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Two-exponential decay of dynamic light scattering in near-critical fluid mixtures
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Two hydrodynamic relaxation modes associated with mass diffusion and thermal diffusion are present in
binary fluids. In near-critical binary fluids a coupling between the two modes results in two characteristic
relaxation times, neither of which is associated with pure mass diffusion or pure thermal diffusion. Instead, the
relaxation times are inversely proportional to two effective diffusivifizs and D,, which can be detected
experimentally by dynamic light scattering. The physical meanin@® pfand D, changes as one considers
states in the vicinity of different points on the critical locus: in the infinite-dilution limit the diffusiiityof
the slow mode is associated with the thermal diffusivity and the diffusityf the fast mode with the mutual
mass diffusion coefficient, while in the “incompressible” liquid-mixture linll is associated with the mass
diffusion coefficient andD, with the thermal diffusivity. In addition we have determined the intensities
(amplitude$ of these relaxation modes, which can also be measured with light scattering. We discuss the
conditions at which a two-exponential decay of the dynamic correlation function can be measured. As an
example we consider mixtures of methane and ethane near the vapor-liquid critical line where the two expo-
nential decays indeed have been obser/8d063-651X98)05402-6

PACS numbgs): 05.70.Jk, 64.60.Ht, 67.40.Fd

I. INTRODUCTION heat capacityD the mass diffusion coefficieny' the dif-
ference between the chemical potentials of the solute and of
Dynamic light scattering is a popular method for investi- the solvent per unit mass, the mass concentration of the
gating the critical behavior of transport properties of fluidssolute, andky=D+/D the thermal-diffusion ratio wittD
and fluid mixture1-3]. The critical slowing down of the being the thermodiffusion coefficiefL8]. If the coupling
fluctuations of the order parameter can be detected by me&etween mass and thermal diffusion is abségt=0), D;
suring the time-dependent correlation function of the scatandD, are associated with either the pure thermal diffusivity
tered photons. In one-component fluids the critical slowinga or the pure mutual mass diffusion coefficiéht The cou-
down is caused by a dramatic decrease in the thermal diffysling between these two modes also vanishes in the infinite-
sivity, while in binary mixtures it is associated with a similar dilution limit.
behavior of the mutual diffusion. The theoretical description At the critical point of a binary fluid mixture the mass
of the critical slowing down is based on dynamic scalingdiffusion coefficientD vanishes and asymptotically close to
theory[4] and on mode-coupling theof$], which has been the critical point the mass-diffusion mode is responsible for
confirmed experimentally by many investigatof§—14].  the critical slowing down of the order-parameter fluctuations
However, there is an important feature in dynamic critical[19]. The thermal diffusivitya should not exhibit a signifi-
phenomena that has not yet been adequately discussed in i&nt change in the immediate vicinity of the critical point of
literature. a mixture as\ remains finite an@Cp . is either constantin
In binary fluids one can in principle detect with dynamic the mean-field theojyor weakly divergent(in the scaling
light scattering two diffusive modd45,1§. Specifically, the  theory [20,21]. Therefore, asymptotically close to the criti-
two effective diffusivitiesD; andD, that determine the de- cal point the coupling between the two hydrodynamic modes
cay rates of the two modes can be derived from the hydroagain becomes unimportant and the mode with diffusiiity
dynamic theory of fluctuationgl5,17: represents alow (critical) diffusion mode a®, tends to the
diffusion coefficientD, while the mode with the diffusivity
D, 2:1(a+iD)IE[(a+D)2—4aD]”2 (1.2) D, represent; a rglgtivel)ast_diffusion mode a@z tends to
<2 2 the thermal diffusivitya. This is why all experiments per-
. formed on binary fluids have been interpreted until the
with present time in such a way that the diffusivity associated
> , with the critical diffusion mode in mixtures was identified
kr aL) (1.2 with the mass diffusion, whereas in pure fluids it was iden-
TCp\ dc ' tified with the thermal diffusivity.
The critical decay rate has been studied extensively by
wherea=N\/p’'Cp . is the thermal diffusivityA the thermal dynamic light scattering in pure fluids near the vapor-liquid
conductivity,p’ the mass densityCr . the isobaric specific  critical point and in binary liquid mixtures near the liquid-

D=D|1+
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liquid critical (consolutg point [6—14]. A limited number of dP=sdT+ pdu;+ pxdpu, 2.1
measurements ba been carried out on binary mixtures

near their vapor-liquid critical point [10,22-24]. Despite  \wherep is the total molar densityx is the mole fraction of
the fact that the theory predicts the existence of two relaxihe solute,s=pS is the entropy density witt being the
ation modes near the critical points of binary fluid mixtures molar entropy, andu; and x, are molar based chemical
there is only one experimemeported by Ackerson and Han potentials.

ley [22], in which two relaxation r_noqles ggtually z_habeen In the Gaussian approximatiqsT sP)# 0, (5Sox)#0,
obsepved namely near thevapor-liquid critical point of a  gpq (8Téu)#0 and for either of the choices of the three
mixture of 71.07 mol % methane an®8.93 mol % ethane thermodynamic variablesT(P,x), (S,P,x), or (T,p,x), the
The two decay rates obsad were attributed to pure mass fiyctuations of these variables are not statistically indepen-

vestigated *He-*He mixtures of different compositions 5 variables defined as

along their respective critical isochores near the vapor-liquid
critical points, but were able to detect only a single decay
rate corresponding to the slow relaxation mode with effec- P=T— P, (2.2
tive diffusivity D;. The two decay rates, one associated with PCpx
mass diffusion and another with thermal diffusivity, were . ) )
also detected in a noncritical liquid mixture of carbon disul-Wherear=—p~*(dp/dT)p  is the thermal expansion coef-
fate and acetone by Bergg al.[25]. ficient andCF?,_X the molar heat capacity at constant pressure
In this paper we show that in binary fluid mixtures in the @hd composition. It can be shown ttja6]
commonly used experimental proximity to the vapor-liquid

TaT

critical point neitherD, nor D, can be associated with pure _ I

mass diffusion or thermal diffusivity. While the characteris- o= o S+ ﬁ) x| (2.3
tic behavior ofD; and D, near the critical line is rather ' Px

insensitive to the composition, the physical meaning of thes - i : ;

effective diffusivities c?hanges drasptigally from theginﬁnite- The set T, ¢:x) s statistically independent with

dilution limit to the “incompressible” liquid-mixture limit. KTol 9P

We will show that at infinite dilutionD; (slow modeg be- (|6P|%) = B p(_) , (2.9
comes the thermal diffusivitg andD, (fast modé becomes V \dp Sx

the mass diffusion coefficie®, while in the incompressible

liquid-mixture limit D, is to be identified with the mass dif- KaT2 ou\? | ox KaT2
fusion coefficientd and D, with the thermal diffusivitya. (|8¢|?)= —> —| Cp #—T(—) (— -2
Generally, the apparent decay rates will obey crossover be- VpChl IT) o\ pr] VpCrx
tween these two limits. This fact has not yet been addressed (2.5
in analyzing dynamic light-scattering experiments performed

in fluid mixtures. To specify the experimental conditions for o ksT|[ dx

observing the two relaxation modes we calculate the relative (|ox|%)= V_p(ﬁ : (2.6
intensities of the two modes and give a detailed comparison P.T

of the theory with experimental data for mixtures of methane ] )
and ethane. where kg is Boltzmann’s constant and the volume in

