the magnitude of the S(f )*w 2 just abovew, , followed by a region with
fluctuations and the amount of high-frequency noise in-Sp(w)uw*‘s (with 6~0.9+0.2) stretching up towy, the
crease. high-frequency corner.

From data as in Fig. 3 we can obtain the shape of the One result from the data in Fig. 5 is the dependence of
distribution function for the fluctuation amplitudes. We plot both corner frequencies on the accelerafibrTo determine
in Fig. 4 the logarithm of the relative probability of occur- these frequencies we used a combination of two methods,
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FIG. 4. The distribution functionB (Jp) for the occurrence of fluctuation amplitudes in the steady state are dlsotliah circleg for the
three depths at various. Plotted as a function o¥2= §p? sgn(p) a Gaussian distribution has a triangular shape. For selected panels, the
time dependence of the distributions is shown by plotting the distribution functions for only théofest squarg@sor second(open
triangles half of the time record. The majority of data appears stationary even when significant non-Gaussian deviations are observed, e.g.,
atI'=5.9 near the middle and bottom of the pile.

which we illustrate here for the simple case of a Lorentziaroutsidethe experimentally accessible frequency window. A
spectrum. First, for any Lorentzian, the produes, has a  detailed discussion of the more general case, where the sig-
maximum precisely atv=1/7 so thatw, and wy can be nal consists of a superposition of independent fluctuators
associated with the frequencies at whieB, exhibits peaks. with a distribution of relaxation times will be presented
Second, even though we were using extremely long timelsewherd19].

records they are still of finite length. Figure 5 clearly indi-  Figure 6 plots the resulting corner frequencies as a func-
cates cases where, is difficult to obtain because of the tion of applied acceleration. The trend is for bath andw,
large statistical variance~25%) in'S, throughout the low- to increase as a function of increasifigind with decreasing
est decade in frequencies. In these instances we employ@épth into the pile, see Fig(®. We note that over the rela-
the additional information contained in the one-sided sindively small available range df, the variation ofwy is con-
transform of the density-density autocorrelation function. Forsistent with behavior reminiscent of thermal activatian
example, for a single Lorentzian for which the autocorrela-= wy exp(—I'/T’). In this context,I'y would represent an
tion function is simply<e !, the ratio of sine to cosine energy barrier and, would be an attempt frequency. We
transform of the autocorrelation function is given by,  find that a value of (=~ 15 is consistent with all the data, and
which depends only or. A plot of this ratio versuso then  that the greatest variation is in the parameigr which var-
allows one to obtainw, =1/7 even if this frequency falls ies from 2x10 3 to 7x10 2 for w,_ and 1 to 15 forwy .
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FIG. 5. The power spectral densi§y (tapg of the fluctuations as a function of frequeneyin the steady state is shown for the three
depths at variou'. For most spectra, two characteristic corner frequeneie®ndw,, , are discernible which shift to higher frequencies for
increasingl” and decreasing depth. The characteristic regimes of behavior are denoted by the dashed lines in the lower right hand panel,
which are guides to the eye.

l1l. DISCUSSION tive approach to the compaction problem is due to L[2G]
who proposes a phenomenological decay law for successive

explain the kinetics of compaction. Although the proposeojmﬂ:“rse pa_cking fraction_s. Moreover_, recent models based on
mechanisms are compelling, their quantitative prediction&he dynamics of crystallme clusters in the material have been
fail to describe the time dependence observed experimentalRfOP0sed by Gavrilof27] and by Head and Rogef28].
[1]. In light of our experimental results, we pay special at- he;e approaches lead to a time evolution that is essentially
tention to models based on free volume considerations as gduivalent to Eq(1).

appears that they not only capture the experimentally ob- A simple heuristic argumeritl2,24 for the compaction
served slow relaxation towards the steady state, but may algocess illustrates how the effects of free volume can lead to
provide a valid framework for understanding the fluctuationthe observed inverse logarithmic behavior. If each grain has
spectrum. Such model8-10,12,13include strong nearest- a volumeV, and we start with a number of grains per unit
neighbor repulsive interactions between particles that effecvolume, then the volume fraction is given y=nV,. In
tively block the occupation of adjacent sites. On very generafjeneral there exists a maximum possible volume fraction,
grounds it is reasonable to assume that for the case of grangs,ay, corresponding to the configuration of grains that occu-
lar compaction, the rate of increase in volume density igies the least amount of volume. Then, at some volume frac-
exponentially reduced by free volum23—25. One alterna- tion p, the average free volume available to each grain for

