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Two-exponential decay of dynamic light scattering in near-critical fluid mixtures
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Two hydrodynamic relaxation modes associated with mass diffusion and thermal diffusion are present in
binary fluids. In near-critical binary fluids a coupling between the two modes results in two characteristic
relaxation times, neither of which is associated with pure mass diffusion or pure thermal diffusion. Instead, the
relaxation times are inversely proportional to two effective diffusivitiesD1 and D2, which can be detected
experimentally by dynamic light scattering. The physical meaning ofD1 and D2 changes as one considers
states in the vicinity of different points on the critical locus: in the infinite-dilution limit the diffusivityD1 of
the slow mode is associated with the thermal diffusivity and the diffusivityD2 of the fast mode with the mutual
mass diffusion coefficient, while in the ‘‘incompressible’’ liquid-mixture limitD1 is associated with the mass
diffusion coefficient andD2 with the thermal diffusivity. In addition we have determined the intensities
~amplitudes! of these relaxation modes, which can also be measured with light scattering. We discuss the
conditions at which a two-exponential decay of the dynamic correlation function can be measured. As an
example we consider mixtures of methane and ethane near the vapor-liquid critical line where the two expo-
nential decays indeed have been observed.@S1063-651X~98!05402-6#

PACS number~s!: 05.70.Jk, 64.60.Ht, 67.40.Fd
ti-
ds

e
a

in
iff
ar
on
ng

a
in

ic

-
ro

d of
e

ity

ite-

s
to
for
ns

of

i-
es

-
he
ted
d
n-

by
id
-

I. INTRODUCTION

Dynamic light scattering is a popular method for inves
gating the critical behavior of transport properties of flui
and fluid mixtures@1–3#. The critical slowing down of the
fluctuations of the order parameter can be detected by m
suring the time-dependent correlation function of the sc
tered photons. In one-component fluids the critical slow
down is caused by a dramatic decrease in the thermal d
sivity, while in binary mixtures it is associated with a simil
behavior of the mutual diffusion. The theoretical descripti
of the critical slowing down is based on dynamic scali
theory@4# and on mode-coupling theory@5#, which has been
confirmed experimentally by many investigators@6–14#.
However, there is an important feature in dynamic critic
phenomena that has not yet been adequately discussed
literature.

In binary fluids one can in principle detect with dynam
light scattering two diffusive modes@15,16#. Specifically, the
two effective diffusivitiesD1 andD2 that determine the de
cay rates of the two modes can be derived from the hyd
dynamic theory of fluctuations@15,17#:

D1,25
1

2
~a1D!7

1

2
@~a1D!224aD#1/2 ~1.1!

with

D5DF11
kT

2

TCP,c
S ]m8

]c D
P,T

G , ~1.2!

wherea5l/r8CP,c is the thermal diffusivity,l the thermal
conductivity,r8 the mass density,CP,c the isobaric specific
571063-651X/98/57~2!/1946~16!/$15.00
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-

heat capacity,D the mass diffusion coefficient,m8 the dif-
ference between the chemical potentials of the solute an
the solvent per unit mass,c the mass concentration of th
solute, andkT5DT /D the thermal-diffusion ratio withDT
being the thermodiffusion coefficient@18#. If the coupling
between mass and thermal diffusion is absent (kT50), D1
andD2 are associated with either the pure thermal diffusiv
a or the pure mutual mass diffusion coefficientD. The cou-
pling between these two modes also vanishes in the infin
dilution limit.

At the critical point of a binary fluid mixture the mas
diffusion coefficientD vanishes and asymptotically close
the critical point the mass-diffusion mode is responsible
the critical slowing down of the order-parameter fluctuatio
@19#. The thermal diffusivitya should not exhibit a signifi-
cant change in the immediate vicinity of the critical point
a mixture asl remains finite andCP,c is either constant~in
the mean-field theory! or weakly divergent~in the scaling
theory! @20,21#. Therefore, asymptotically close to the crit
cal point the coupling between the two hydrodynamic mod
again becomes unimportant and the mode with diffusivityD1
represents aslow ~critical! diffusion mode asD1 tends to the
diffusion coefficientD, while the mode with the diffusivity
D2 represents a relativelyfastdiffusion mode asD2 tends to
the thermal diffusivitya. This is why all experiments per
formed on binary fluids have been interpreted until t
present time in such a way that the diffusivity associa
with the critical diffusion mode in mixtures was identifie
with the mass diffusion, whereas in pure fluids it was ide
tified with the thermal diffusivity.

The critical decay rate has been studied extensively
dynamic light scattering in pure fluids near the vapor-liqu
critical point and in binary liquid mixtures near the liquid
1946 © 1998 The American Physical Society



s

ax
s

s

s
ui
a

ec
ith
re
ul

e
id
e
is-
r
es
e-

-

b
s
e
or
tiv
so
n

h
n
u-
th
n
n
er
he

en
x-
y,

m

l

e

en-

f-
ure

the
ropy

ure

e
ary

is
.
will
ns.

57 1947TWO-EXPONENTIAL DECAY OF DYNAMIC LIGHT . . .
liquid critical (consolute) point [6–14]. A limited number of
measurements have been carried out on binary mixture
near their vapor-liquid critical point [10,22–24]. Despite
the fact that the theory predicts the existence of two rel-
ation modes near the critical points of binary fluid mixture,
there is only one experiment, reported by Ackerson and Han-
ley [22], in which two relaxation modes actually have been
observed: namely, near thevapor-liquid critical point of a
mixture of 71.07 mol% methane and28.93 mol% ethane.
The two decay rates observed were attributed to pure mas
dif fusion and pure thermal dif fusivity. Miura et al. @10# in-
vestigated 3He-4He mixtures of different composition
along their respective critical isochores near the vapor-liq
critical points, but were able to detect only a single dec
rate corresponding to the slow relaxation mode with eff
tive diffusivity D1. The two decay rates, one associated w
mass diffusion and another with thermal diffusivity, we
also detected in a noncritical liquid mixture of carbon dis
fate and acetone by Bergeet al. @25#.

In this paper we show that in binary fluid mixtures in th
commonly used experimental proximity to the vapor-liqu
critical point neitherD1 nor D2 can be associated with pur
mass diffusion or thermal diffusivity. While the character
tic behavior ofD1 and D2 near the critical line is rathe
insensitive to the composition, the physical meaning of th
effective diffusivities changes drastically from the infinit
dilution limit to the ‘‘incompressible’’ liquid-mixture limit.
We will show that at infinite dilutionD1 ~slow mode! be-
comes the thermal diffusivitya andD2 ~fast mode! becomes
the mass diffusion coefficientD, while in the incompressible
liquid-mixture limit D1 is to be identified with the mass dif
fusion coefficientD and D2 with the thermal diffusivitya.
Generally, the apparent decay rates will obey crossover
tween these two limits. This fact has not yet been addres
in analyzing dynamic light-scattering experiments perform
in fluid mixtures. To specify the experimental conditions f
observing the two relaxation modes we calculate the rela
intensities of the two modes and give a detailed compari
of the theory with experimental data for mixtures of metha
and ethane.

This paper is organized as follows. Section II gives t
theoretical background on light scattering from fluctuatio
in binary fluids. A comprehensive analysis of the two diff
sive modes is presented in Secs. III and IV. In Sec. V,
theoretical results obtained are compared with experime
data for binary mixtures of methane and ethane. Detectio
these two relaxation modes is a challenging task for exp
mentalists. We discuss the conditions for making this p
nomenon experimentally observable.

II. THEORETICAL BACKGROUND

A. Thermodynamic fluctuations

The field-dependent density of the thermodynamic pot
tial suitable for the description of near-critical binary mi
tures, the pressureP, is a function of three variables, namel
the temperatureT, the chemical potential of the solventm1,
and the solute-solvent chemical-potentials differencem
5m22m1, and it satisfies a differential relation of the for
@20,21#:
d
y
-

-

e

e-
ed
d

e
n

e

e
s

e
tal
of
i-
-

-

dP5sdT1rdm11rxdm, ~2.1!

wherer is the total molar density,x is the mole fraction of
the solute,s5rS is the entropy density withS being the
molar entropy, andm1 and m2 are molar based chemica
potentials.

