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We have studied systems composed of either elastic or inelastic particles constrained to move in one
dimension and confined on a line by using molecular dynaithti3) simulation techniques. We have tested
several ways of modeling a boundary that exchanges energy with the system. Furthermore, we have studied
one-dimensional granular systems composed of soft particles under cooling and found that the decay in
temperature follows a power lafect ™ similar to the case of rigid particles, but now, the valuexadepends
on the density and degree of inelasticity in the system. For systems composed of inelastic particles thermo-
stated by one of the boundaries we find that the “extraordinary” state reported by Y. Du, H. Li, and L. P.
Kadanoff[Phys. Rev. Lett74, 1268(1995] is an artifact introduced by method of providing energy to the
system[S1063-651X98)05202-7

PACS numbd(s): 81.05.Rm

I. INTRODUCTION tems, and test another method due to Cicaetttal. [2—4].
In the second part of the paper, we elucidate whether the

Granular material flows appear in natufgand dunes, appearance of the “extraordinary” state is a universal behav-
planetary rings, powdersand are of great technological im- ior for systems composed of inelastic particlgsanular par-
portance(handling and transport of, e.g., seeds and pharmdicles) constrained to move in one dimension, or it is an
ceutical3. In the dry state, granular materials interact mainlyartifact of the model. We found that the appearance of the
by repulsive forces and there is energy dissipation during®Xtraordinary” state depends on how the energy is pumped
collisions due to the excitation of internal modes. Thus, ininto the system.

the absence of an energy source the granular medium cools, Additionally, we compare the behavior of soft and rigid
inelastic particles under cooling, i.e., when there is no ther-

and the motion of the grains eventually stops. One- : .
g y P ostating device coupled to the system. It has been estab-

dimensional models of granular media have been studied i'shed[s 7] that the cooling granular medium is not spatiall
the hope that the origin of phenomena that appear in model¥ L Ing granu edium patially
uniform but it shows clusters and voids. In the case of in-

Ior two or t“hr_ee Id|,r,nen5|cé.ns can bel enllghlten_le_ﬁ bé/ resulty astic particles in one dimension and in absence of any ther-
fom more sSimplie” onhe-dimensional Models. TNe CYNAM-” ystating device, it is possible to shd®,g] that the tem-

ics of particles in one dimension, nevertheless, has the pecb’erature of the system will decrease following a power law,

liarity that their motion is confined between two neighbors,; o {-2. his is referred to as the cooling problem in granular

and therefore the transport of physical quantities across thgaterials. We verify this result for rigid particles, but find
system is very inefficient. that for soft particles, although the dependence of tempera-
The present investigation was motivated by the work ofyre on time is a power laW=t ¢, the value ofa depends
Du et al. [1] where they report the appearance of an “ex-on the density and the degree of inelasticity in the system.
traordinary” state in thermostated systems composed oficNamara and Young have numerically verified the cooling
model granular particles in one dimension. In such a statgsroblem in one and two dimensiofs,9].
the majority of the particles form a clump in the side of the  The outline of the paper is the following: Sec. Il describes
simulation box opposite to the thermostat, and they move ahe system composed of rigid particles, Sec. Il presents the
a very low speed. The rest of the particles move at a muckystem composed of soft particles and describes how inelas-
higher speed between the thermostat and the clump. tic collisions can be introduced. The thermostating devices
The first part of this investigation is devoted to analyzingstudied in this paper are described in detail in Sec. IV. In
the thermostating devices used in Rff]. We have tested Sec. V, we present and discuss the results from the simula-
whether these thermostating devices are able to produce trtiens. A summary and the conclusions of the investigation
equilibrium states at a desired temperature. With this purare collected in Sec. VI.
pose, we have studied systems composed of rigid and soft

particles constrained to move in one dimension. We found Il. RIGID PARTICLES
that the thermostating devices used in R&f.either failed in
setting the system at the target temperattweich is the We consider a system ®f point particles of equal mass

assumed temperature of the boundaoy produced a wrong m, which are constrained to move in one dimension and
distribution of energies in the systems. Therefore, we pro€onfined in a box. The interaction between particles occurs
pose alternative methods that successfully produce equilidhrough collisions only. If the collisions are elastic, in the