This paper is organized as follows. Section Il gives thewhich the fluctuations are considered. We also note that the
theoretical background on light scattering from fluctuations€*Pressions for the mean quuared fluctuations of the entropy
in binary fluids. A comprehensive analysis of the two diffu- S (Used in calculating| 5¢|)) and of the density are
sive modes is presented in Secs. Ill and IV. In Sec. V, the

theoretical results obtained are compared with experimental o, ksCp
data for binary mixtures of methane and ethane. Detection of (l6s%)= Vp 2.7
these two relaxation modes is a challenging task for experi-
mentalists. We discuss the conditions for making this phe- keTp( dp
nomenon experimentally observable. {|8p|?)= BV (ﬁ) , (2.9
T,u
Il. THEORETICAL BACKGROUND whereCp , is the molar heat capacity at constant pressure

and constant chemical-potential differenge

In classical thermodynamics the derivativeS(dT)p ,

The field-dependent density of the thermodynamic poten=Cp , /T and, hence(| 5S|2) are not well defined, since the
tial suitable for the description of near-critical binary mix- zero points of chemical potentials and entropy are arbitrary
tures, the pressur, is a function of three variables, namely, [20,21]. In contrast,Cp, and (@x/du)pt and, therefore,
the temperaturd, the chemical potential of the solvent, (| 8¢|?) and(|8x|?) are well defined and measurable. This is
and the solute-solvent chemical-potentials difference why the introduction of the variableb is advantageous.
=u,— m1, and it satisfies a differential relation of the form These expressions for the thermodynamic fluctuations will
[20,21: be further used in evaluating the hydrodynamic fluctuations.

A. Thermodynamic fluctuations
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B. Hydrodynamic fluctuations a power series in the fluctuations of these variables. In first-

The linearized hydrodynamic equations can be expresse%fder approximation the local dielectric constant fluctuation

in terms of the variable®, ¢, andx [15]. In this paper we ¢ reads
are interested in the entropy and concentration fluctuations at
constant pressure that contribute to the cenfoaishifted Se=

de de de

—P> 5P+(—) 5¢+(—) ox. (2.14
Rayleigh component of the spectrum of the scattered light. J bx I¢ P.X X/ g
We, therefore, do not consider the pressure fluctuations at

constant entropy responsible for Brillouin scattering. As the instantaneous fluctuationsRf ¢, andx are statisti-
The correlation functions as a function of the wave num-cally independent, one obtains
ber g can be found from the set of the linearized hydrody- e\2 9e )\ 2
namic equations by applying a Fourier-Laplace analysis (5s2)= (—) (6P?)+ (—) (8% +
[15,16): IP/ 4x I/ o
(2.19

(5¢(a. ¢~ a) = D.~D e Dty Ee‘[’zqzt, As we do not consider Brillouin scattering, we neglect the
(|6p(a)|%) D1=D; D2=Dy pressure fluctuations. The dynamic structure fa&,t),
(2.9 which determines the light-scattering properties of the me-

dium, is then given by

2
(%2,
P.¢

de
X

(OX(ADX(=) _D;=D ;2 Di=D ;o
<|&((q)|2> DZ_Dl Dl_DZ ’ S(qat)/pVNA:<68(qit)58(_Q)>
0 (‘98)2 (56(q.0)36(~ )+ 38)2
= —_— q, —q JR—
(x(@.Dd¢(—q) T (du) (54(q.t)ox(~q)) IP)px /e
(Iox(@I? Cexlax/or  (|6g(q)?) X050 ) (98)
X q.t —a)yt|o= o~
:(8,LL/(?X)pYT DkT &¢ P.& X P&
Cex D172 X[(84(a,t) 6x(—q))
_ 2 _ 2
X(e7Pil-emd, (21 +(3X(q.1)33(— ). (2.1
where the coefficient®,; and D, are defined by Eq(1.1), One can prove from thermodynamics, thas]
and the mean squared fluctuationsfondx are determined
by Egs.(2.5) and (2.6) in the thermodynamic limit, where (07_8 :((9_8 :(19_8) N Tar (5_8)
lal—0: ([6¢(lal—0)?)=(]6¢|?) and (|ox(|al—0)*) P P P pColaT/

_ 2 @, X S,X T,x ' P,x
=(|ox[%). (2.17)
C. Light-scattering correlation function (&_8) _ (69_8) (3_8> _ (69_8)

The time-dependent electric fieli(t) of the scattered b o, \IT)p)’ X p g VX oy
light is a superposition of waves scattered from individual (2.18
scattering centers. In actual dynamic light-scattering
(photon-correlation experiments, the detector of the scat- Ill. LIGHT SCATTERING IN BINARY FLUIDS

tered light is a photomultiplier that responds to the intensity
[(t) of the light that impinges on the detector. After the
resulting signal has been processed by a digital correlator, The overall intensity of the light scattering in a binary

the time-dependent intensity correlation function is obtainednixture is proportional to the mean squared fluctuations of
which, being normalized by the average intensity of the sigthe dielectric constant given by E@.15 [and by Eq.(2.16

A. Static light scattering (thermodynamic limit)

nal, has the forni1,2] att=0]. In the thermodynamic limit ofg|—0 andt—0 we
5 obtain
C(q,t)=1+BeS(q,t)*, (212
. _ g g _ ! condi (15[ kBT(as)z T +(aa)2 (ax)
where B, is a constant depending on experimental condi- el =1\ = - — :
0 Vp [\ dT), Crx \ox/ \dun/

tions, andS(q,t) the dynamic structure factor proportional to 31
the time-dependent autocorrelation function of the dielectric (3.9)
constant fluctuations We modify Eq.(3.1) to separate the contributions from the
density fluctuations at constant composition and the compo-

5(0.1) =pVNa(de(a.1) de(—0)), 213 sition fluctuations at constant densitgiven by Egs.(2.9
where N, is Avogadro’s number. Here the dielectric con- and(2.6), respectively. To agcomplish this, we use the fol-
stante is taken at the frequency of the incident light. lowing thermodynamic relations:

The dielectric constant of a binary fluid is, in general, a Je de Je ap
function of three independent variable3; ¢, andx. The (—) =(—) +(—) (—) , (3.2
dielectric equation of state= & (P, ¢,x) can be expanded in X pg \OX) ¢ \0p)q \OX]p o
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As the dielectric constant in practice does not depend on
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B. Dynamic light scattering (hydrodynamic limit)

Next we analyze the time dependence of the dynamic
structure factorS(q,t) as given by Eq(2.16). Substituting
the dynamic[Eqgs. (2.9 —(2.11)] and static[Egs. (2.5 and
(2.6)] correlations into Eq(2.16), we find that the dynamic
structure factor can be written as
S(q,t)=A,e P19+ A D2

(3.11

temperature at constant density, we neglect the derivative

(9eldT), « in Eq. (3.3, so that

1 gg\? 9\ 2
(a_Ta_T)P’X:(Pg)T’X (3.5
and
ge\? T 1 9e\2
(E)P,XCP,XZP<Q_T ﬁ) P'X(ﬁT,x_ﬁS,x): (3.6

where Bs,=p~ 1(dp/IP)sy and Br,=p *(dp/IP)r, are

the adiabatic and the isothermal compressibilities, respec-

tively. If one adds the term

kBT de 2
AT T,x'BS'X

associated with the pressure fluctuations into @Bql), one

obtains the general equation for the mean squared fluctua-

tions of the dielectric constant:

keT[ .[de\? [dp de\? [ ox
(loe=v5 Pz(a—) ) Tl |\
p Pl x Tu O\ O by
42 22 (2] ] e
IX] 1\ 9P 1\ %) o\ ) 1] .
which can be further transformed to
de\?
(o= ) (o
p, T
N (98)2 +2(&£) (as) (&x) (5ol
™ v - ™ P
9P/ 1y IX),1\9P) 1, \9P) 1,
(3.8
with
s (Fe R s I I
Plr, [\Xpr IP) 3\ IX] o p\ X[ b
(3.9