In the Gaussian approximation̂dTdP&Þ0, ^dSdx&Þ0,
and ^dTdm&Þ0 and for either of the choices of the thre
thermodynamic variables (T,P,x), (S,P,x), or (T,r,m), the
fluctuations of these variables are not statistically indep
dent@26#. This is why, following Refs.@15,16#, we consider
a variablef defined as

f5T2
TaT

rCP,x
P, ~2.2!

whereaT52r21(]r/]T)P,x is the thermal expansion coe
ficient andCP,x the molar heat capacity at constant press
and composition. It can be shown that@16#

df5
T

CP,x
FdS1S ]m

]T D
P,x

dxG . ~2.3!

The set (T,f,x) is statistically independent with

^udPu2&5
kBTr

V S ]P

]r D
S,x

, ~2.4!

^udfu2&5
kBT2

VrCP,x
2 FCP,m2TS ]m

]T D
P,x

2 S ]x

]m D
P,T

G5
kBT2

VrCP,x
,

~2.5!

^udxu2&5
kBT

Vr S ]x

]m D
P,T

, ~2.6!

where kB is Boltzmann’s constant andV the volume in
which the fluctuations are considered. We also note that
expressions for the mean squared fluctuations of the ent
S ~used in calculatinĝudfu2&) and of the densityr are

^udSu2&5
kBCP,m

Vr
. ~2.7!

^udru2&5
kBTr

V S ]r

]PD
T,m

, ~2.8!

whereCP,m is the molar heat capacity at constant press
and constant chemical-potential differencem.

In classical thermodynamics the derivative (]S/]T)P,m
5CP,m /T and, hence,̂udSu2& are not well defined, since th
zero points of chemical potentials and entropy are arbitr
@20,21#. In contrast,CP,x and (]x/]m)P,T and, therefore,
^udfu2& and^udxu2& are well defined and measurable. This
why the introduction of the variablef is advantageous
These expressions for the thermodynamic fluctuations
be further used in evaluating the hydrodynamic fluctuatio
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B. Hydrodynamic fluctuations

The linearized hydrodynamic equations can be expres
in terms of the variablesP, f, andx @15#. In this paper we
are interested in the entropy and concentration fluctuation
constant pressure that contribute to the central~unshifted!
Rayleigh component of the spectrum of the scattered lig
We, therefore, do not consider the pressure fluctuation
constant entropy responsible for Brillouin scattering.

The correlation functions as a function of the wave nu
ber q can be found from the set of the linearized hydrod
namic equations by applying a Fourier-Laplace analy
@15,16#:

^df~q,t !df~2q!&

^udf~q!u2&
5

D12D

D12D2
e2D1q2t1

D22D

D22D1
e2D2q2t,

~2.9!

^dx~q,t !dx~2q!&

^udx~q!u2&
5

D22D

D22D1
e2D1q2t1

D12D

D12D2
e2D2q2t,

~2.10!

^dx~q,t !df~2q!&

^udx~q!u2&
5

T

CP,x
S ]m

]x D
P,T

^df~q,t !dx~2q!&

^udf~q!u2&

5
~]m/]x!P,T

CP,x

DkT

D12D2

3~e2D1q2t2e2D2q2t!, ~2.11!

where the coefficientsD1 and D2 are defined by Eq.~1.1!,
and the mean squared fluctuations off andx are determined
by Eqs. ~2.5! and ~2.6! in the thermodynamic limit, where
uqu→0: ^ zdf(uqu→0)z2&5^udfu2& and ^ zdx(uqu→0)z2&
5^udxu2&.

C. Light-scattering correlation function

The time-dependent electric fieldE(t) of the scattered
light is a superposition of waves scattered from individu
scattering centers. In actual dynamic light-scatter
~photon-correlation! experiments, the detector of the sca
tered light is a photomultiplier that responds to the intens
I (t) of the light that impinges on the detector. After th
resulting signal has been processed by a digital correla
the time-dependent intensity correlation function is obtain
which, being normalized by the average intensity of the s
nal, has the form@1,2#

C~q,t !511b0S~q,t !2, ~2.12!

where b0 is a constant depending on experimental con
tions, andS(q,t) the dynamic structure factor proportional
the time-dependent autocorrelation function of the dielec
constant fluctuations

S~q,t !5rVNA^d«~q,t !d«~2q!&, ~2.13!

where NA is Avogadro’s number. Here the dielectric co
stant« is taken at the frequency of the incident light.

The dielectric constant of a binary fluid is, in general
function of three independent variables:P, f, and x. The
dielectric equation of state«5«(P,f,x) can be expanded in
ed

at

t.
at

-
-
is

l
g

y

r,
d
-

i-

ic

a power series in the fluctuations of these variables. In fi
order approximation the local dielectric constant fluctuat
d« reads

d«5S ]«

]PD
f,x

dP1S ]«

]f D
P,x

df1S ]«

]xD
P,f

dx. ~2.14!

As the instantaneous fluctuations ofP, f, andx are statisti-
cally independent, one obtains

^d«2&5S ]«

]PD
f,x

2

^dP2&1S ]«

]f D
P,x

2

^df2&1S ]«

]xD
P,f

2

^dx2&.

~2.15!

As we do not consider Brillouin scattering, we neglect t
pressure fluctuations. The dynamic structure factorS(q,t),
which determines the light-scattering properties of the m
dium, is then given by

S~q,t !/rVNA5^d«~q,t !d«~2q!&

5S ]«

]f D
P,x

2

^df~q,t !df~2q!&1S ]«

]xD
P,f

2

3^dx~q,t !dx~2q!&1S ]«

]f D
P,f

S ]«

]xD
P,f

3@^df~q,t !dx~2q!&

1^dx~q,t !df~2q!&#. ~2.16!

One can prove from thermodynamics, that@15#

S ]«

]PD
f,x

5S ]«

]PD
S,x

5S ]«

]PD
T,x

1
TaT

rCP,x
S ]«

]TD
P,x

,

~2.17!

S ]«

]f D
P,x

5S ]«

]TD
P,x

, S ]«

]xD
P,f

5S ]«

]xD
P,T

.

~2.18!

III. LIGHT SCATTERING IN BINARY FLUIDS

A. Static light scattering „thermodynamic limit …

The overall intensity of the light scattering in a bina
mixture is proportional to the mean squared fluctuations
the dielectric constant given by Eq.~2.15! @and by Eq.~2.16!
at t50#. In the thermodynamic limit ofuqu→0 andt→0 we
obtain

^ud«u2&5
kBT

Vr F S ]«

]TD
P,x

2 T

CP,x
1S ]«

]xD
P,T

2 S ]x

]m D
P,T

G .

~3.1!

We modify Eq.~3.1! to separate the contributions from th
density fluctuations at constant composition and the com
sition fluctuations at constant density@given by Eqs.~2.8!
and ~2.6!, respectively#. To accomplish this, we use the fo
lowing thermodynamic relations:

S ]«

]xD
P,T

5S ]«

]xD
r,T

1S ]«

]r D
T,x

S ]r

]xD
P,T

, ~3.2!
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S ]«

]TD
P,x

5S ]«

]TD
r,x

1S ]«

]r D
T,x

S ]r

]TD
P,x

, ~3.3!

S ]r

]PD
T,x

5S ]r

]PD
T,m

2r22S ]r

]xD
p,T

2 S ]x

]m D
P,T

. ~3.4!

As the dielectric constant in practice does not depend
temperature at constant density, we neglect the deriva
(]«/]T)r,x in Eq. ~3.3!, so that

S 1

aT

]«

]TD
P,x

2

5S r
]«

]r D
T,x

2

~3.5!

and

S ]«

]TD
P,x

2 T

CP,x
5rS 1

aT

]«

]TD
P,x

2

~bT,x2bS,x!, ~3.6!

where bS,x5r21(]r/]P)S,x and bT,x5r21(]r/]P)T,x are
the adiabatic and the isothermal compressibilities, resp
tively. If one adds the term

kBT

V S r
]«

]r D
T,x

2

bS,x

associated with the pressure fluctuations into Eq.~3.1!, one
obtains the general equation for the mean squared fluc
tions of the dielectric constant:

^ud«u2&5
kBT

Vr Fr2S ]«

]r D
T,x

2 S ]r

]PD
T,m

1S ]«

]xD
r,T

2 S ]x

]m D
P,T

12S ]«

]xD
r,T

S ]«

]r D
T,x

S ]r

]xD
P,T

S ]x

]m D
P,T

G , ~3.7!

which can be further transformed to

^ud«u2&5S ]«

]xD
r,T

2

^udxu2&

1F S ]«

]r D
T,x

2

12S ]«

]xD
r,T

S ]«

]r D
T,x

S ]x

]r D
T,m

G ^udru2&

~3.8!

with

S ]x

]r D
T,m

5F S ]r

]xD
P,T

1r2S ]r

]PD
T,x

S ]r

]xD
P,T

21 S ]m

]x D
P,T

G21

.