Several mechanismgl7,20-22 have been proposed to
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| sence of any void-creating mechanism that would be repre-
. K',p {a) sented by a competing term on the right-hand side of(Bq.

s lr)rgggg | (The consequences of including a mechanism for the genera-
i tion of voids are discussed in the next section for the “park-
ing lot model” and in Appendix A. The competition be-
tween void annihilation and creation during tapping naturally
leads to density fluctuations. We can also examine our data
for the dependence of the corner frequencies on the ac-
celeration I' [Fig. 6(b)], where we found thatwy

=wqy exp(Ty/T). We use the fact thap is a monotonic
function of I' in the reversible steady-state regirtféig. 2)

and write to first ordep(I") =~ pmax— M, wherem is a posi-

-1
O, (taps™)

r tive constant, locally approximating the slopg/AI" (see

68 59 5.1 4.3 Ref.[14] for data on other bead sizeSubstituting in forl”,

i (b) the expression forwy can then be rewritten asoy
107! + i i i = woeXd —Mly/(pmax—p)]- This has the same form as the

right-hand side of Eq(2) (in the limit that p— pna) and

. indicates that the kinetics depend sensitively on the available
103 L é % free volume,=(1/pnax—1/p). As T is reduced and the den-
% é sity approaches the maximum density, the kinetics slow

1
O, 0 (taps™)

Foe top down rapidly. The manner in which the kinetics slow down
10° Lo m battom is reminiscent of the Vogel-Fulcher form used to describe

od o om another class of disordered metastable materials, namely,
r! glasseg$29]. Similarities to glasses have recently been found

in another approach to the compaction prodé@sslQ.

FIG. 6. The characteristic frequencies, (open symbolsand
wy (solid symbols, in the power spectra plotted as a function of IV. THEORETICAL MODEL AND SIMULATIONS

1T. The general trend is for botkh, and wy to increase with OF COMPACTION

increasingl’ and decreasing depth into the pile. The dashed line in

(b) is a guide to the eye, indicating that the trend is consistent with The parking lot model

an activated-like behaviapxexp(-1'g/T'), with Iy~ 15. For com- In an attempt to explicitly work out some of the conse-
parison, (@) shows the dependence @f; on I'. guences of the free volume approach to granular compaction,

we next discuss a simplified model. The model was previ-

rearrangements ;= Vy(1/p— 1/pm,y). During compaction, ously studied in the context of chemisorpti#8-25,30,31
individual hard-core grains move, and when a void largeand protein binding32]. Despite its simple nature, it gives
enough to contain a grain is created, it is quickly filled by aremarkably good qualitative agreement with the experimen-
new particle. When the volume fraction is large, voids thetal data, both for the approach to the steady state and for the
size of a particle are rare and a large number of voids musfpectrum of fluctuations in the steady state. This model has
rearrange to accommodate an additional particle. We can eghie advantage that it readily lends itself to computer simula-
timate the rate of compaction by assuming thatgrains  tions; we restrict ourselves to the one-dimensidaal) case,
must rearrange in such a way that they contribute their entirgut extensions to higher dimensions are straightforward.
free volume to create a grain-sized voMly;=V,. We find  Moreover, much is known about its low-density limit, for
that this number increases Bs= ppmax/(Pmax—p) during the  which mean-field equations exist that are amenable to ana-
compaction process. For independent, random grain motiolytic treatment(see the Appendix In 1D, the model can be
during a tap, the probability foN grains to rearrange and compared to parallel curbside parking where there are no

open up a grain-size void is then N. Consequently, marked parking spaces. For the person wishing to park a
vehicle, the familiar situation is that there exist large, but not
dp/dtx(1—p)e N=(1—p)e PPma/(Pmaxp), (2)  quite large enough, spaces between previously parked cars.