rium states at a desired temperature in one-dimensional syparticular case of one dimension, a collision simply means
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an exchange of momenta between the colliding particleswherex;; is the distance between the centers of the disks.
Moreover, it should be noticed that the particles are pointsThe potential parametets, € and the masm of the particles
make the properties of the system independent of the densigre the units of length, energy, and mass, respectively. All
of particles in the box. The walls confining the system arethe quantities obtained for this model are presented in re-
hard walls of infinite mass. In some of the simulations theduced units. The reduced temperature is definettgd3e
particles are allowed to exchange energy with one of thékg is Boltzmann's constaptand the reduced time as
walls, which, thus, acts as a thermostat. This is described ig-(m/e) Y2
detall in Sec. IV. Inelasticity can be brought into the system by introducing
Inelasticity is introduced into the system in the same waydissipative forces during collision. In the present model, con-
as in previous simulationgl,5]. Leti andj denote the in- trary to rigid particles, collisions have finite duration. We
dexes of two colliding particles. The velocities after colli- have chosen to let the particles experience dissipative forces
sion,v{ andv| , are related to the velocities before collision, whenever the distance between them is less tHéior 2i.e.,
vi andv;, as during the whole period of time of the collision. The shape
of the dissipative force is

vi=evit(1—evj, (1)

Fais= —, (6)
vi=(1-€)vi+evj, (2 aTTE dt

where e=(1—r)/2 andr is the restitution coefficient. The whereD is a so-called deformation parameter defined as
parameter is the ratio of the relative velocities right after
and just before a collision and provides a measure of how
inelastic the collisions are. The case 1 the collisions are
elastic, and the case=0 the collisions are completely in- D=0, x;>2"%¢ (8
elastic. This model is identical to the one chosen in REf.

where the simulation results indicate a breakdown of hydroandy is related with the degree of dissipative friction in the

D=21/60'_Xij , Xij$21/60', (7)

dynamics for inelastic particles in one dimension. system. Hence, the dissipative forces depend on the degree
The temperature of the system is defined &3 of deformation of the grains and the relative velocities be-
tween the colliding particles;;; :
1 N
T=—> v?2, 3 dD
Nigl ' 3 Fais= yD¥2—— €)
dt
whereN is the number of particles. The temperature as de- — D2 (10)
fined above is used in all simulations. i
For this model, all the results are reduced with the mass of o .
the particle,m, the length of the simulation box,, and the The forceF ;s represents the dissipation that arises from
time between collisions,y . Thus, for instance, the units for {rontal friction between two granular particles. This specific
-2 form of the dissipative force was recently proposed indepen-

energy aranl?7 . o
: . , . dently by Morgadcet al.[12] and Brilliantovet al.[13]. To
We have studied systems Nf=100 particles. The simu the best of our knowledge, this is the first time it has been

lation program for the rigid particles is simple, and we will . lemented in a MD simulation
describe our program in general terms. The program trackd""P '

ties. Finding the next collision is easy for a one-dimensional !

system: a particlé can only collide with two particles, considering the relative motion in one dimension only, tan-

namely,i—1 andi +1 (and we only have to check with one gential collisions will not be considered here.

: : The equations of motion are solved using the leap-frog
of them. The computational effort is, therefore, clearly . . o
O(N) whereN is the number of particles. algorithm[14]. Since dissipative forces depend on the rela-

tive velocity of a pair of particles, for our one-dimensional
system the resolution of the equations of motion involves
lll. SOFT PARTICLES solving a set of linear equations, where the velocities at time
t+h/2 (h is the length of the time stgpre the unknown
quantities. The matrix of this set of equations is presented in
Appendix A. This matrix is tridiagonal, and therefore, the
fesolution of the system is a fast procedure from a computa-
Honal point of view[15]. The use of this model of dissipative
forces in a system of two or three dimensions will be far
more expensive computationally since it will entail an itera-
tive process to compute the forces.

The length of the time step was set to 0.002 reduced units
of time and systems dfi=100 and 1000 particles were con-
sidered.