~3.9!

In the limit x→0 this equation takes the well-known form
@27#

^ud«u2&5S ]«

]r D
T

2

^udru2& ~3.10!

with ^udru2& given by Eq.~2.8!.
n
ve

c-

a-

B. Dynamic light scattering „hydrodynamic limit …

Next we analyze the time dependence of the dyna
structure factorS(q,t) as given by Eq.~2.16!. Substituting
the dynamic@Eqs. ~2.9!–~2.11!# and static@Eqs. ~2.5! and
~2.6!# correlations into Eq.~2.16!, we find that the dynamic
structure factor can be written as

S~q,t !5A1e2D1q2t1A2e2D2q2t, ~3.11!

whereA1 and A2 are the amplitudes of the two relaxatio
modes:

A15Z1

D22D

D22D1
1Z2

D2D1

D22D1
1Z3

kTD

D22D1
, ~3.12!

A25Z1

D2D1

D22D1
1Z2

D22D

D22D1
2Z3

kTD

D22D1
~3.13!

with

Z15RTS ]«

]xD
P,T

2 S ]x

]m D
P,T

, ~3.14!

Z25S ]«

]TD
P,x

2 RT2

CP,x
, ~3.15!

Z3522S ]«

]TD
P,x

S ]«

]xD
P,T

RT

CP,x
. ~3.16!

We note thatZ1, Z2, and Z3 contain only thermodynamics
derivatives, i.e., they are static quantities. As

4Z1Z2~D2D1!~D22D !5Z3
2D2kT

2 , ~3.17!

the amplitudesA1 andA2 can be written as

A15F S Z1

D22D

D22D1
D 1/2

1S Z2

D12D

D12D2
D 1/2G2

, ~3.18!

A25F S Z1

D12D

D12D2
D 1/2

2S Z2

D22D

D22D1
D 1/2G2

. ~3.19!

The overall intensity of light scattered from the system
proportional to the sumA1 1 A25Z1 1 Z2 that agrees
with the thermodynamic relation~3.1!.

C. Electromagnetic equation of state

The dielectric constant« and the total molar densityr are
interrelated by the Clausius-Mossotti equation, which fo
binary mixture takes the form@16#

«21

«12
5C8r, ~3.20!

whereC8 is a function of the mole fractionx, approximated
by C85(4p/3)@a (1)(12x)1a (2)x#, and a (1) and a (2) are
the molar polarizabilities of the two components. Differen
ating Eq.~3.20! with respect to the density and compositio
we obtain
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S r
]«

]r D
T,x

5~«21!
«12

3
, ~3.21!

S ]«

]xD
P,T

5
~«12!2

3 FC8S ]r

]xD
P,T

1C9rG , ~3.22!

whereC95(4p/3)(a (2)2a (1)) is a constant. Comparing Eq
~3.22! with Eq. ~3.2!, we find

S ]«

]xD
r,T

5C9
~«12!2

3
r5

3rC9

~12C8r!2
, ~3.23!

S r
]«

]r D
T,x

5C8
~«12!2

3
r5

113rC9

~12C8r!2
. ~3.24!

Equations~3.23! and~3.24! are to be used in calculating th
amplitudes of the two modes observed in light scattering

IV. TWO-EXPONENTIAL DYNAMIC CORRELATION
FUNCTIONS IN NEAR-CRITICAL BINARY FLUIDS

A. Thermodynamic properties of binary mixtures
near critical points

Fluids and fluid mixtures belong to the universality cla
of the three-dimensional Ising model~equivalent to the
three-dimensional lattice gas! with two relevant scaling fields
@28–30#. For mixtures the two relevant scaling fieldsh1 and
h2 are linear combinations of the three physical field va
ables DT5T2Tc , Dm15m12m1c , and Dm5m2mc
@20,21#:

h15a1Dm11a2DT1a3Dm, ~4.1!

h25b1DT1b2Dm11b3Dm, ~4.2!

whereTc , m1c , andmc are the critical values ofT, m1, and
m, respectively. All system-dependent parameters in the
lations ~4.1! and ~4.2!, namely, the coefficientsai andbi as
well as the critical parametersTc , m1c , and mc , depend
parametrically on the actual position on the critical line. Th
position can be specified by any of the three variablesTc ,
m1c , andmc . The scaling fields are made dimensionless
an appropriate choice of the coefficientsai and bi ( i
51,2,3) in Eqs.~4.1! and ~4.2!.

To specify the critical behavior of binary mixtures ne
the critical point, the pressure is separated into a singular
a regular part@20,21#:

P5DP~h1 ,h2!1Pr~T,m,m1!, ~4.3!

where the regular part~denoted by the superscriptr ! is an
analytic function of the three field variablesT, m, andm1. A
dimensionless singular partD P̃ of the pressure satisfies
scaling law analogous to that of near-critical one-compon
fluids @31# and may be defined as

D P̃5DP/rcRTc5uh2u22a f ~z!, ~4.4!

where f (z)5 f (h1 /uh2ub1g) is a universal scaling function
-

e-

y

nd

nt

and a.0.110, g.1.24, andb5(22a2g)/2.0.325 are
universal critical exponents@28–33#. The first scaling den-
sity w1 ~the order parameter! conjugate to the scaling fieldh1
is defined as

w15S ]D P̃

]h1
D

h2

5uh2ub f 8~z!, ~4.5!

with f 8(z)5d f /dz. The second scaling densityw2 conjugate
to the scaling fieldh2 is defined as

w25S ]D P̃

]h2
D

h1

5uh2u12ac~z!, ~4.6!

with

c~z!5~22a! f ~z!2~b1g!z f8~z!. ~4.7!

The explicit expressions for the scaling densitiesw1 andw2
in terms of the physical densitiesr, rx, and s have been
obtained in an earlier publication@20#. In addition, two scal-
ing susceptibilities may be defined as

x15S ]w1

]h1
D

h2

5uh2u2g f 9~z!, ~4.8!

x25S ]w2

]h2
D

h1

5uh2u2aC~z!, ~4.9!

where

C~z!5~12a!c~z!2~b1g!zc8~z!, ~4.10!

with f 9(z)5d2f /dz2 and c8(z)5dc/dz. One can also de-
fine a cross susceptibility x125x215(]w1 /]h2)h1

5(]w2 /]h1)h2
which vanishes in zero fieldh150 in the

one-phase
region @21#:

x125uh2ub21@b f 8~z!2~b1g!z f9~z!#. ~4.11!

The scaling susceptibilitiesx1, x2, andx12 as well as the
scaling densitiesw1 and w2 are not directly measurabl
quantities, but one can express measurable second de
tives of the thermodynamic potential in terms ofx1, x2, and
x12 using appropriate thermodynamic transformatio
@20,21#. For instance, in zero ordering field in the one-pha
region the expressions for the osmotic compressibi
(]x/]m)P,T and for the isothermal compressibilit
(]r/]P)T,x , appearing in Eqs.~3.3! and ~3.4!, become

S ]x

]m D
P,T

5S ]x

]m D
P,T

r

v, ~4.12!

with

v5F S ]x

]m D
P,T

r G21

RTc@~a32a1xc!
2x11~b32b2xc!

2x2#11,

~4.13!

and
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S ]r

]PD
T,x

5~L1x11L2x21L12x1x2!v211~]r/]P!T,x
r ,

~4.14!

where

L15RTca1
2F11

1

rc
S ]r

]xD
P,T

r

K1G2

, ~4.15!

L25RTcb2
2F11

1

rc
S ]r

]xD
P,T

r S K11
K2

b2
D G2

, ~4.16!