The analogous question to the one we have been asking is

The rate at which the density increases is proportional to theHow many other cars have to be moved just a bit for the
void volume and the probability for such a rearrangementadditional one to fit in?”
The latter exponential factor reduces the rate and dominates The model is defined as follows: identical particles of unit
for large p. In the limit p— pya We haveN~(pna)¥(pmax  length adsorb uniformly from the bulk onto a substrate with
—p) and the solution of this equation is given asymptoticallyratek , and desorb with ratk_ . In other wordsk, adsorp-
by p(t) = pmax—A[B+In(t)], where A and B are constants tion attempts are made per unit time per unit length, and
[10,13,24,2% This result closely approximates our experi- similarly, the probability that an adsorbed particle desorbs in
mentally based fitting form, Eq(1), for the ensemble- an infinitesimal time interval betwedenandt-+dt is k_dt.
averaged(t) as it approaches the steady state. While the desorption process is unrestricted, the adsorption

The solution to Eq(2) always approaches the maximum process is subject to free volume constraints, i.e., particles
densitypmax @nd does not allow for a lower steady-state den-cannot adsorb on top of previously adsorbed particles; see
sity. The reason that this model leads to jamming is the abFig. 7. This stochastic process is well-defined in arbitrary
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FIG. 7. The adsorption-desorption process. Adsorption is suc-
cessful only in spaces large enough to accommodate a particle.

Desorption of a particle, on the other hand, is unrestricted. 107 il ‘ !
10*  10°  10* 100 10°
dimension and clearly satisfies detailed balance so that the 0] (MCS'l)
system eventually reaches a steady-state density. In one di-
mension,pma=1. FIG. 9. Power spectreg, (MCS), of the density fluctuations in

Mapping the model on to the experiment, we associate ate simulation of the one-dimensional parking process. The evolu-
adsorption event with the annihilation or filling of a void tion of the spectral dependence is shown for values of the katio
within the pile of beads, whereas a desorption event is asso=33.16.10°, 10, corresponding to final steady-state densifigs
ciated with the creation of a void. The ratio of adsorption to=0-72, 0.77, 0.84, and 0.88, respectivéspe text The strongest
desorption ratesk=k, /k_, determines the final steady- dependence ok is for w _, which decreases rapidly as the density
state density in the modéee also the AppendixThus one increases. Such spectra are similar to those found in the experiment,

can associaté in the model with the magnitude of the ac- 5¢¢ F19- >
celerationl” in our experiment. density was attained before density fluctuations were re-
corded. For low densities;<<0.37 we find that in the simu-
Simulation of compaction based on the parking lot model lation the power spectra of the fluctuations are best described

_ _ ) _ by a Lorentzian having a single characteristic time scale, as

In this section we compare the experimental results withexpected from the mean-field analy§iee Eq.(A4) in the
Monte Carlo simulations of the 1D parking process. The deappendix. However, at higher densitieghigher k) local
tails of the simulation are described elsewhigX4]. Here we  fluctuations dominate the dynamics and the power spectra
report our results for a system size of 100; similar resultsshow the emergence of two distinct corner frequencies,
were found for a system size of 25. which become progressively more separated. This is shown

The simulations were started from a zero density initialin Fig. 9 for a wide range of ratids, wherek, was fixed at
state and allowed to evolve to various steady-state densities value of 1. Most notable is the low-frequency corner,
by varyingk_ at a fixed value ok, =1. In Fig. 8 we show which shifts rapidly to lower frequencies for small incre-
the time evolution of the density as it approaches a steadyments in density. By comparison, the high-frequency corner
state densityps=0.84. The steady-state densities obtaineddecreases much more slowly. N
after equilibration coincide with those predicted by Eq. Our simulations find power spectr&,(w), strikingly
(A2a) in the Appendix. We find that the simulations repro- Similar in shape to those obtained experimentally wien
duce the slow logarithmic relaxation towards the steady state” 0-50- Again we see three distinct reginiésy. 9). Below a
in agreement with Eq(1). corner freql_Jency,w,_, there is white nmse{Sp(w)Zocw 1.

We now turn to the density fluctuations. In this case, theAbove a high-frequency comerwy, S(w)*w = The

simulations ran long enough to ensure that a steady-stagimulations offer the advantage of allowing the separation
betweenw, andwy to be tuned by increasing the valuekof

or, equivalently, increasing the density. This allows the sys-
tematic investigation of the spectral dependence in the inter-
08l ] mediate regime between the two corner frequencies. As in
’ T the experimental data, we find that there is a Lorentzian tail,
& Sp(a))owf2 just abovew, . At higher frequencies, stretch-

1 A

o 06 i ing up to the high-frequency cornesy,, we find a power-
law regimeSp(w)ocw*‘S. The exponen® appears to depend
0.4 ] slightly on the separation between the two corner frequen-
cies. For the largest separations that span nearly 5 decades in
02+ 8 frequency we findé~0.5. This value is smaller than that
found in the experimental data5€ 0.9), but again is incon-
0 : . sl ‘ sistent with a simple superposition of two Lorentzians hav-
10° 100 102 100 10t 10 ing characteristic time scales;, * and o, .