In the limit x—0 this equation takes the well-known form
[27]

<|58|2>=(a_e)2<|5p|2> (3.10

c?pT

with {| 8p|?) given by Eq.(2.9).

where A; and A, are the amplitudes of the two relaxation
modes:

Az, 227D, D7D o KD 312
D,—-D; D,—D; D,—D;
Az, 27 P1 , D7D ~Z, krD (3.13
D,—-D; D,—D, D,—D;

with
Zl=RT(a—8)2 (ﬁ) , (3.149
IX] o\ O] p 1
z2=(j—i>2 ETZ, (3.15
Px ~Px
Zy=— j—i) (Z—i ET (3.16
P.x p,T ~Pux

We note thatz,, Z,, andZ; contain only thermodynamics
derivatives, i.e., they are static quantities. As

47,Z,(D—D,)(D,—D)=2Z3D%2, (3.17
the amplitudesA; and A, can be written as
D2_D 1/2 Dl_D 1/212
= — + .
& (ZlDz—Dl) (ZZDl—D2> } - 319
D,—-D D,—-D

1/2 1/212
AZ:{(ZlDl—Dz) _<Z ) } (19

The overall intensity of light scattered from the system is
proportional to the sunA; + A,=Z; + Z, that agrees
with the thermodynamic relatio(8.1).

?D,-D;

C. Electromagnetic equation of state

The dielectric constant and the total molar densify are
interrelated by the Clausius-Mossotti equation, which for a
binary mixture takes the forfi6]

8—1_0,
ct2 ~ P

(3.20

whereC' is a function of the mole fractior, approximated
by C'=(4m/3)[ a(1—x) + a®x], and a*) and «® are
the molar polarizabilities of the two components. Differenti-
ating Eq.(3.20 with respect to the density and composition,
we obtain
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( de ( 1)s+2 (3.2
—] =(e— , .
Po-,p Tx 3

(98) (e+2)? ap

—] = ""—] +C"p]|, (3.22
(ax BT 3 X BT

whereC”=(4/3)(a®— a) is a constant. Comparing Eq.
(3.22 with Eq. (3.2, we find

(r?s) o (e+2)2 3pC” (3.23
JR— = p: E y .
IX| 1 3 (1-C'p)?

( (98) 3 ,(a+2)2 ~ 1+3pC” (3.24
Ponle T3 Pascpr T

Equations(3.23 and(3.24) are to be used in calculating the
amplitudes of the two modes observed in light scattering.

IV. TWO-EXPONENTIAL DYNAMIC CORRELATION
FUNCTIONS IN NEAR-CRITICAL BINARY FLUIDS

A. Thermodynamic properties of binary mixtures
near critical points

Fluids and fluid mixtures belong to the universality class

of the three-dimensional Ising modééquivalent to the
three-dimensional lattice gawith two relevant scaling fields
[28—30. For mixtures the two relevant scaling fields and

h, are linear combinations of the three physical field vari-

ables AT=T-T,, Apwi=p1—p1c, and Au=p—pu
[20,21:
hlzalAMl+azAT+a3A,LL, (41)
hzzblAT+b2AM1+b3A/.L, (42)

whereT,, ui., andu. are the critical values of, u,, and
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and «=0.110, y=1.24, andB=(2—a— y)/2=0.325 are
universal critical exponent®28—-33. The first scaling den-

sity ¢4 (the order parameteconjugate to the scaling fiela;
is defined as
P1= (

with f'(z) =df/dz The second scaling densi@, conjugate
to the scaling fieldh, is defined as

AP

ahy 4.9

) =|h,|Pt'(2),
h,

T C Y-
2 hy
with
W(2)=2-a)f(2)=(B+y)zf'(2). (4.7

The explicit expressions for the scaling densitigsand ¢,
in terms of the physical densitigs, px, ands have been
obtained in an earlier publicatidi20]. In addition, two scal-
ing susceptibilities may be defined as

J
xlz(ﬁT‘Pi) h2=|h2|‘Yf"<z>, 4.8
J
XZ=(£) hl=|h2|*“\1f<z>, 4.9
where
V(2)=(1-a) ()~ (B+y)2¢'(2), (410

with f”(z)=d?f/dZ® and ¢’ (z) =dy/dz One can also de-
fine a cross susceptibility yq,= X21=((9(p1/(9h2)h1

=(o7902/¢9h1)h2 which vanishes in zero fielth;=0 in the
one-phase

wm, respectively. All system-dependent parameters in the reregion[21]:

lations (4.1) and (4.2), namely, the coefficienta; andb; as
well as the critical parameters;, wq., and u., depend

parametrically on the actual position on the critical line. This

position can be specified by any of the three variafilgs
M1c, andu. The scaling fields are made dimensionless b
an appropriate choice of the coefficients and b; (i
=1,2,3) in Egs(4.1) and(4.2).

To specify the critical behavior of binary mixtures near
the critical point, the pressure is separated into a singular a
a regular parf20,21]:

P:Ap(hl,h2)+ Pr(T,/.L,,lLl), (43)
where the regular pafidenoted by the superscrip} is an
analytic function of the three field variabl@s u, andu,. A

dimensionless singular patP of the pressure satisfies a

x12= NP BE ()= (B+y)zf'(2)]. (41D

The scaling susceptibilitieg;, x», andy;, as well as the
scaling densitiesp; and ¢, are not directly measurable

yquantities, but one can express measurable second deriva-

tives of the thermodynamic potential in termsyaf, x», and
X12 using appropriate thermodynamic transformations
0,21). For instance, in zero ordering field in the one-phase
gion the expressions for the osmotic compressibility
(oxldu)p+ and for the isothermal compressibility
(dpl IP) 1 «, appearing in Eqg3.3) and(3.4), become

r

ax
I

ox

o (4.12

’

P, T

with

scaling law analogous to that of near-critical one-component

fluids [31] and may be defined as
AP=AP/pRT.=|h,|2"%f(2), (4.4)

where f(z)=f(h,/|h,|#*?) is a universal scaling function

(5

RT[(az—aiXc)2x1+ (b3—boxo)2xa]+1,
(4.13

r

and
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(a_P) =(Lixa+LoxatLigxix2) o 1+ (dpldP)f .,
T,x
(4.19
where
&P r 2
L,=RT.a% 1+ — —) Kl} , (4.19
o\ X P,T
ap\" Kz) 2
L,=RT.b2 1+——> Ki+—||, @41
2 cM2 c IX - 1 b2 ( 6)
X r 1
L,=(RT,)? (—) a’k3, (4.17
. ‘ { Im P,T !
with
as
K]_:_ __XC y (41&
a
as
K2:b2__b3 (419

Here x/du)p 1, (dpl IP)T ., and @p/ dx)p 1 are the regu-
lar parts of gx/du)p 1, (dp/dP)1x, and @p/dx)p 1, re-
spectively. Asymptotically both derivativegXx/du)p + and
(dpl IP)1 « will diverge at the critical point: §x/du)p 1 di-
verges strongly ag; and @p/JP)t  diverges weakly ag,.
The two characteristic parametéfs and K, determine the

crossover between different types of behavior depending on

the variation of the coefficients; andb; along the critical
line [20,21]. The parameteK, is responsible for strongly
singular contributions associated wijth and is related in the
dilute-solution limit to the so-called Krichevskii parameter
[34], while the parameteK, accounts for weakly singular
contributions associated with,. Specifically, the parameter
K, determines the range bf, ath; =0, where the so-called
Fisher renormalization of the critical exponents takes place,
when one makes a transformation from the theoretical scal-
ing pathh,xT—T, at constantu=u. and density to the
experimental path corresponding to constant concentration
and density 35,36. One should note that; represents the
composition at the critical lindone of the critical param-
eterg, while the densitylike variable is generally different
for the coexisting phases.