L125~RTc!
2F S ]x

]m D
P,T

r G21

a1
2K2

2 , ~4.17!

with

K152S a3

a1
2xcD , ~4.18!

K25b2

a3

a1
2b3 . ~4.19!

Here (]x/]m)P,T
r , (]r/]P)T,x

r , and (]r/]x)P,T
r are the regu-

lar parts of (]x/]m)P,T , (]r/]P)T,x , and (]r/]x)P,T , re-
spectively. Asymptotically both derivatives (]x/]m)P,T and
(]r/]P)T,x will diverge at the critical point: (]x/]m)P,T di-
verges strongly asx1 and (]r/]P)T,x diverges weakly asx2.
The two characteristic parametersK1 andK2 determine the
crossover between different types of behavior depending
the variation of the coefficientsai and bi along the critical
line @20,21#. The parameterK1 is responsible for strongly
singular contributions associated withx1 and is related in the
dilute-solution limit to the so-called Krichevskii paramet
@34#, while the parameterK2 accounts for weakly singula
contributions associated withx2. Specifically, the paramete
K2 determines the range ofh2 at h150, where the so-called
Fisher renormalization of the critical exponents takes pla
when one makes a transformation from the theoretical s
ing path h2}T2Tc at constantm5mc and density to the
experimental path corresponding to constant concentra
and density@35,36#. One should note thatxc represents the
composition at the critical line~one of the critical param-
eters!, while the densitylike variablex is generally different
for the coexisting phases.

One can also deduce the corresponding expressions
the derivative (]m/]T)P,x52(]S/]x)P,T and the derivative
(]m/]P)T,x52r22(]r/]x)P,T , which appear in Eqs.~3.2!
and~3.4!. Specifically, in zero ordering field in the one-pha
region one obtains@20#

S ]m

]T D
P,x

5v21H S ]m

]T D
P,x

r

1RTc@~]x/]m!P,T
r #21Fa1

2K1S a2

a1

2ScDx11b2
2S K11

K2

b2
D S b1

b2
2ScDx2G J ~4.20!

and
n

e,
l-

n

for

S ]r

]xD
P,T

5v21H S ]r

]xD
P,T

r

2rcRTcF S ]x

]m D
P,T

r G21

3Fa1
2K1x11b2

2S K11
K2

b2
Dx2G J . ~4.21!

We note that (]m/]T)P,T
r depends on the choice of zer

point of entropy and, hence, contains an arbitrary cons
@20,21#.

To derive the equation for the isobaric molar heat cap
ity at constant compositionCP,x5T(]S/]T)P,x , one can use
the thermodynamic relation

S ]S

]TD
P,x

5S ]S

]TD
P,m

2S ]m

]T D
P,x

2 S ]x

]m D
P,T

. ~4.22!

Taking into account that

S ]S

]TD
P,m

5S ]S

]TD
P,m

r

1RTc

3@~a22a1Sc!
2x11~b12b2Sc!

2x2#,

~4.23!

we find for CP,x in zero field in the one-phase region

CP,x5CP,x
r 1Tc~ L̃1x11 L̃2x21 L̃12x1x2!v21,

~4.24!

with

L̃15RTca1
2FSc2

a2

a1
1S ]m

]T D
P,x

r

K1G2

, ~4.25!

L̃25RTcb2
2FSc2

b1

b2
1S ]m

]T D
P,x

r S K11
K2

b2
D G2

, ~4.26!

L̃125~RTc!
2F S ]x

]m D
P,T

r G21

3@~a1b12a2b2!K11~a1Sc2a2!K2#2, ~4.27!

where the superscriptr again denotes regular parts. The is
baric molar heat capacityCP,x contains both a weakly diver
gent contribution fromx2 and a strongly divergent contribu
tion from x1. On the other hand, the derivatives (]m/]T)P,x
and (]r/]x)P,T , in general, do not diverge at the critica
point of a mixture. Complete expressions for these therm
dynamic derivatives, which are also valid for nonzero ord
ing field, can be found in Ref.@20#. The experimentally ac-
cessible physical properties are certain combinations of
two scaling susceptibilitiesx1 and x2, whose contributions
are governed by the values of the coefficientsai and bi ,
which vary along the critical line. Mixing of the physica
variables also exists in one-component fluids@20,21,37–39#
in which the only effect of this mixing is the appearance
corrections to the asymptotic behavior related to gas-liq
asymmetry. In fluid mixtures the mixing of the field var
ables may also change the asymptotic critical behavior
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thermodynamic properties depending on the values of
mixing coefficientsai andbi @20,21#.

B. Transport properties of binary mixtures
near critical points

The Onsager expressions for the mass diffusion currenjd
and for the heat currentjq in binary mixtures read@18,40#

jd52ã“m82b̃“T, ~4.28!

jq52 g̃“T2Tb̃“m81m8jd , ~4.29!

whereã , b̃ , and g̃ are the Onsager kinetic coefficients,m8
5m2 /M22m1 /M1 the reduced chemical potential diffe
ence withM1 andM2 the molar masses of the pure comp
nents. Equations~4.28! and ~4.29! are expressed in terms o
quantities taken per unit mass, while the equations of stat
fluid mixtures near critical points conventionally involve m
lar variables. Since this difference can cause a confusio
the interpretation of experimental data and is often igno
@20,41#, we provide in the Appendix relations between sp
cific ~per unit mass! and molar thermodynamic and transpo
properties.

According to the theory@4,19,42–44# the kinetic coeffi-
cients ã , b̃ , and g̃ diverge at the critical point of a binar
mixture just as the thermal conductivity diverges at the cr
cal point of a one-component fluid@3,45,46#. Near the criti-
cal point the Onsager kinetic coefficients satisfy the follo
ing equations@47–49#:

ã5ãs1ã r5
kBTr8

6ph̃j
S ]c

]m8D
P,T

1ã r , ~4.30!

b̃5b̃s1b̃ r5
kBTr8

6ph̃j
S ]c

]TD
P,m8

1b̃ r , ~4.31!

g̃5 g̃ s1 g̃ r5
kBT2r8

6ph̃j
S ]S8

]T D
P,m8

1 g̃ r , ~4.32!

where j is the correlation length diverging at the critic
point, ã r , b̃ r , g̃ r are regular background contributions,h̃ is
the shear viscosity,r85rM is the mass density,M5M1(1
2x)1M2x is the molar mass of the mixture,c5(M2 /M )x
is the mass concentration, andS8 is the specific entropy.

It should be noted that the expressions for the singu
parts of the Onsager coefficientsãs, b̃s, and g̃ s are only
valid close to the critical point. Extensions of the theory
include crossover from the asymptotic critical behavior
the transport properties of mixtures to the regular behavio
these transport properties have been considered by Kis
and Kulikov @41#, by Luettmer-Strathmann and Sengers@49#
and by Folk and Moser@50–53#. In this work we consider
the close vicinity to the critical point where Eqs.~4.30!–
~4.32! are valid. As

S ]c

]TD
P,m8

52S ]c

]m8D
P,T

S ]m8

]T D
P,c

, ~4.33!
e

of

in
d
-

-

-

r

f
f

lev

S ]S8

]T D
P,m8

5S ]S8

]T D
P,c

1S ]m8

]T D
P,c

2 S ]c

]m8D
P,T

, ~4.34!

we note from Eqs.~4.30!–~4.32! that the critical partsãs, b̃s,
and g̃ s of the kinetic coefficients in the asymptotic vicinit
of the critical point are interrelated by@19,44#

ãs52S ]m8

]T D
P,c

21

b̃s5
1

TS ]m8

]T D
P,c

22

g̃ s, g̃ s52TS ]m8

]T D
P,c

b̃s.

~4.35!

One also has~see the Appendix!

S ]c

]m8D
P,T

5
M1

2M2
2

M3 S ]x

]m D
P,T

, ~4.36!

S ]m8

]T D
P,c

5
M

M1M2
S ]m

]T D
P,x

1
M22M1

M1M2
S. ~4.37!