Time (MCS)
_ _ o _ _ V. ANALOGY WITH THERMAL FLUCTUATIONS
FIG. 8. The time evolution of the density in the simulation for
k=10 (ps=0.84). Time is in units of Monte Carlo ste(8ICS). In ordinary statistical mechanics, the fluctuation-
The solid line represents a fit to E(.). dissipation theorem allows the determination of the response
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of a system to a small perturbation from its thermal fluctua-

tions about equilibrium. In this section, we will explore the s op 5
possibility that we can derive similar information about the & 4 guddie

granular system from its fluctuations about its steady-state N -
density. In the granular thermodynamics theory developed 2 - o ,!—

by Edwards and co-workers, an analogy is made between ﬁV Ly o _,_{——’Z’ ]
granular and thermal systems. The basic assumption is that = -7 __-n

the volume Vof a powder is analogous to thenergyof a o ---e 770 ]
statistical systemwe note thatV here refers to the total

volume and not just to the free voluménstead of a Hamil- 9575 IS8 1595 1605

tonian, there is a function that specifies the volume of the
system in terms of the positions of the individual grains. The

“entropy” is thus the logarithm of the number of configura- £ 19, The average variance of the experimental volume fluc-
tions: S=\ In fd (all configurations where is the analog  ations(open symbolsas a function of the steady-state volume.
of Boltzmann’s constant. Using this they defined a quantityrhe trend is for the variance to increase with increasing volume and
analogous to a temperature in a thermal system, which theyepthinto the pile. The solid symbols represent the variance as
call the “compactivity” X: X=49V/dS. In contrast to the determined from the distribution of fluctuation amplitudes in Fig. 4
notion of “granular temperature,” which depends on the(see text The dashed lines are linear fits to the solid symbols.
random motion of the particles, the compactivity character-

izes the static system after it has reached a steady-state dG{TQV—VS )?) for several steady-state volumes along the re-
sity via some preparation algorithm. Such an algorithmyersible branch of Fig. 2 over the rangec# <7 [33]. The

would be one as we have described above, where we haw®lid curve through the data for the top of the pile represents
vibrated the granular system until it has reached the reverss Jinear fit to the function:

ible steady-state density. If this theory is valid, then we

should be able to define an equilibrium such that two sys- <(V_Vss)2>:a+ bV,

tems in equilibrium with a third system are also in equilib-

rium with each other. That is, no net volume will be trans-wherea=—7.2x 10" * andb=4.9x 10" *. This implies that

ferred between the two systems when they are placed ithe magnitude of the fluctuations goes to zergat0.68,

contact with each other if they have the same valuX.of  that is, near the close-packed density. Using this form for the
In a thermal system we can write the specific heat in twadependence of the fluctuations W in Eq. (5) we find that

ways as follows:

SS

I XxIn(a+bVgg. 6
Cy=dEy/dT|y={((E—Eg)?/kgT?, 3) ( = ©
. A This functional dependence is valid only over the limited
whereEq IS the equilibrium average OT the enerfyof the range of experimerl?tal data, and may notybe an adequate de-
syzth,kB IS Boltzmﬁann‘s constanff IIS tEhg terc?ple;]ature,f scription of the general behavior. Below, we discuss a simi-
and(:--) represents the time average. In Edwards' theory fof, analysis for the simulation data for which a broader range
a powder the anglogqus quantity to the specific heat of df volumes can be explored. Using E&), we can evaluate
thermal system given in Eq3) becomes the difference in inverse compactivities between any two
steady-state volumes. We find that\ X, —1/AX,=0.04
where the subscripts 1 and 2 refer to the smallest and largest

where V is the steady-state volume. Since we have meaYolumes for which we have data. This result explicitly dem-
sured the density fluctuations in the steady statgs. 3-5,  onstrates how the compactivity increases for larger volumes