One can also deduce the corresponding expressions f
the derivative §u/dT)p y=—(JdS/9X)p + and the derivative
(dul IP)1 x=—p %(dplX)p 1, Which appear in Eqs3.2)
and(3.4). Specifically, in zero ordering field in the one-phase
region one obtaing20]

‘?/-L -1 (9/,L ' r -1 52 a
(ﬁ_T)P = ((9—1- TRT[(x/p)p 11”7 a1Ky a
X P,x
2 K2 b1
—Se|x1t b3 Ki+ — =S| x2 (4.20
b,/ \ b,
and
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R s
Y - oy PRl | T
IX] o1 IX| b I pr
2 2 K2
X alK1X1+ b2 Kl+ b_2 X2 . (42])

We note that §u/dT)p + depends on the choice of zero
point of entropy and, hence, contains an arbitrary constant
[20,21].

To derive the equation for the isobaric molar heat capac-
ity at constant compositio@p ,=T(dS/dT)p 4, ONE can use
the thermodynamic relation

JS S au\? [ ox
Iy Vg, VT g Nou)p s
Taking into account that
(as) _[oS\' RT
e, 0T/, ¢

X[ (az—a;Se)%x1+ (b1 —0,5)%x2],
(4.23

we find for Cp , in zero field in the one-phase region

Cpx= C{D,x+Tc(E1X1+’E2X2+E12X1X2)w71,

(4.249
with
a J r 2

T 2 R

L,=RT.a3 S, a1+ (9T)PXK1 , (4.2
Tortods 20 (%) (k% we
2= cM2 C b2 (?T o 1 b2 I} ( . 6)

ax r -1

L= (RT,)? (—)
12 ( c) z?,u P’J

X[(a;b;—ayby)Ky+(a;Sc—a)K,1%, (4.27)

where the superscriptagain denotes regular parts. The iso-
baric molar heat capaci@p , contains both a weakly diver-
gent contribution fromy, and a strongly divergent contribu-

(Sipn from x;. On the other hand, the derivativedu/dT)p 4

and @p/dx)p 1, in general, do not diverge at the critical
point of a mixture. Complete expressions for these thermo-
dynamic derivatives, which are also valid for nonzero order-
ing field, can be found in Ref20]. The experimentally ac-
cessible physical properties are certain combinations of the
two scaling susceptibilitiegy; and x,, whose contributions
are governed by the values of the coefficieatsand b,
which vary along the critical line. Mixing of the physical
variables also exists in one-component fluige,21,37-39

in which the only effect of this mixing is the appearance of
corrections to the asymptotic behavior related to gas-liquid
asymmetry. In fluid mixtures the mixing of the field vari-
ables may also change the asymptotic critical behavior of
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, (4.39

thermodynamic properties depending on the values of the (gg) (as') (g,u')2 ( JC
P.u' Jr P,c Jr P, T

mixing coefficientsa; andb; [20,21]. T o

P,c

B. Transport properties of binary mixtures

_ it S s
near critical points we note from Eqs(4.30—(4.32 that the critical parta®, 8°,

) o . andy® of the kinetic coefficients in the asymptotic vicinity
The Onsager expressions for the mass diffusion cufgent of the critical point are interrelated Hy9,44]
and for the heat current in binary mixtures read18,40

. ~ ;= s 5,LL' 71"‘5_ 1 8,(1,’ 72"'3 S— T (9,&' ns
ja=—aVu'—pBVT, (428 a’=- e B=\77] v v="Tlo7 .
,C P,c P,c
) - _— (4.39
Jq=—yVT=TBVu +u'jq, (4.29
One also hasgsee the Appendjx
wherea, B, andy are the Onsager kinetic coefficiengs! -
=us/My— /M, the reduced chemical potential differ- dc _M1M2 IX
ence withM, andM, the molar masses of the pure compo- ') M3 \op). (4.36
nents. Equation§4.28 and(4.29 are expressed in terms of T T
guantities taken per unit mass, while the equations of state of , _
fluid mixtures near critical points conventionally involve mo- - = — Rl E—— (4.37
lar variables. Since this difference can cause a confusion in 2 P.c MM\ oT P,x MiM;

the interpretation of experimental data and is often ignored

[20,41], we provide in the Appendix relations between spe- Since the response functiondc(du’)p 1, (9¢/dT)p 1,

cific (per unit massand molar thermodynamic and transport and (#S'/dT)p, ., diverge asymptotically ag;, all three ki-

properties. netic coefficientse, B, and y diverge asymptotically as the
According to the theory4,19,42—4% the kinetic coeffi- producty;£ 2, provided that one neglects a very weak sin-

Cientsa, ’E, and; diverge at the critical point of a binary gular critical enhancement of the shear ViSCOW, which

mixture just as the thermal conductivity diverges at the criti-Will not be discussed here. As the correlation length is di-

cal point of a one-component flu[®,45,46. Near the criti-  rectly related to the strong scaling susceptibifty we may

cal point the Onsager kinetic coefficients satisfy the follow-assume that asymptotically

ing equationg47-49:

X1 vly
o ko[ e ~ §—§o<r—o) , (4.39
a=a’+a'=——= (F +a', (4.30
6mng\ ok et where¢, is an amplitude of the order of a molecular siFg,
is the amplitude of the strong susceptibility in zero field, and
’B:ES+’Br:kBTPI(0_C> My, 4.31) v=(2—a)/3=0.63 [54]. The amplitude¢, is interrelated
6mpe\dT) M, ' ' with the amplitude of the weak susceptibility in zero fiélg
' by the universal relatiom\¢3p.No=0.18[3,31]. Therefore
. — kgT2p'[oS _ in zero field in the one-phase region the correlation length
Y=+ 7“=—~( (?—T) +7, (4.32  asymptotically behaves as=¢sh, "
6mné Pu’ The thermal conductivity is defined by
where £ is the correlation length diverging at the critical jq=—AVT (4.39

point, a", B', 5" are regular background contributions,is

the shear viscosityp’ =pM is the mass densitM =M(1  with j4=0, so thatx is related to the kinetic coefficients,

—X) +Myx is the molar mass of the mixture=(M,/M)x B, and7 as

is the mass concentration, ad is the specific entropy.
It should be noted that the expressions for the singular

parts of the Onsager coefficients®, B°, and y® are only
valid close to the critical point. Extensions of the theory to
include crossover from the asymptotic critical behavior of; terrelated by Eq(4.35, their divergent contributions th
the transport properties of mixtures to the regular behavior o xactly compensate eaé:h other and the thermal conductivity
these transport properties have been considered by Kiseles\(1 e o ; ; ;

; ould remain finite at the critical point of a binary mixture
and Kulikov[41], by Luettmer-Strathmann and Sengpgt9] P y