Since the response functions (]c/]m8)P,T , (]c/]T)P,m8,
and (]S8/]T)P,m8 diverge asymptotically asx1, all three ki-
netic coefficientsã , b̃ , and g̃ diverge asymptotically as the
productx1j21, provided that one neglects a very weak s
gular critical enhancement of the shear viscosity@45#, which
will not be discussed here. As the correlation length is
rectly related to the strong scaling susceptibilityx1, we may
assume that asymptotically

j5j0S x1

G0
D n/g

, ~4.38!

wherej0 is an amplitude of the order of a molecular size,G0
is the amplitude of the strong susceptibility in zero field, a
n5(22a)/3.0.63 @54#. The amplitudej0 is interrelated
with the amplitude of the weak susceptibility in zero fieldA0

by the universal relationA0j0
3rcNA.0.18 @3,31#. Therefore

in zero field in the one-phase region the correlation len
asymptotically behaves asj5j0h2

2n .
The thermal conductivityl is defined by

jq52l“T ~4.39!

with jd50, so thatl is related to the kinetic coefficientsã ,
b̃ , and g̃ as

l5 g̃2T~ b̃2/ã !. ~4.40!

Since the singular parts ofã , b̃ , and g̃ are asymptotically
interrelated by Eq.~4.35!, their divergent contributions tol
exactly compensate each other and the thermal conduct
should remain finite at the critical point of a binary mixtu
@19,44,55#.

The kinetic coefficientsã , b̃ , andg̃ are not directly mea-
surable. To calculate the experimentally accessible trans
properties of binary mixtures one should regard the chem
potential differencem8 as a function of the experimenta
variables, namely,P,T,c and express the mass diffusion cu
rent as@18#
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jd52r8DS “c1
kT

T
“T1

kP

P
“PD , ~4.41!

where D is the mutual mass-diffusion coefficient,kT the
thermal-diffusion ratio, andkP the barodiffusion ratio. The
mass-diffusion coefficient or mass diffusivityD is related to
the kinetic coefficientã by

D5
ã

r8
S ]m8

]c D
P,T

5
M2

M1
2M2

2

ã

r S ]m

]x D
P,T

. ~4.42!

It follows from Eq. ~4.30! that in the asymptotic vicinity of
the critical point this diffusion coefficient reduces to

D5
kBTc

6ph̃j
~4.43!

and vanishes at the critical point asj21 @7,8,14#. We note
that as (]m8/]T)P,c depends on the zero point of entropy, t
productsT(]m8/]T)P,cã /r8 andTb̃ /r8 are not well defined,
whereas their sumkTD is a well defined and measurab
property. The thermodiffusion coefficientDT is defined as

DT5kTD5
T

r8
S ]m8

]T D
P,c

ã1
T

r8
b̃ ~4.44!

and tends to a finite value at the critical point, because
singular parts of the kinetic coefficientsã andb̃ compensate
each other according to Eq.~4.35!. The thermal-diffusion
ratio is defined as

kT5
DT

D
~4.45!

and diverges in the vicinity of the critical point as the corr
lation lengthj. The barodiffusion ratio

kP52
P

r82S ]r8

]c D
P,T

S ]c

]m8D
P,T

~4.46!
e

ic
e

-

asymptotically diverges asx1.
The actual behavior of the transport properties obser

in the experimentally studied temperature range is
asymptotic and is affected by the interplay of the regular a
singular parts of the kinetic coefficients and of the therm
dynamic derivatives. Therefore, the regular parts are v
important and cannot be omitted even close to the crit
point @20,47,48,56#.

Substituting the expressions for the thermodynamic pr
erties in terms of the universal scaling susceptibilitiesx1, x2,
andx12 into Eqs.~4.30!–~4.32!, one obtains explicit expres
sions for the transport properties in the vicinity of the critic
point @20#. The expression for the mass diffusion coefficie
reads

D5D0~ j̃ 211uv21!, ~4.47!

where

D05
kBT

6ph̃j0

~4.48!

and where we use the notationj̃ 5j/j0. The parameteru is
of order unity and relates the diffusion coefficientD far
away from the critical point (v.1) to D0: D5uD0. As-
ymptotically close to the critical point Eq.~4.47! reduces to
Eq. ~4.43!.

For the thermodiffusion coefficient we obtain@20#

DT5D0

M1M2

M2

uxc~12xc!

R F S ]m

]T D
P,x

2S ]m

]T D
P,x

r

1 k̃ T
0RG ,

~4.49!

where (]m/]T)P,x is given by Eq.~4.20! and k̃ T
0 is related to

the Soret coefficientST far away from the critical point:k̃ T
0

52TST . The thermal-diffusion ratio is given by
kT5
M1M2

M2

u xc~12xc!

uv211 j̃ 21H k̃ T
01

1

RS ]m

]T D
P,x

r

~v2121!1TcF S ]x

]m D
P,T

r G21

3@a1K1~a22a1Sc!x11~b32b2xc!~b2Sc2b1!x2#v21J . ~4.50!
-

We note that even ifk̃ T

050 kT may not be zero near th
critical point and Eq.~1.2! should be used to calculateD1
andD2 according to Eq.~1.1!.

C. Critical behavior of the dynamic structure factor

Now we analyze the critical behavior of the dynam
structure factorS(q,t) given by Eq.~3.11!. Using the ther-
modynamic relations~3.2!–~3.4! and neglecting again the
derivative (]«/]T)r,x in Eq. ~3.3!, we can express the ther
modynamic factorsZ1, Z2, and Z3 through the thermody-
namic derivatives discussed in Secs. IV A and IV B:

Z15RTF z21z1S ]r

]xD
P,T

G2S ]x

]m D
P,T

, ~4.51!
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Z25z1
2S ]P

]T D
r,x

2 S ]r

]PD
T,x

2 RT2

CP,x
, ~4.52!

Z35
2z1RT

CP,x
S ]P

]T D
r,x

S ]r

]PD
T,x

F z21z1S ]r

]xD
P,T

G ~4.53!

with

z15S ]«

]r D
T,x

, z25S ]«

]xD
r,T

~4.54!

determined by Eqs.~3.23! and ~3.24!. Neitherz1 nor z2 di-
verges at the critical point.

Substituting now (]x/]m)P,T from Eq.~4.12!, (]r/]P)T,x
from Eq.~4.14!, and (]r/]x)P,T from Eq.~4.21!, we obtain
the factorsZi expressed through the susceptibilitiesx1 and
x2. Near the critical pointx1@x2, so that

x1v21→S ]x

]m D
P,T

r

@RTc~a32a1xc!
2#21. ~4.55!
e
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We find that asymptotically the limiting value ofZ1 is pro-
portional to the strongly divergent susceptibilityx1, while
the limiting value ofZ2 is proportional to the weakly diver
gent susceptibilityx2:

Z1→
~RTc!

2@z2~a32a1xc!
22rcz1a1

2K1#2

~a32a1xc!
2

x1 ,

~4.56!

Z2→z1
2S ]P

]T D
r,x

2 L12
2

L̃12

~]x/]m!P,T
r

~a32a1xc!
2
x2 . ~4.57!

Asymptotically the factorZ3 does not depend on eitherx1 or
x2:

Z3→2z1RS ]P

]T D
r,x

L12

L̃12
F z22z1

rca1
2K1

~a32a1xc!
2G .

~4.58!

SubstitutingL12 and L̃12 from Eq. ~4.17! and Eq.~4.27!, we
obtain
Z1→~RTc!
2a1

2~z2K12rcz1!2x1 , ~4.59!

Z2→z1
2~RTc!

2S ]P

]T D
r,x

2 a1
2K2

4

K1
2@~a1b12a2b2!K11~a1Sc2a2!K2#2

x2 , ~4.60!

Z3→2z1RS ]P

]T D
r,x

a1
2K2

2~z2K12rcz1!