we are in a position to explicitly calculate the variance,(Smaller densitigs

((V—V<)?), of volume fluctuations for a given steady-state It is also interesting to consider the size of the fluctuating
volume V. defined here a¥.=1/p... We can then write volumes that give rise to the observed variance. This can be

estimated by assuming that the fractional fluctuations scale
v, . [%2 , as (6p?)/ p2=(8V?)IV:=k?IN, where §V=V—V,. This
fv dVes/((V=Ved %)= fx dX/AX"=1NX1 = 1NX;. is the usuaN~ 2 classical self-averaging property Nfin-
! ! (5) dependently fluctuating variables. The parameateccounts
for the fact that there exists a maximum range of density
Equation(5) allows us to measure the difference in compac-changes for each grain that does not compromise the me-
tivities for any two volumes as long as we know the fluctua-chanical stability of the granular assembly. Figure 10 indi-
tions of the volumes(i.e., densities as a function of the cates tha{ §V2)/Vi=1/40 000, and as an upper bound we
average volume. This is equivalent to obtaining the differ-let k= py—prp=0.74—0.55~0.2. We then find thalN
ence in temperatures for a thermal system between any twa& 1600. Since we know that each capacitor averages over a
energies. Clearly, a¥ increasesX is expected to increase volume corresponding to 6000 beads, this suggests that there
as well. Equation{5) allows the determination of an absolute are roughly 1600 independently fluctuating clusters each
value for the compactivity only once a suitable point of ref- consisting of~4 beadslower bound.
erence can be found. An important feature that can be seen in Fig. 10 is that the
In Fig. 10 we show the experimentally obtained values ofvariance becomes systematically larger the deeper into the

C=dV/dX=((V—Vs?)/AX?, (4)
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pile one goegsee alsd(dp) for I'=5.1 in Fig. 4. For the 4

middle and bottom sections of the column, the variance ap- 107 RN RN

pears nonmonotonic with a peak néay=1.592, see open

symbols in Fig. 10. Examination of the corresponding distri-

butions of fluctuation amplitudd$”=5.9 in Fig. 4 indicates

that the increased variance is due to a non-Gaussian tail in

the distributions(see the description of Fig. 4, abgvé-or

comparison, we have also determined the variance from the N\

slopes of the distribution functions in Fig. 4. We used the

slopes corresponding to the low-density side of the distribu- ]

tions because these were most consistent with a Gaussian 10-42,, e

form over all accelerations and depths. In this way, the effect 0 10 20 30

of the non-Gaussian tails in some of the distributions can be

avoided. These results are shown as solid symbols in Fig. 10 $s

and the dashed lines correspond to linear fits through the . .

data. Here too, it is evident that the variance is larger for . FIG._ll. The aver_age variance of the volume fluctuations in the

larger depths. A larger variance implies a correspondingly?'muiation as afunction of the steady-state voluig, The frac-

larger phase space. At first this seems counterintuitive beqonal variance as a f““C“OF‘ m.,ssf? Is plotted on Io_garl_thm|c
. . . axes in the inset. The solid line is a power-law fit given by

cause the time record&ig. 3(@)] and power spectréFig. 5) 0124 1)137

indicate that density fluctuations are slower at the bottom 09 ' ss '

the pile. Although the kinetics near the bottom of the pile

may b_e slower, there is a greater nur_nber of com‘lguratlonﬁ1crease in compactivity with system volume.

with different volumes that are accessible to those beads. For comparison, the 3D experimental results correspond

A depth dependence to the variance also suggests ”18 relatively high densities in the 1D simulation because in

presdenrr];e of a gradient oiln the comlpactivity.bln Fig.flo, WE3D the available void volume is with respect to the random
used the average steady-state volurkgs obtained from .. packed limit £0.64) while the corresponding limit in

o_p_ticQI measurements of the total colgmn height. One possijy i 1. Taking this into account, the 30% increaséa’2)
bility is that this average volume density does not accuratel h the experimental results shown in Fig. 10 compares well

represent the density In .the different sections of the. pile. | ith the simulation data in Fig. 11 over a similarly restricted
so, the larger compactivity near the bottom of the pile ther],finge inv
Ss*