A=y-T(B%a). (4.40

Since the singular parts af, B, andy are asymptotically

- - 19,44,58.
and by Folk and Mosef50-53. In this work we consider [ h k'a ) ficients. B. and directl
the close vicinity to the critical point where Eq&t.30— The kinetic coefficientsy, 8, andy are not directly mea-
(4.32) are valid. As surable. To calculate the experimentally accessible transport
properties of binary mixtures one should regard the chemical
Jc 9 e potential differencex’ as a function of the experimental
—) =— (—,) (—) , (4.33  variables, namelyR,T,c and express the mass diffusion cur-
I o In' o\ T [ rent as[18]



jg=—p'D (4.4

ver Kot Keyp
C+? +F ,

where D is the mutual mass-diffusion coefficierit; the
thermal-diffusion ratio, andp the barodiffusion ratio. The
mass-diffusion coefficient or mass diffusivily is related to

the kinetic coefficienix by

alou
o-3(%
p P

Jc
It follows from Eg. (4.30 that in the asymptotic vicinity of
the critical point this diffusion coefficient reduces to

o

M2

I
T 2m2 ol
T MiM3p

oX

) . (4.42
P.T

_ kgTg
67 né

and vanishes at the critical point g5 [7,8,14. We note

(4.43

that as gu'/dT)p . depends on the zero point of entropy, the

productsT(au'/aT)p calp’ andTB/p’ are not well defined,
whereas their sunk{D is a well defined and measurable
property. The thermodiffusion coefficieBt; is defined as

Dy=k;D T((M,) 415 (4.44
T KT =_,_ a+ — .
p'\ T pe p’

and tends to a finite value at the critical point, because th

singular parts of the kinetic coefficientsand3 compensate
each other according to E@4.35. The thermal-diffusion
ratio is defined as

Dy

k=5 (4.49

and diverges in the vicinity of the critical point as the corre-

lation length&. The barodiffusion ratio

P (ap’) ( ac
P’Z Jc P,T

19_,(1,’) - (4.49

Kp

MM, 0xc(1—xc)[~0 1
L L1 TR
M2 6o '+Z% ' R

X[a;Ki(az—a1S) x1+ (b3—byXe) (bSc— bl)Xz]wl] .

We note that even ik9=0 k; may not be zero near the
critical point and Eq.(1.2) should be used to calculai®,
andD, according to Eq(1.1).

C. Critical behavior of the dynamic structure factor

Now we analyze the critical behavior of the dynamic
structure factorS(q,t) given by Eq.(3.11). Using the ther-
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asymptotically diverges ag;.

The actual behavior of the transport properties observed
in the experimentally studied temperature range is not
asymptotic and is affected by the interplay of the regular and
singular parts of the kinetic coefficients and of the thermo-
dynamic derivatives. Therefore, the regular parts are very
important and cannot be omitted even close to the critical
point[20,47,48,5&

Substituting the expressions for the thermodynamic prop-
erties in terms of the universal scaling susceptibiligsy,
and y, into Egs.(4.30—(4.32), one obtains explicit expres-
sions for the transport properties in the vicinity of the critical
point[20]. The expression for the mass diffusion coefficient
reads

D=Dgy(¢ *+ 0w 1), (4.47
where
Do=—& (4.49
00— ~ .
671

and where we use the notatign= £/ &,. The parameted is
of order unity and relates the diffusion coefficieDt far

gway from the critical point ¢=1) to Dy: D=6D,. As-

ymptotically close to the critical point Eq4.47) reduces to
Eq. (4.43.
For the thermodiffusion coefficient we obtdi0]

.,
aT P.x

r

+koR|,

P,x
(4.49

Ip

aT

MM, 6x.(1—x
DT:DO 12 c( c)|-(

M?2 R |

where @u/dT)p , is given by Eq(4.20 andk? is related to
the Soret coefficienS; far away from the critical pointk$

TS;. The thermal-diffusion ratio is given by

-1
(0 1=1)+T,

%),
o) p

P,x

(4.50

modynamic relationg3.2)—(3.4) and neglecting again the
derivative @e/dT),  in Eq. (3.9, we can express the ther-
modynamic factorsZ,, Z,, and Z; through the thermody-
namic derivatives discussed in Secs. IV A and IV B:

Jl

ax
I

ap
ax/

leRT[éTz‘F(l ) , (4.50
P.T
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,( 9P 2 (9p\? RT? We find that asymptotically the limiting value &; is pro-
Zy={7 Fid (a_P) co (4.52  portional to the strongly divergent susceptibiligs, while
piX Tx Px the limiting value ofZ, is proportional to the weakly diver-
_2§1RT((9P) (&p) . (&p) is gent susceptibilityy:
o vy B = B R e B (RT[ £5(a5~a1Xe) ~ ped1afKy |
s : ' Z1— > X1,
with (az—aXc)
(4.56
de de 2 2 r
§1=(—) , §2=<—) (4.59 o[ 9P L1z (OX/dp)p 1
dp IX Z,— | —= — X2 (4.57
X T a piX L1z (az—aXc)?
determined by Eqs(.3.23)_ and(3.24. Neither{, nor £, di- Asymptotically the factoZ; does not depend on eithgg or
verges at the critical point. Xa!

Substituting now §x/du)p 1t from Eq.(4.12), (dp/IP)t «

from Eq.(4.14, and @p/dx)p 1 from Eq.(4.21), we obtain Lo palK,
the factorsZ; expressed through the susceptibilities and 23—>2§1R(ﬁ) = h———|
x2- Near the critical poiniy;> x,, so that px L1z (az—asXc) 58
ax\' —
xi0 ! (?—) [RT.(az—a;x)?]"*. (455  SubstitutingL, andL,, from Eq.(4.17) and Eq.(4.27), we
Hle T obtain
|
Z,—(RTo)%ai(¢Ke— ped1)’x1, (459
oP\? ajK3;
Z,— {1(RT, >2(—) X, (4.60
BT p.X Ki[(albl_azbz)K1+(alsc_az)K2]2
P a2K3(LoK 1= pely)
23—>2§1R(—T) 17021920 Peot . (4.61)
IT) , xKal(ath;—ayb,)K;+(a;S.—a)K,]

Let us consider the one-phase region of a binary fluid neaachievable experimentally, and the intermediate crossover
its vapor-liquid critical point in zero field, i.eh;=0 and behavior of transport properties, rather than the asymptotic
hy=7=[T—T(u=pud)]/T(u=unJ). There are three char- power laws, is observed.
acteristic temperatures that determine the behavior of the Thus, the behavior of the dimensionless mutual mass dif-
transport properties in the one-phase region in zero fieldfusion coefficienD/D, exhibits three different regimg¢g0]:
defined in Ref.[20] as 7;=[T'oK%/x(1—xg]"” and 7p

=(7716)Y0~" with ry<r,. Far away from the critical 5 T T<p
point when7>7, one can neglect the susceptibilitie® ( 2] 0rr)Y,  mp<t<m (4.62)
=1) and the singular parts of the kinetic coefficients. Close Do 0, ™ 7.

to the critical point whenr<7p the singular parts of the

kinetic coefficients dominate and they behave in accordanceh h giffusi i al hibi beh
with the asymptotic laws. In the intermediate regign<r The thermodiffusion ratidy also exhibits crossover behav-