K1@~a1b12a2b2!K11~a1Sc2a2!K2#2
. ~4.61!
ver
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on-
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Let us consider the one-phase region of a binary fluid n
its vapor-liquid critical point in zero field, i.e.,h150 and
h25t5@T2Tc(m5mc)#/Tc(m5mc). There are three char
acteristic temperatures that determine the behavior of
transport properties in the one-phase region in zero fi
defined in Ref.@20# as t15@G0K1

2/xc(12xc)#1/g and tD

5(t1
g/u)1/(g2n) with tD!t1. Far away from the critical

point whent@t1 one can neglect the susceptibilities (v
.1) and the singular parts of the kinetic coefficients. Clo
to the critical point whent!tD the singular parts of the
kinetic coefficients dominate and they behave in accorda
with the asymptotic laws. In the intermediate regiontD!t
!t1 the apparent crossover behavior of the transport pr
erties is determined by the interplay between the sing
part of the static susceptibility and the regular parts of
kinetic coefficients. Another characteristic temperaturet2

5@A0K2
2/xc(12xc)#1/a that determines the Fishe

renormalization region is usually very narrow sincea!g
andt2!t1 unless special cases are considered@20,21#. The
characteristic temperaturest1 andt2 find their origin in the
crossover behavior of the static properties. On the other h
the parametertD , first introduced by Onuki@56#, is a dy-
namic crossover temperature. In many mixtures, even if t
are not dilute, the temperaturetD , let alonet2, is hardly
ar

e
d,

e

ce

p-
r

e

nd

y

achievable experimentally, and the intermediate crosso
behavior of transport properties, rather than the asympt
power laws, is observed.

Thus, the behavior of the dimensionless mutual mass
fusion coefficientD/D0 exhibits three different regimes@20#:

D

D0
.H tn, t!tD

u~t/t1!g, tD!t!t1

u, t@t1.
~4.62!

The thermodiffusion ratiokT also exhibits crossover behav
ior:

kT.5
2

1

rcR
S ]P

]T D
h150

c

uxc~12xc!K1
21t2n, t!tD

2
1

rcR
S ]P

]T D
h150

c

K1G0t2g, tD!t!t1

kT
0xc~12xc!, t@t1 .

~4.63!

In addition, if experiments are conducted at constant c
centration and at the critical density, a nonanalytic conn
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tion betweent5t(m5const) andt(x5const) att!t2, that
causes the Fisher renormalization@35#, must be taken into
account@20,21#. To show how the physical meaning ofD1
andD2 changes along the critical line we shall consider t
limiting cases: the incompressible liquid-mixture limit an
the one-component limit.

D. Liquid-liquid consolute point and incompressible
liquid-mixture limit

Liquid mixtures near the critical consolute points are u
ally weakly compressible so that the incompressible liqu
mixture model serves as a limiting case. In the close vicin
of the consolute critical point, expression~4.47! for the dif-
fusion coefficientD reduces again to that given by E
~4.43!. The thermodiffusion coefficientDT tends to a finite
value

DT5D0uxc~12xc!kT
0 , ~4.64!

and the thermal-diffusion ratiokT5DT /D near the consolute
point becomes

kT5xc~12xc!kT
0 j̃ ~4.65!

and, hence, diverges as the correlation length.
The diffusivity D1 of the slow ~critical! mode becomes

the diffusion coefficient and the diffusivityD2 of the fast
mode the thermal diffusivity:

D1→D5
kBT

6ph̃j
}tn, ~4.66!

D2→a5
l

rCP,x
}ta ~4.67!

with D1!D2 ast→0. In the incompressible liquid-mixture
limit dTc /dPc50 and (]P/]T)h150

c →`. Therefore, the

system-dependent parameterK1 goes to infinity, while the
parameterK2 and the productK1a1 remain finite@20#:

K1.
xc~12xc!

rcRTc FdPc

dxc
2S ]P

]T D
h150

c dTc

dxcG→`, ~4.68!

K2.
xc~12xc!

RTc
2

dTc

dxc
. ~4.69!

The amplitudesA1 and A2 are found from Eqs.~3.12! and
~3.13! with Zi deduced from Eqs.~4.59!–~4.61!:

Z1→~RTc!
2z2

2~K1a1!2x15RTcS ]«

]xD
T

2S ]x

]m D
T

,

~4.70!

Z2→0, Z3→0, ~4.71!

A1→Z1}t2g, ~4.72!

A2→Z2→0. ~4.73!
-
-
y

Hence, in the incompressible liquid-mixture limit, the lig
scattered from the system is determined by the slow m
diffusion mode withD15D and an amplitudeA1 propor-
tional to the osmotic compressibility (]x/]m)T .

E. Dilute solutions and one-component limit

In the experimentally accessible regiontD!t!t1, the
thermodiffusion ratiokT vanishes asxc→0, becauseK1
}xc(12xc)→0. From Eq.~1.2! it then follows thatD5D
and the diffusivity associated with the slow~critical! mode
becomes equal to the thermal diffusivity:

D15a5
kBT

6ph̃j
}tg, ~4.74!

while the diffusivity associated with the fast mode is relat
to the mutual mass diffusion coefficient

D25D ~4.75!

with D1!D2.
In the pure-solvent limit (xc→0) the parameterv, de-

fined by Eq. ~4.13!, becomes of order unity@20#. The
system-dependent parametersK1 andK2 are

K15
xc

rc1RTc1FdPc

dxc
2S ]P

]T D
r5rc1

c dTc

dxcG→0, ~4.76!

K25~12RTc1
2 a2b2!

xc

RTc1
2

dTc

dxc
→0, ~4.77!

where (]P/]T)r5rc1

c represents the limiting value o

(]P/]T)r5rc
at the critical point of the pure solvent. At in

finite dilution, in the regiont@t1, the factorsZ1 and Z2
become

Z1.RTcF z21z1S ]r

]xD
P,T

r G2S ]x

]m D
P,T

r

5F z21z1S ]r

]xD
P,T

r G2

xc~12xc!, ~4.78!

Z2.z1
2RS ]P

]T D
r,x

2 L1
2

L̃1

x15rc
2RS ]«

]r D
T,x

2

~bT,x2bS,x!.

~4.79!

Thus, asD2→D, the amplitudeA1 diverges strongly

A1.Z2}t2g ~4.80!

and the amplitudeA2 vanishes withx at t@t2 and diverges
weakly asA1}t2a at t!t2:

A25Z1}H x, t@t2

t2a, t!t2. ~4.81!

Hence, at infinite dilution, the intensity of the light scatter
from the system is determined by the slow mode withD1
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being equal to the thermal diffusivitya and with an ampli-
tudeA1 proportional to the isothermal compressibility.

F. Wave-number dependence of the static
and dynamic properties

In the approach to the critical point the correlation leng
j becomes comparable with and subsequently even la
than the inverse wave numberq21 of the scattered light and
the q dependence of the static and dynamic properties m
be taken into account@54#. According to the mode-coupling
theory@57# the diffusivity D1(q,j), that determines the criti
cal slowing down is

D1~q,j!5D1~q50,j!VK~qj!R~qj!, ~4.82!

whereVK(y) is the so-called Kawasaki function@5#

VK~y!5~3/4y2!@11y21~y32y21!arctany#, ~4.83!

and whereR(y)5R0(11b2y2)zh/2 is a correction factor with
the parametersR0.1.021.05, b.0.5, andzh.0.06 @57#.
The Kawasaki function behaves as

VK~y!511
3

5
y22

1

7
y41••• ~4.84!

in the regimey5qj!1 and as

VK~y!5
3p

8
y1

1

y2
2

3p

8

1

y3
1••• ~4.85!

in the regimey5qj@1.
Usually, theq dependence of the form~4.82! is attributed

to the mass diffusion coefficientD. However, this is valid
only in the limiting case thatD1→D. In general, neitherD
nor a is equal toD1 and the mass diffusion coefficientD as
well as the thermal diffusivitya may or may not depend o
q. The q dependence of the second effective diffusivityD2
can be assumed to be negligibly small.

Thus, the two characteristic decay ratesG15q2D1(q) and
G25q2D2(q), observed with light scattering, depend on t
wave number as

G1~q!}H q2, qj!1

q31zh, qj@1, ~4.86!

G2~q!}q2. ~4.87!

The thermodynamic derivatives determining the intens
of the scattered light can be expressed through the susc
bilities x1, x2, andx12. Theq dependence of the measurab
thermodynamic properies results from theq dependence o
the strong susceptibilityx1 near the critical point, which for
small qj has the form@54#

x1~q!5
x1~0!

11q2j2
. ~4.88!