Our soft particle models are disks of equal masgon-
strained to move in one dimension and confined in a box

shape of the potential is the Weeks-Chandler-Anderse
(WCA) potential[11]:

0)6

Xij

12
+e for x;<2%%  (4)

(5)
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IV. THERMOSTATING

- P
As written previously, without any energy supply, the mo- e 12
tion of inelastic particles will eventually stop. In order to
investigate steady states of the flow of granular materials, py="fy— Py, (13
one needs to pump energy into the system, i.e., we have to
introduce a thermostating device. We have chosen to supply .1/ p?
energy into the system from the left boundétyermal wal), (= ;( m—kBT - 1) . (19

which should basically act as a wall held at constant tem-

peratureT,q . The right boundary is an insulating wall mod- where { and 7 are, respectively, the friction parameter and

cledasa _hard vyall of infinite mageflecting wal). Thus_, N the relaxation time of the thermostat. The relaxation time of
our one-dimensional systems, only the left-most particle will he th duced uni
exchange energy with the thermal wall. In this section wet e thermostat was set to 0'15 reduced units.

i The system composed of rigid particles was thermostated

describe a numb_er of ways of doing .th's' In Sec. V we WIIIwith the first four devices. The system composed of soft
reveal how the different implementations work. . .
particles were thermostated with all of them.

Gaussian wall When a particle hits a walthe left-most
particle—particle }, it is sent back with a random velocity

drawn from a Gaussian distribution. The distribution is a V. RESULTS

MaxweII-BoItzmann(_MB) distribution, corresponding to a A. Elastic particles

temperaturerl . This type of thermostat was used in Ref. ) ) _ )

[1]. We have performed simulations of one-dimensional sys-

Stochastic wall The original idea of a stochastic bound- (€MS containing rigid and soft particles. The results of our
ary is due to Lebowitzt al. [16] and used intensively by simulations will be discussed in this section. To begin with,
Ciccotti et al. [2—4]. In their work, after a particle hits the W€ analyzed the final states obtained with the thermostating
stochastic wall it comes off with a distribution correspondingdeVices described above. Our goal is to obtain equilibrium
to T,y . This is done by sampling the value of the velocity StAl€S at a temperatuig,y .

component in the direction normal to the wall from the prob- Figure 1 shows the temperature as a function of time for a
ability density: system composed of rigid point particles undergoing elastic

collisions when the different thermostats described in the
mo o2 previous section are coupled to the system. The target tem-

n ;{ n ) (12) perature of the thermostatsTg,,=1.0 in all the cases. The

velocities of the starting configuration were drawn from an

MB distribution with T=1.0. Apparently, the only thermo-

wherekg is Boltzmann’s constanfl,,, the temperature of stat that fails to maintain the temperature of the system is the
the thermal wallm the mass, and,, the component of the Gaussian wall used in RdfL], which sets the temperature of
velocity normal to the wallwe setkg andm to 1 in our the system below the target temperatisee Fig. (8)].
simulations. The rest of the components are sampled from eHowever, the constant velocity thermos{&tg. 1(b)] for
MB distribution at the temperature of the thermal wall. No- one-dimensional systems composed of rigid particles pro-
tice that for a one-dimensional system, the distribution of theduces configurations where the velocities of the particles
velocities of the particles emitted by the Gaussian wall istake the valuest T, only, and therefore, these configu-
different than in the present case due to the fagtpin Eq.  rations are not equilibrium configurations. This is due to the
(11). This is discussed in the next section. fact that in such a one-dimensional system the collisions be-

Constant velocity wallAfter the collision with the wall, tween particles involve exchange of momenta only, since
the left-most particle is always returned with the same velocthere is no scattering. This introduces an extra peculiarity in
ity, VTwan- It has been used in previous studjésl7]. the system since equilibrium states can never be reached

Frequency This type of thermostat does not involve a with the thermostating devices used in this work if the initial
collision with a wall. Instead, the velocity of the left-most configuration includes particles whose velocity is 0. In sum-
particle is changed with a certain frequency. The velocity ismary, given an initial configuration where all the velocity of
drawn from a MB distribution with temperatui®,,,. This  the particles are non-negligible only the stochastic \ity.
way of thermostating the system has, to the best of oul(d)] and the frequency thermostkig. 1(c)] are able to
knowledge, never been used before. generate equilibrium states &}, .