<, the apparent crossover behavior of the transport prop'—O I
erties is determined by the interplay between the singular c
) e ( 1 (0P _
part of the static susceptibility and the regular parts of the — — Ox(1—xo) K Lrv < ™
kinetic coefficients. Another characteristic temperatuse pcR\ T h,=0
=[AoK3/x(1—x)]¥* that determines the Fisher- e 1 [gpP\c
renormalization region is usually very narrow singe<vy T - R(a_T) Kil'or™?, 71p<<7<Tmy
and 7,< 7, unless special cases are considd@|21]. The Pe h;=0
characteristic temperatures apd 7, find _the|r origin in the [ Kx(1—-xp), 7>7.
crossover behavior of the static properties. On the other hand (4.63

the parameterp, first introduced by Onukj56], is a dy-
namic crossover temperature. In many mixtures, even if they In addition, if experiments are conducted at constant con-
are not dilute, the temperaturg,, let aloner,, is hardly centration and at the critical density, a nonanalytic connec-
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tion betweenr= r(u = const) andr(x=const) atr<r,, that Hence, in the incompressible liquid-mixture limit, the light
causes the Fisher renormalizatif36], must be taken into scattered from the system is determined by the slow mass
account[20,21]. To show how the physical meaning bf;  diffusion mode withD,;=D and an amplitudeA; propor-
andD, changes along the critical line we shall consider twotional to the osmotic compressibilityyk/du) .

limiting cases: the incompressible liquid-mixture limit and

the one-component limit. E. Dilute solutions and one-component limit
o _ ] _ In the experimentally accessible regiog<7<7, the
D. Liquid-liquid consolute point and incompressible thermodiffusion ratiok; vanishes as«.—0, becauseK;
liquid-mixture limit xX.(1—X;)—0. From Eq.(1.2) it then follows thatD=D

Liguid mixtures near the critical consolute points are usu-and the diffusivity associated with the slafaritical) mode
ally weakly compressible so that the incompressible liquid-becomes equal to the thermal diffusivity:
mixture model serves as a limiting case. In the close vicinity

of the consolute critical point, expressioh47) for the dif- L kgT

. . . . . 1—a— = OCTy, (474)
fusion coefficientD reduces again to that given by Eg. 6mné
(4.43. The thermodiffusion coefficierD; tends to a finite
value while the diffusivity associated with the fast mode is related

0 to the mutual mass diffusion coefficient
DT:D00XC(1_XC)I( y (464)
D,=D (4.795
and the thermal-diffusion ratik;=D+/D near the consolute
point becomes with D,<D..
In the pure-solvent limit X,.—0) the parametemw, de-
kT:Xc(l_Xc)k‘?'E (4.65 fined by Eq. (4.13, becomes of order unity20]. The
system-dependent paramet&rs andK, are
and, hence, diverges as the correlation length. .

The diffusivity D, of the slow (critical) mode becomes K, = Xc ch_(@ ﬂ 0, (4.7
the diffusion coefficient and the diffusivitip, of the fast Y paRT| dx, |\ T p=p dx ' '
mode the thermal diffusivity: ot

kgT Ky=(1- RT2,a50,)— a7 0, 4.7
D1—>D_ B och’ (466) 2_( 1a2 2) 2 R*} ( . 7)
77775 cl
\ where @P/aT),‘j:pCl represents the limiting value of
D,—a= c o 7 (4.67 (é?P/(?T)p:pc at the critical point of the pure solvent. At in-
PP finite dilution, in the regionr>r,, the factorsZ, and Z,
with D,;<D, as 7—0. In the incompressible liquid-mixture PECOMe
limit dT./dP,=0 and @P/&T)ﬁlzoﬂw. Therefore, the op\" 12[ ax\"
system-dependent paramet€y goes to infinity, while the Z1=RT| {r+ (s 5) (@)
parameteK, and the producK;a; remain finite[20]: P.T P.T
ap r 2
C — - —
L Xoxg[dP, (9PVC Ty =&+ ax) Xo(1=Xo), (4.78
pcRT. |dx. | aT he o dXe P.T
=
d z ng(aP)z L R(ag)2 (Brx—Bsx)
Xe(1—X%;) dT, 2= ~X1P— Tx~ Psx)-
K2 c( _ c) d (4.69 1 oT xLl Cc z?p Tx X X
RTE X (4.79

The amplitudesA; and A, are found from Eqgs(3.12 and  Thus, asD,—D, the amplitudeA; diverges strongly

(3.13 with Z; deduced from Eq94.59—(4.61):
' a Ay=Zyc7 7 (4.80

de
Z,—(RT)%¢5(K1a:)3x1=RT, ( )

ax
ax 3#) ; and the amplitudé\, vanishes withx at > 1, and diverges
T

weakly asA 7 ¢ at 7<<7y:

(4.70
X, =T
Z,—0, Z3—0, (4.70 A=Z1%Y 10 r<q, (4.8))
Ar—Zyor?, 4.72

Hence, at infinite dilution, the intensity of the light scattered
A,—Z,—0. (4.73  from the system is determined by the slow mode viith



1956 M. A. ANISIMOV et al.

V. APPLICATIONS TO MIXTURES OF METHANE
AND ETHANE

being equal to the thermal diffusivitg and with an ampli-
tude A; proportional to the isothermal compressibility.

To compare the predictions of the theory with experimen-
tal data[22], we have calculated thermodynamic and trans-
port properties for mixtures of methane and ethane in the

In the approach to the critical point the correlation lengthcritical region with the equation of state developed by Pov-
¢ becomes comparable with and subsequently even larg@dyrevet al.[58] with the zero point of entropy assigned by
than the inverse wave number ! of the scattered light and Sakonidou et al. [59,60. This equation incorporates the
the g dependence of the static and dynamic properties mustrossover from singular thermodynamic behavior near the
be taken into accourit4]. According to the mode-coupling locus of vapor-liquid critical points to regular thermody-

F. Wave-number dependence of the static
and dynamic properties

theory[57] the diffusivity D4(q, &), that determines the criti-
cal slowing down is

D1(9,6)=D1(q=0,£)Qx(qé)R(qé),
whereQ(y) is the so-called Kawasaki functid]
Q(y)=(3/4y*)[1+y*+(y*—y Harctary], (4.83

and whereR(y) = Ro(1+ b?y?)?7/2 is a correction factor with
the parameter&ky=1.0—1.05, b=0.5, andz,=0.06 [57].
The Kawasaki function behaves as

(4.82

3 1
Qu(y)=1+zy?—oy+- - (4.84
5 7
in the regimey=qé<1 and as
37 1 371
QK(Y)=?V+—2—?F+"' (4.89

in the regimey=qé>1.

Usually, theq dependence of the forid.82) is attributed
to the mass diffusion coefficierd. However, this is valid
only in the limiting case thab;—D. In general, neitheD
nor a is equal toD; and the mass diffusion coefficiebt as
well as the thermal diffusivitya may or may not depend on
g. The g dependence of the second effective diffusivily
can be assumed to be negligibly small.

Thus, the two characteristic decay ralgs=q°D(q) and

I',=0°D,(q), observed with light scattering, depend on the

wave number as

a2, gé<1
I'1(q)e q®t?, &1, (4.86
I'5(q)=q?. (4.87

namic behavior outside the critical regip@il]. For the criti-

cal parameters of pure methane)( and ethane €) we
adopted the following value$58]: p(cm)=10.122 mol/l,
TiM=190.564 K, P{™=4.5992 MPa, andp{®=6.8592
mol/l, T{¥=305.322 K, P{¥=4.8718 MPa, respectively.
The measurements of the refractive index of methane and
ethane[62—-69 yield for the molar polarizabilities of the
pure componentsa(™=1.57 cni/mol and «(®=2.681
cm/mol.

The viscosity7 as a function of the reduced temperature
7 and the mole fractiox is calculated with the interpolation
formula

7(7,x)=(1—2x)7(7,0)+2x7(7,0.5), (5.2
where n(7,0) and#(,0.5) were calculated according to an
equation proposed by Sakonidai al. [59,60. We have
used a similar linear interpolation formula to calculate the
regular part\" of thermal conductivity:

N(7,X)=(1—=2x)\"(7,0)+2x\"(7,0.5), (5.2
with \'(7,0) and\"(7,0.5) calculated from equation pro-
posed by Sakonidost al. [59,60.