Again, as in general neither (]x/]m)P,T nor (]r/]P)T,x is
equal tox1, they may or may not depend onq.
er

st

y
pti-

V. APPLICATIONS TO MIXTURES OF METHANE
AND ETHANE

To compare the predictions of the theory with experime
tal data@22#, we have calculated thermodynamic and tran
port properties for mixtures of methane and ethane in
critical region with the equation of state developed by Po
odyrevet al. @58# with the zero point of entropy assigned b
Sakonidou et al. @59,60#. This equation incorporates th
crossover from singular thermodynamic behavior near
locus of vapor-liquid critical points to regular thermod
namic behavior outside the critical region@61#. For the criti-
cal parameters of pure methane (m) and ethane (e) we
adopted the following values@58#: rc

(m)510.122 mol/l,
Tc

(m)5190.564 K, Pc
(m)54.5992 MPa, andrc

(e)56.8592
mol/l, Tc

(e)5305.322 K, Pc
(e)54.8718 MPa, respectively

The measurements of the refractive index of methane
ethane@62–65# yield for the molar polarizabilities of the
pure componentsa (m).1.57 cm3/mol and a (e).2.681
cm3/mol.

The viscosityh̃ as a function of the reduced temperatu
t and the mole fractionx is calculated with the interpolation
formula

h̃~t,x!5~122x!h̃~t,0!12xh̃~t,0.5!, ~5.1!

whereh(t,0) andh(t,0.5) were calculated according to a
equation proposed by Sakonidouet al. @59,60#. We have
used a similar linear interpolation formula to calculate t
regular partl r of thermal conductivity:

l r~t,x!5~122x!l r~t,0!12xl r~t,0.5!, ~5.2!

with l r(t,0) and l r(t,0.5) calculated from equation pro
posed by Sakonidouet al. @59,60#.

The experimental data, shown in Fig. 1 by open circl
were obtained by Ackerson and Hanley@22# from dynamic
light-scattering experiments in the mixture of 71.07 mol
methane and 28.93 mol % ethane at the critical densitr
5rc . They observed two relaxation modes, a slow mo
and a fast mode, and they attributed the two correspond
decay rates to pure thermal diffusivity and mass diffusio
As our theory shows, the two measured decay rates are t
identified with the effective diffusivitiesD1 andD2. We fit-
ted Eq.~1.1! to the experimental data@22# simultaneously for
the fast and slow modes. In this procedure the regular p
ã r and b̃ r of the Onsager coefficients in Eqs.~4.30!–~4.32!
were the only adjustable parameters. The results of the fit
shown in Fig. 1, where the solid lines represent the two
fective diffusivitiesD1 andD2. The joint fit yieldedã r(x0)
54.9310211 kg s m23 and b̃ r(x0)522.131028 Pa s K21,
where x050.2893. The values of the Onsager coefficie
found from the fit were then adopted to calculate the conv
tional transport properties from the crossover equation
state@58#. The dashed lines in Fig. 1 represent the therm
diffusivity a5l/rCP,x and the mass diffusion coefficientD
for the same mixture. Apparently, for this composition of t
mixture, neither the thermal diffusivity nor the mass diff
sion coefficient can be identified with the diffusivitiesD1
and D2. As the scattering angle in the measurements@22#
was small(8°), thecorrection for any dependence onq at
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T2Tc*1022 K is less than 0.1% and we did not need
incorporate such a correction in calculatingD1 andD2.

To calculate the regular partsã r and b̃ r of the Onsager
coefficients for smaller concentrationsx of ethane we as-
sumed

ã r~x!5ã r~x0!
x

x0
, b̃ r~x!5b̃ r~x0!

x

x0
. ~5.3!

We note that the values ofã r and b̃ r , quoted above for a
mixture with 28.93 mol % ethane, differ considerably fro
the values ã r(0.5)51.0310211 kg s m23 and b̃ r(0.5)
50.1431028 Pa s K21, deduced by Sakonidouet al. from
their measurements of the thermal conductivity for a mixt
with 50 mol % ethane@60#. However, two remarks should b
made. First, it is not clear whether Eq.~5.3! adopted by us
for smaller concentrations can be extrapolated to lar
ethane concentrations. In addition, the actual values of b
b̃ r and (]m8/]T)P,c depend on the choice made for the ze
point of entropy @20# and only the combination
ã r(]m8/]T)P,c1b̃ r has a physical meaning@cf. Eq. ~4.44!#.
As a consequence, the values found forã r andb̃ r are highly
correlated. Kiselev and Huber have recently obtained va
of the regular parts of the Onsager coefficients for the 50
50% mixture that are much closer to our values@66#. They
report ã r(0.5)53.5310211 kg s m23 and b̃ r(0.5)521.94
31028 Pa s K21 from a joint analysis of the thermal con
ductivity experimental data by Sakonidou@59# and Roder
and Friend@67#. Sakonidouet al. have shown that the varia
tion for the asymptotic critical limit for the thermal condu
tivity is only 4% when the values ofã r(0.5) differ by a
factor of two@60#. Moreover, the value ofã r extracted from
the asymtotic thermal conductivity limit is sensitive to th

FIG. 1. Two effective diffusivitiesD1 andD2 for a near-critical
mixture of methane ~71.07 mol %! and ethane ~28.93 mol %! at
r5rc as a function ofT2Tc . The open circles represent expe
mental data reported by Ackerson and Hanley@22#. The solid
curves represent the values forD1 andD2 calculated theoretically.
The dashed curves represent the values calculated for the the
diffusivity a and the mass diffusion coefficientD.
e

r
th

es
-

choice of the critical temperature. Evidently, additional e
perimental data, especially for mass diffusion and therm
iffusion, are needed to resolve the concentration depende

of ã r and b̃ r for mixtures of methane and ethane.
In Fig. 2 we show the two effective diffusivitiesD1 and

D2, as well as the thermal diffusivitya and the mass diffu-
sion coefficientD as a function ofT2Tc for a mixture with
1 mol % ethane atr5rc as a function ofT2Tc . In Fig. 3
we present the same information for a mixture with 0
mol % ethane. On comparing Figs. 1–3 we see that the
effective diffusivitiesD1 andD2 are rather stable and do no
vary strongly with concentration. However, the thermal d
fusivity a and the mass diffusionD do depend strongly on
the concentration. We see that for smaller and smaller eth
concentrations the mass-diffusion coefficient differs mo

al

FIG. 2. Effective diffusivitiesD1 andD2, thermal diffusivitya,
and mass-diffusion coefficientD calculated for a methane plu
ethane mixture~1 mol % ethane! at r5rc as a function ofT
2Tc .

FIG. 3. Effective diffusivitiesD1 andD2, thermal diffusivitya,
and mass-diffusion coefficientD calculated for a methane plu
ethane mixture~0.1 mol % ethane! at r5rc as a function ofT
2Tc .
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and more from the effective diffusivityD1 of the slow mode
and approaches more closely the effective diffusivityD2.
Asymptotically, the diffusion coefficientD becomes much
smaller than the thermal diffusivity and approaches the
fective diffusivity D1, but this happens at temperatures t
close to the critical point to be accessible experimentally

As can be seen from Fig. 3, even for very small conc
trations of ethane~x50.001! the thermal diffusivity begins to
deviate from the observed diffusivityD1 already atT2Tc
.1 K and this deviation increases rapidly upon approach
the critical temperature. This means that the interpretatio
dynamic light-scattering experiments in so-called ‘‘pure
fluids @12#, which always contain impurities, must be carri
out with caution. In fact, the slow diffusion mode, bein
always critical, is not sensitive to impurities, whereas
actual thermal diffusivity is.

The amplitudesA1 andA2 of the two modes can be ca
culated from Eqs.~3.18! and ~3.19!. The calculated ampli-
tudesA1 and A2 are shown in Fig. 4 for the mixture with
28.93 mol % ethane atr5rc as a function ofT2Tc . The
critical amplitudeA1 diverges strongly@as (T2Tc)

2g# and
the noncritical amplitudeA2 diverges weakly @as (T
2Tc)

2a# upon approaching the critical point. The tempe
ture dependence of the amplitudes remains the same a
consider a more dilute solution. At infinite dilution, the no
critical amplitudeA2 vanishes. In Fig. 5 the amplitudeA1 at
r5rc is shown as a function of the mole fractionx of ethane
for T2Tc51 K and T2Tc55 K. The amplitudeA2 is
shown in Fig. 6 as a function ofx for T2Tc50.1, 1, and 5
K. Ackerson and Hanley@22# reported some qualitative dat
on the ratioA2 /A1. They considered the data reliable on
far away from the critical point. AtT2Tc.10 K they con-
cluded A2 /A1 to be about 0.05, whereas our calculatio
predict a much smaller magnitude of 0.005. This ratio
pears to be very sensitive to the regular parts of the Ons
kinetic coefficients. If we use the values ofã r and b̃ r re-
ported by Kiselev and Huber@66# we obtain largerA2 /A1 of
about 0.03 atT2Tc.10 K, but the description of the fas
mode is deteriorated. As we mentioned earlier, further inv

FIG. 4. AmplitudesA1 and A2 of the two relaxation modes
calculated for a methane plus ethane mixture with 28.93 mo
ethane atr5rc as a function ofT2Tc .
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tigation of the regular parts of the Onsager coefficients
desirable.