implies that the bottom beads are actually in a less compac
state than those at the top. However, from the trendw?)
versusVg in Fig. 10 the difference in packing fraction be-
tween the top and bottom of the pile that would be necessary |n this paper, we have examined the volume fluctuations
to have the variances be equal would bp~0.035. Since about a steady-state density for a granular system. For these
this difference is huge on the scalel’) for the reversible measurements to provide a useful analogy with a thermal
branch in Fig. 2 we do not believe this to be a plausiblesystem, it is essential that the fluctuations be measured in
explanation. Rather, it appears that there is another variablgteady-state conditions. For this reason, we have explicitly
such as pressure, in addition to the volume, that controls thgaken data on the reversible density line as shown in Fig. 2.
depth dependence of the fluctuations. Indeed, supporting evErom these measurements, we have been able to determine
dence to this effect can also be seen in Fig. 6, which showgxperimentally the compactivity, which is the quantity analo-

that the high-frequency corner,, decreases with increasing gous to the temperature in the theory of Edwagtial.
depth into the pile. Nevertheless, we expect that the system

is entirely jammed 6V2)— 0 at the same density.e., pmay)
for all depths in the pile.

With the simulation described above, a broader range of
densities can be explored than that which is experimentally
accessible. Figure 11 shows the dependence of the variance
in volume fluctuations as a function of steady-state volume
for the 1D parking lot model. The rapid decrease in variance
nearV¢—1 suggests that there may be a diverging length or
time scale as the system approaches its most compact state.

> (arb. units)

<oV
=

Figure 12 indicates a nontrivial functional dependence to the

VI. CONCLUSIONS

200 ]

100

I/XX(VSS=1 .10) - I/A.X(VSS)

Indeed, plotting the normalized variance as a function of the 0 e ]
free volume ¥s—1) does reveal power-law-like behavior 10° 10! 10°
(V2 V2 (Vs 1)P with B~1.4. This is shown in the in- v

8§

set of Fig. 11. Proceeding with the compactivity analysis, the
data in Fig. 11 was numerically integrated to yield the left- |G, 12. The left hand side of E5) is numerically evaluated
hand side of Eq(5) to within a constant. An absolute value and plotted as a function of steady-state volume for the simulation
cannot be established with just our data. In Fig. 12 we plobata. As plotted, the difference in inverse compactivities between
the difference in inverse compactivity as a function of vol-the highest density configuratiov{=1.1) and a low density con-
ume. This difference is with respect to the statg=1.1. figuration (higherVg) can be read off directly.
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Theories based on free volume seem particularly welboth our experimental and simulation data are not consistent
suited for describing the data. As the system approaches itgith a superposition of two independent exponentially de-
final state, a growing number of particles have to be rearcaying processes.
ranged in order for the density to be increased locally. The In this paper we have presented results for monodisperse
rate of increase in the density is exponentially reduced bypherical particles subject to vertical shaking. Realistic pow-
this number leading to a logarithmically slow approach to theders are far more complicated with properties that depend on
steady-state density as observed experimentally. Mont&ctors like cohesive forces, polydispersity in size, and ir-
Carlo simulations of a one-dimensional adsorption-regma”t)( or anisotropy in shape. Nevertheless, our resu_lts
desorption process based on these ideas show fluctuatiof@" Provide a valuable benchmark for evaluating the predic-

about the steady state density that are strikingly similar tdions of theoretical models and simulations. The applicability

those observed experimentally. These results attest to the irffi CONCEPIS such as compactivity or “granular temperature

portance of volume exclusion for granular relaxation and" the description of que_lsistati(; granular "‘?edia reguires fur-
steady-state dynamics under vibration ther exploration. In particular, it would be interesting to ex-

Despite this model's simplicity and obvious shortcom- amine the properties of granular systems comprised of par-

ings, it appears to capture an essential mechanism underlyiﬁ les with shape anisotropies and subject to isotropic

the remarkably slow relaxation and the nature of the density ak(;ng. Furthermore, oufr expenr:wental datglsuggest tt?a:c tne
fluctuations. This mechanism is associated with the reductiofcady-State properties of a granular assembly cannot be fully

of free volume available for particle motion as the density escribed by a single state variable, i.e., the volume. Rather,

increases. Although our simple model cannot predict the exa"other variable is required to account for the depth depen-

- o ; dence of the volume fluctuations.
perimental values of the fitting parameters in Ef), the X X . .
inverse logarithmic density relaxation towards the steady ' Ot€ added in proofThe width of the density fluctuations

state is the same one observed for aranular compatdiess N the parking Iqt mo_del can be cal_culated in t_he mean-field
Fig. 1). g pags approach described in the Appendix. For details see E. Ben-