The experimental data, shown in Fig. 1 by open circles,
were obtained by Ackerson and Hanlg2] from dynamic
light-scattering experiments in the mixture of 71.07 mol %
methane and 28.93 mol % ethane at the critical density
=p.. They observed two relaxation modes, a slow mode
and a fast mode, and they attributed the two corresponding
decay rates to pure thermal diffusivity and mass diffusion.
As our theory shows, the two measured decay rates are to be
identified with the effective diffusivitie®, andD,. We fit-
ted Eq.(1.1) to the experimental daf@22] simultaneously for
the fast and slow modes. In this procedure the regular parts
a" and 8" of the Onsager coefficients in Ecfg.30—(4.32)
were the only adjustable parameters. The results of the fit are
shown in Fig. 1, where the solid lines represent the two ef-

The thermodynamic derivatives determining the intensityfective diffusivitiesD; andD,. The joint fit yieldeda"(xo)
of the scattered light can be expressed through the suscepti-4 gy 111 kgsm3 and B'(xg)=—2.1x 108 Pas K}

bilities x4, x2, andy,,. Theq dependence of the measurable
thermodynamic properies results from thedependence of
the strong susceptibility, near the critical point, which for
small g& has the forn{54]

x1(0)

x1(Q)=

Again, as in general neithewX/du)p 1+ nor (dp/IP)t i is
equal toy,, they may or may not depend an

where x,=0.2893. The values of the Onsager coefficients
found from the fit were then adopted to calculate the conven-
tional transport properties from the crossover equation of
state[58]. The dashed lines in Fig. 1 represent the thermal
diffusivity a=X\/pCp , and the mass diffusion coefficiebx

for the same mixture. Apparently, for this composition of the
mixture, neither the thermal diffusivity nor the mass diffu-
sion coefficient can be identified with the diffusiviti€s;

and D,. As the scattering angle in the measuremda®
was small(8°), thecorrection for any dependence gnat
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FIG. 2. Effective diffusivitiesD, andD,, thermal diffusivitya,
FIG. 1. Two effective diffusivitieD; andD, for a near-critical ~and mass-diffusion coefficierd calculated for a methane plus
mixture of methane (71.07 mol % and ethane (28.93 mol % at  ethane mixture(1 mol % ethang at p=p. as a function ofT
p=p. as a function ofT—T,. The open circles represent experi- —T.
mental data reported by Ackerson and Han[@g]. The solid

curves represent the values 05 andD, calculated theoretically. . . . .

choice of the critical temperature. Evidently, additional ex-
The dashed curves represent the values calculated for the thermal . . . ;
diffusivity a and the mass diffusion coefficieBt. perimental data, especially for mass diffusion and thermod-

iffusion, are needed to resolve the concentration dependence

T—T,=10"2 K is less than 0.1% and we did not need to ©f @" and’ for mixtures of methane and ethane.
incorporate such a correction in calculatibg andD,. In Fig. 2 we show the two effective diffusivitie, and

To calculate the regular parts’ and " of the Onsager D2 @S Well as the thermal diffusivity and the mass diffu-
coefficients for smaller concentrationsof ethane we as- S'O" coefficieniD as a function Ofr__TC fora mlxture_W|th
sumed 1 mol % ethane ap=p. as a function ofT—T,. In Fig. 3
we present the same information for a mixture with 0.1
mol % ethane. On comparing Figs. 1-3 we see that the two
effective diffusivitiesD, andD, are rather stable and do not
vary strongly with concentration. However, the thermal dif-
fusivity a and the mass diffusioD do depend strongly on
the concentration. We see that for smaller and smaller ethane
concentrations the mass-diffusion coefficient differs more

E'<x>=2f<x0>xio, Ef(x)=73f(x0)§0. 5.3

We note that the values af" and 3", quoted above for a
mixture with 28.93 mol % ethane, differ considerably from
the values a'(0.5)=1.0x10 " kgsm?3 and B"(0.5)
=0.14x 10 8 Pas K, deduced by Sakonidoet al. from
their measurements of the thermal conductivity for a mixture
with 50 mol % ethang60]. However, two remarks should be
made. First, it is not clear whether E¢h.3) adopted by us

for smaller concentrations can be extrapolated to larger
ethane concentrations. In addition, the actual values of both

B" and ©@u'1dT)p . depend on the choice made for the zero
point of entropy [20] and only the combination
a'(op'19T)p o+ B has a physical meanir(gf. Eq. (4.44)].

As a consequence, the values founddérand 8" are highly
correlated. Kiselev and Huber have recently obtained values
of the regular parts of the Onsager coefficients for the 50%-
50% mixture that are much closer to our valég]. They
report (0.5)=3.5x10" ' kg s m 3 and B'(0.5)= —1.94
X108 Pas K from a joint analysis of the thermal con-
ductivity experimental data by Sakonid¢&9] and Roder
and Friend 67]. Sakonidowet al. have shown that the varia-
tion for the asymptotic critical limit for the thermal conduc-

107

—
<
®

Diffusivities (m’ s™)
3

x=0.1

% mol C,H,

EXE
T-T. (K)

10

FIG. 3. Effective diffusivitiesD, andD,, thermal diffusivitya,

tivity is only 4% when the values o&'(0.5) differ by a
factor of two[60]. Moreover, the value o&" extracted from

and mass-diffusion coefficierd calculated for a methane plus
ethane mixture(0.1 mol % ethaneat p=p. as a function ofT

the asymtotic thermal conductivity limit is sensitive to the —T,.
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FIG. 4. AmplitudesA; and A, of the two relaxation modes FIG. 5. AmplitudeA, of the slow relaxation mode in methane
calculated for a methane plus ethane mixture with 28.93 mol %plus ethane mixtures at=p, andT—T,=1 and 5 K as dunction
ethane ap=p. as a function ofT —T,. of the ethane concentration.

and more from the effective diffusivit, of the slow mode tigation of the regular parts of the Onsager coefficients is
and approaches more closely the effective diffusivity. desirable.

Asymptotically, the diffusion coefficienD becomes much The parameter

smaller than the thermal diffusivity and approaches the ef- _

fective diffusivity D4, but this happens at temperatures too K:(k%/TCp’X)(aﬂ/aX)p’T:(k%/TCp’C)(&MI/aC)p'T

close to the critical point to be accessible experimentally.

As can be seen from F|g 3, even for very small Concenlhat determines the COUpling of the mass diffusion and the
trations of ethanéx=0.001) the thermal diffusivity begins to thermal diffusivity [cf. Eq. (1.2] is shown in Fig. 7 as a
deviate from the observed diffusivit, already atT —T, function of temperature for thr.e_e molg fractions of ethane at
~1 K and this deviation increases rapidly upon approaching = Pc- AS We approach the critical point, always becomes
the critical temperature. This means that the interpretation oftuch larger than unity. Thus the two modes are strongly
dynamic light-scattering experiments in so-called “pure” coupled, until the conditiom/D> « is achieved. .
fluids [12], which always contain impurities, must be carried  The measurable time-dependent correlation function of
out with caution. In fact, the slow diffusion mode, being the intensity of scattered light is proportional to the structure
always critical, is not sensitive to impurities, whereas thefactorS(q,t) for heterodyne measurements, and$¢q,t)]
actual thermal diffusivity is. for homodyne measurements wit8(q,t) given by Eq.