The parameter

k5~ k̃ T
2/TCP,x!~]m/]x!P,T5~kT

2/TCP,c!~]m8/]c!P,T

that determines the coupling of the mass diffusion and
thermal diffusivity @cf. Eq. ~1.2!# is shown in Fig. 7 as a
function of temperature for three mole fractions of ethane
r5rc . As we approach the critical point,k always becomes
much larger than unity. Thus the two modes are stron
coupled, until the conditiona/D@k is achieved.

The measurable time-dependent correlation function
the intensity of scattered light is proportional to the structu
factorS(q,t) for heterodyne measurements, and to@S(q,t)#2

for homodyne measurements withS(q,t) given by Eq.
~3.11!. The diffusivitiesD1 and D2 and the corresponding
amplitudesA1 andA2 can be obtained from measurements

FIG. 5. AmplitudeA1 of the slow relaxation mode in methan
plus ethane mixtures atr5rc andT2Tc51 and 5 K as afunction
of the ethane concentration.

FIG. 6. AmplitudeA1 of the fast relaxation mode in methan
plus ethane mixtures atr5rc and T2Tc50.1, 1, and 5 K as a
function of the ethane concentration.
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the intensity correlation function, if the amplitudeA2 is not
too small compared toA1 (A2 /A1*1023) and if D1 and
D2 are significantly different. The smaller the ratioA2 /A1,
the larger difference ofD1 and D2 is required. When the
ratio A2 /A1 is too small, a single-exponential decay corr
sponding to the slow~critical! modeD1 is observed in prac-
tice. While the values of the ratioD1 /D2 are rather similar
for different fluid mixtures, one can play with the rat
A1 /A2 by a proper choice of the components. A promisi
system for detecting the two modes is the mixture of nit
ethane and iso-octane in the vicinity of the consolute po
where, because of a very small difference in the refrac
indices of the components@(]«/]x)P,T is of order 1023#, the
amplitudeA1 is smaller thanA2 at t.1022 and is only 4 to
5 times larger thanA2 at t.1024 @68#, whereas the ratio
D1 /D2 should behave in the same manner as in other
tems. Another interesting binary fluid for which the two d
fusivities have been calculated is a mixture of methane
n-hexane@69#. This system exhibits a continuous crossov
between vapor-liquid critical phenomena and liquid-liqu
critical phenomena along the critical line, and the ord
parameter fluctuations gradually change from density fl
tuations to concentration fluctuations.

VI. CONCLUSIONS

Two hydrodynamic relaxation modes are present in
nary fluids. In near-critical binary fluids a coupling betwe
these two modes results in two characteristic relaxa
times: one is strongly divergent and the other is weakly
vergent. Neither of these two modes can be associated
pure mass diffusion or pure thermal diffusion. Instead,
relaxation times are inversely proportional to two effecti
diffusivities D1 and D2, which can be detected experime
tally by dynamic light scattering.

In special cases only~infinite dilution and incompressible
limits! D1 andD2 are decoupled, becoming either mass d
fusion or thermal diffusivity. Along the critical line the
physical meaning ofD1 andD2 changes from thermal diffu

FIG. 7. Coupling parameterk5( k̃ T
2/TCP,x)(]m/]x)P,T of

methane plus ethane mixtures atr5rc as a function ofT2Tc for
various mole fractions of ethane.
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sivity to mass diffusion coefficient and the physical mean
of the corresponding amplitudesA1 and A2 changes from
compressibility to osmotic compressibility. Experimental o
servation of the two modes is a challenging task. Howev
being measured simultaneously, these two modes giv
more complete picture of dynamic critical phenomena
fluid mixtures.
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APPENDIX

In this appendix we elucidate the relations between th
modynamic and transport properties of binary mixtures ta
per unit mass and per mole of the mixture.

The differential of the Gibbs energyG per mole of a
binary mixture is

dg5r21dP2SdT1mdx, ~A1!

wherer the molar density,S is the molar entropy,m5m2
2m1 is the chemical potential difference,m1 andm2 are the
molar chemical potentials of the individual components
the mixture, andx is the mole fraction of the second com
ponent. The molar densityr is related to the mass densityr8
by r5r8/M , whereM5(M1n11M2n2)/n is the molar

mass of the mixture,n5n11n2 the total number of moles
Mi the molar masses andni the numbers of moles of the pur
components withx5n2 /n. The mass concentrationc is de-
fined as

c5
M2n2

M1n11M2n2
. ~A2!

Hence, the differential of the Gibbs energyG8 per unit mass
is

dG85~r8!21dP2S8dT1m8dc, ~A3!

whereS8 is the specific entropy andm85m2 /M22m1 /M1
the chemical-potential difference. The relations between
mole fractionx and the mass concentrationc are

c5
M2

M
x, ~A4!

c~12c!5
M1M2

M2
x~12x!, ~A5!

and
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dc5
M1M2

M2
dx. ~A6!

The relation betweenm and m8 is found from m
5(]G/]x)P,T andm85(]G8/]c)P,T with G85G/Mn, as

m85
M

M1M2
m2

M22M1

M1M2
G. ~A7!

One also has

S ]c

]m8D
P,T

5
M1

2M2
2

M3 S ]x

]m D
P,T

, ~A8!

S ]m8

]T D
P,c

5
M

M1M2
S ]m

]T D
P,x

1
M22M1

M1M2
S, ~A9!

S ]r8

]c D
P,T

5
M3

M1M2
S ]r

]xD
P,T

1
~M22M1!M2

M1M2
r. ~A10!

The linearized hydrodynamic equation of mass diffus
for a binary mixture is

r8
]c

]t
52 div jd, ~A11!

wherejd is the linearized mass diffusion current

jd52r8DF“c1
kT

T
“T1

kP

P
“PG , ~A12!

D the mass-diffusion coefficient,kT the thermal-diffusion
ratio, andkP the barodiffusion ratio. One can rewrite E
~A11! as

]c

]t
5DF¹2c1

kT

T
¹2T1

kP

P
¹2PG . ~A13!

The molar diffusion currentj̃ d is defined byj̃ d5 jd /M . Us-
ing relation~A6!, one obtains
N
s
er

a

j̃ d52rD̃F“x1
k̃ T

T
“T1

k̃ P

P
“PG , ~A14!

with

D̃5
M1M2

M2
D, ~A15!

k̃ T5
M2

M1M2
kT , ~A16!

k̃ P5
M2

M1M2
kP . ~A17!

Substitutingjd5 j̃ dM into Eq. ~A11!, one finds

divjd5M div j̃ d1 j̃ d~M22M1!“x, ~A18!

and then, neglecting the second term on the right-hand
of Eq. ~A18! and substitutingj̃ d, one obtains

]x

]t
5

M2

M1M2
D̃F¹2x1

k̃ T

T
¹2T1

k̃ P

P
¹2PG . ~A19!

The entropy transport equation is

]T

]t
2

kT

CP,c
S ]m8

]c D
P,T

]c

]t
1

T

CP,c
S ]S8

]P D
T,c

]P

]t
5a¹2T,

~A20!

wherea5l/r8CP,c5l/rCP,x is the thermal diffusivity, and
CP,c5CP,x /M the specific heat capacity. In terms of var
ables per mole, this equation takes the form

]T

]t
2

k̃ T

CP,x
S ]m

]x D
P,T

]x

]t
1

T

CP,x
S ]S

]PD
T,x

]P

]t
5a¹2T.

~A21!

Equations~A13! and~A20! @or, equivalently, Eqs.~A19! and
~A21!# completely determine the spatial and temporal dep
dence of the temperature and concentration in the mixtu
. A
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