In the simulation model, our treatment was restricted toNaim etal, Physica D(to be pgblishe}i Such c_alculation
edicts a power law as seen in the inset to Fig. 11 for the

one-dimensional processes, but we expect that the resultd X ;
hold in higher dimensions as well. There are other important'mulation data, but with an exponegit=2.
distinctions between the model and real granular media. One

difference is that in the structure of a granular assembly the ACKNOWLEDGMENTS
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namely, between the random close packee0.64 and ran-
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It is interesting to speculate whether the reduction in free  For the one-dimensional parking lot model an analytical
volume leads to a crossover from a simple independent pamean-field description exists. On the continuum, an approxi-
ticle picture for compaction to a more complex process ainate rate equation for the density evolution was constructed
higher densities, presumably involving correlations over infrom the exact steady-state void distribution. This equation
creasingly longer length and time scales. In this regard, wgields an approach to the steady state that is essentially iden-
have demonstrated that density fluctuations are an importatital to that found in the experimefite., Eq.(1)]. However,
probe of the underlying microscopic dynamics. Indeed, thet is less successful in capturing the fluctuation behavior,
study of fluctuations may elucidate the physics ofparticularly for the high densities relevant here. We summa-
independent- and cooperative-particle motions, which lead teize the salient analytic results for the model. Details can be
the macroscopic response of a powder subject to verticgbund in Refs[23—-25. A modified Langmuir equation can
vibrations. For instance, it is interesting to note that frombe written for the rate of change in densjg4]:
both the experimental and simulation data there appear to be
two characteristic time scales, related to the corner frequen- d—p=k+(1—p)efp’(1*”)—k_p. (A1)
cies w, and wy in the power spectra, that characterize the dt
steady-state dynamics. This behavior may be related to the
results found in 3D simulations of vibrated powders by Me-The gain term is proportional to the fraction of unoccupied
hta and Barkef17,20,34 and in simulations of a frustrated Space, which is modified by an “excluded volume” con-
lattice gas/8—10]. Those results suggested the existence oftraint. It was previously shown that in steady state the prob-
two exponential relaxation mechanisms: the faster of the twa@bility s(p) that an adsorption event is successful is given by
involves the motions of independent particles while thes(p)=e " (*=r) [24]. This so-called “sticking coefficient”
slower involves collective particle motions, which were vanishes exponentially gs— 1. This effectively reduces the
found to be diffusive. However, we emphasize again thasticking rate k. —k,(p) =k, s(p). The desorption process,

APPENDIX
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on the other hand, is unrestricted and so the loss term ik_—0 of Eq.(Al). Fort>1/k, , it can be shown that the
proportional to the density itself. system approaches complete covergges 1, according to
The steady-state densipy, which is obtained by impos- [24,25
ing dp/dt=0, can be determined as a function of the adsorp-
tion to desorption rate ratidk=k, /k_, from the following
transcendental equation: This is confirmed by numerical simulations in one dimension
N ) (see Ref[24] and Sec. IV. We conclude that the excluded
ae®=k, with a=ps/(1-ps). (A28)  \51ume constraint gives rise to a slow relaxation.
Equation(A3) holds indefinitely only for the truly irre-
versible limit of the parking process, i.e., foe= . For large
but finite rate ratios, the final density is given by E42b).
k for k<1 By computing how a small perturbation from the steady state
psd k)= 1-(nk)~! for k>1 (A2b)  decays with time, an exponential relaxation towards the
(In or ' steady state is founlghss— p(t)| e VT for t=>1/k_ . The re-

The effect of the volume exclusion constraint is striking, al@xation time is
huge a}dsorptlon to desorption rate ra_lkez, 10, is necessary T=(1-p?k_. (A4)
to achieve a 0.95 steady-state density.

We now focus on the relaxation properties of the systemThe above results can be simply understood: the early time
The granular compaction process corresponds to the higbehavior of the system follows the irreversible limit lof
density limit, and we thus consider the desorption-controlled=0. Once the system is sufficiently close to the steady state,
case,k>1. Hence, let us fix, =1 and consider the limit the density relaxes exponentially to its final value.

p(t)=p,—1/(In k. t). (A3)

The following leading behavior in the two limiting cases is
found
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