The amplitudesA; andA, of the two modes can be cal- (3.11. The diffusivitesD; and D, and the corresponding
culated from Eqs(3.18 and (3.19. The calculated ampli- amplitudesA; andA, can be obtained from measurements of
tudesA; and A, are shown in Fig. 4 for the mixture with
28.93 mol % ethane gi=p. as a function ofT—T,. The 0.025
critical amplitudeA; diverges stronglyfas (T—T.) *] and
the noncritical amplitudeA, diverges weakly[as (T
—T.) %] upon approaching the critical point. The tempera- 0.020 + I-T.=0.1K
ture dependence of the amplitudes remains the same as we
consider a more dilute solution. At infinite dilution, the non-
critical amplitudeA, vanishes. In Fig. 5 the amplitudie, at 0.015 T-T.=1K
p=p. is shown as a function of the mole fractigrof ethane

for T-T.=1 K and T-T.=5 K. The amplitudeA, is wqmomo I

shown in Fig. 6 as a function of for T-T;=0.1, 1, and 5 ' T-T,=5K

K. Ackerson and Hanlej22] reported some qualitative data

on the ratioA,/A;. They considered the data reliable only 0.005 -

far away from the critical point. AT —T.=10 K they con-

cluded A,/A; to be about 0.05, whereas our calculations

predict a much smaller magnitude of 0.005. This ratio ap- 0.000 “L—— ' : L

pears to be very sensitive to the regular parts of the Onsager 000 002 004 008 008 010

kinetic coefficients. If we use the values af and 3" re- x (mol fr. C,Hy)

ported by Kiselev and Hubg¢66] we obtain largei, /A, of FIG. 6. AmplitudeA, of the fast relaxation mode in methane

about 0.03 aff —T.=10 K, but the description of the fast plus ethane mixtures ai=p, and T—T,=0.1, 1, anl 5 K as a
mode is deteriorated. As we mentioned earlier, further investunction of the ethane concentration.
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sivity to mass diffusion coefficient and the physical meaning

80 of the corresponding amplitudes; and A, changes from
compressibility to osmotic compressibility. Experimental ob-
servation of the two modes is a challenging task. However,

60 | being measured simultaneously, these two modes give a

more complete picture of dynamic critical phenomena in

x=0.2893 mol fr. C H, fluid mixtures
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FIG. 7. Coupling parameter=(k2/TCp,)(dpldx)p1 of
methane plus ethane mixturesgat p. as a function ofT — T, for

various mole fractions of ethane.
APPENDIX

the intensity correlation function, if the_glmplitu@g is not In this appendix we elucidate the relations between ther-
too small compared té\, (A;/A;=10") and if Dy and  mpogynamic and transport properties of binary mixtures taken

the larger difference oD, and D, is required. When the The differential of the Gibbs energ@ per mole of a
ratio A, /A, is too small, a single-exponential decay corre-pinary mixture is

sponding to the slowcritical) modeD; is observed in prac-

tice. While the values of the ratiD, /D, are rather similar dg=p ldP—SdT+ udx, (A1)
for different fluid mixtures, one can play with the ratio

A1/A, by a proper choice of the components. A promisingwherep the molar densityS is the molar entropyu= w,
system for detecting the two modes is the mixture of nitro-— x4 is the chemical potential differencg,; and ., are the
ethane and iso-octane in the vicinity of the consolute pointmolar chemical potentials of the individual components in
where, because of a very small difference in the refractivehe mixture, andk is the mole fraction of the second com-
indices of the componenf$de/Jx)p 1 is of order 103, the  ponent. The molar densityis related to the mass densjty
amplitudeA, is smaller thamA, at 7=10"2 and is only 4 to by p=p'/M, whereM=(M;n;+M>yn,)/n is the molar

5 times larger thar, at 7=10"* [68], whereas the ratio mass of the mixturen=n,+n, the total number of moles,
D,/D, should behave in the same manner as in other sysM; the molar masses amg the numbers of moles of the pure
tems. Another interesting binary fluid for which the two dif- components wittx=n,/n. The mass concentratianis de-
fusivities have been calculated is a mixture of methane anfined as

n-hexane[69]. This system exhibits a continuous crossover

between vapor-liquid critical phenomena and liquid-liquid Msn,
- . ; . C=—— . (A2)
critical phenomena along the critical line, and the order Mn;+M,n,
parameter fluctuations gradually change from density fluc-
tuations to concentration fluctuations. Hence, the differential of the Gibbs ener@y per unit mass
is

VI. CONCLUSIONS
dG'=(p') " {dP-S'dT+u'dc, (A3)

Two hydrodynamic relaxation modes are present in bi-
nary fluids. In near-critical binary fluids a coupling betweenwhereS’ is the specific entropy ang’ = u,/M,— uq /M,
these two modes results in two characteristic relaxationhe chemical-potential difference. The relations between the
times: one is strongly divergent and the other is weakly dimole fractionx and the mass concentraticrare
vergent. Neither of these two modes can be associated with
pure mass diffusion or pure thermal diffusion. Instead, the M,
relaxation times are inversely proportional to two effective c= VX’ (A4)
diffusivities D, and D,, which can be detected experimen-
tally by dynamic light scattering.

In special cases onlginfinite dilution and incompressible c(l—c)= MlMZX(l_X) (A5)
limits) D, andD, are decoupled, becoming either mass dif- M? '
fusion or thermal diffusivity. Along the critical line the
physical meaning ob; andD, changes from thermal diffu- and
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(AB)

The relation betweenu and u' is found from u
=(dGlox)pr andu’=(dG'/dc)p r with G'=G/Mn, as

LM M,—M;
Y VP VAV

G. (A7)

One also has

gc|  MIM3/ ix
g Ve U -
P, T P, T
o' M (g M,—M
(L) _ (_ﬂ) MM )
T | MM\ aT |, MM,
(ap' L (ap (M,—M)M? (AL0)
ac |, MM\ ax/, MM, °-

The linearized hydrodynamic equation of mass diffusion

for a binary mixture is

g div j All
P == dv g (A1D)
wherej, is the linearized mass diffusion current
: kr Kp
jg=—p'D|Vc+ TVT+ FVP , (A12)

D the mass-diffusion coefficienk; the thermal-diffusion

ratio, andkp the barodiffusion ratio. One can rewrite Eg.

(All) as

Jc
— =D

g (A13)

Ky ke
2 2 2
Vit T VAT+ SV P}.

The molar diffusion currenf is defined byj 4=j4/M. Us-
ing relation(A6), one obtains
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[.=—pD|V +FTVT+EPVP
Ja=—p X T P )

(A14)
with
~ MM,
D= VD, (A15)
~ M
K= MlekT, (A16)
~ M2
kpzmkp. (Al?)
Substitutingj4=j ¢M into Eq.(A11), one finds
divig=M divj 4+ 4(My—M,) VX, (A18)

and then, neglecting the second term on the right-hand side
of Eq. (A18) and substituting 4, one obtains
ax M2
t - MM,

D

K K
V2x+ %VZH FPVZP] (A19)

The entropy transport equation is

JT Ky [dp') dc T (a9S'\ 4P ,
—— —+ —| —=avT,
gt Cp, ordt Cpol P/

Jc

(A20)

wherea=M\/p'Cp .=N/pCp , is the thermal diffusivity, and
Cpc=Cp«/M the specific heat capacity. In terms of vari-
ables per mole, this equation takes the form

aT '|ZT<aM) ax T
P

9t Cpxlox|, dt  Cpy

as) P
o'?P T,x
(A21)

Equationg/A13) and(A20) [or, equivalently, EqstA19) and
(A21)] completely determine the spatial and temporal depen-
dence of the temperature and concentration in the mixture.
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