Wall particle coupled to a Noseloover (NH) thermostat We have also performed simulations with hard disks in-
We substitute the left hard wall by a particle tethered to thestead of point particles at lo¥0.01) and high density0.83
point x,=0 by a harmonic potentidll,,;= sk,ai(X—X)2.  and there is no qualitative difference.

The value ofk,, is set to 100 reduced units. The dynamics The same analysis for the one-dimensional system com-
of this particle is coupled to a Nogdoover thermostdtl18]. posed of soft particlesundergoing elastic collisionsyields
Moreover, the wall particle interacts with the left-most par-Similar results. In Table |, we summarize the temperatures of
ticle of the system through a WCA potential with the samethe final states obtained for both rigid and soft particles. The
parameters as for the rest of the particles in the system. Theresults for soft particles are for a densjty-0.83; p defined

is no dissipation of energy during the collision of the left- asN/L (N=100 andL is the length of the box the target
most particle and the wall particle. The equations of motiontemperature of the thermostats is 1.0, and the temperature of
for the wall particle are the system was averaged ovex 50° time steps after equili-

P(vy)=

exp —
kBTwaII 2kBTwaII
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FIG. 1. The temperature as a function of time. Both quantities are in reduced units. System of point rigid particles and elastic collisions
is shown. The number of particles is 100, and the length of the system is 1. The target temperature of the thermost@sGaassian
wall. (b) Constant velocity wall(c) Frequency(d) Stochastic wall.

bration for the soft particles. As in the case of rigid particles,temperature of the soft particle system below the target tem-
the Gaussian wall coupled to the system composed of sofierature. Moreover for the system composed of soft par-
particles does not perform well as a thermostat. Furthermoreicles, the final states obtained with these thermostats do not
the constant velocity thermostat and the frequency thermdiulfill equipartition, i.e., the kinetic energy is not equally
stat at high frequency also fail to set the temperature of theistributed among the particles in the systems. This is illus-
system to the target temperature. All three devices set thieated in Fig. 2, where we show the mean kinetic energy
(temperaturgfor each particle in the system for a final state
reached with the Gaussian wall. The kinetic energy of the
left-most particle is significantly lower than the average tem-
Soft particles Perature of the systeniT(=0.62). This indicates that this is
not an equilibrium state but a nonequilibrium steady state.

TABLE I. Equilibrium temperatures.

Thermostat Hard particles

Gaussian wall 0.150.05 0.62£0.02 The explanation of why the Gaussian wall proposed in
Stochastic wall 1.080.14 0.98-0.02 Ref. [1] and the constant velocity thermostat does not pro-
Constant 1.080.03 0.5070.005 duce equilibrium states at the target temperature is as fol-
Frequency 1.080.13 1.01-0.012 lows. The principle behind a thermal wall is to change the
Frequency 1.020.09 0.49-0.02° distribution of velocities of the particles arriving at the wall

Wall particlet NH 0.99+0.01 to the distribution corresponding to the temperature of the

#The velocity of particle 1 is taken from an MB distribution every

100th time step(soft particle$ or with frequency 1/0.0243rigid

particles.

®The velocity of particle 1 is taken from a MB distribution every

time step(soft particle$ or with frequency 1/2.4299rigid par-

ticles).

wall [16]. Let us assume a three-dimensional system, and
denote as the unit vector normal to a wall boundary. Then

the probability that a particle with veIocit{r arrives at the
wall (or, in general, crosses a planar surfase

v-Nf(vy,0y,0,)dv,doydo,, (19
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FIG. 2. Mear_l kinetic energgin reduced unitsfor each particle FIG. 3. InT plotted versus In The temperatur@ and the timet
of the soft particles system gt=0.83 when the Gaussian wall are in reduced units. Results for a system of soft particles undergo-
thermostat is applied. ing inelastic collisions and no thermostating device coupled to the

) o N system. The system is composed\b# 1000 particlesp=0.83 and
wheref(vy,vy,v,) is the MB distribution of velocities atthe 1 =0.001. ¢ : simulation results; straight line: least square fit.

temperature of the fluid. At equilibrium, the probability that

a particle with velocityo leaves the wall will have the same it is a well-defined system, where the equations of motion
shape. For our one-dimensional system this probability is can be derived from an extended Hamiltonjas].

vyf(vy)doy. (16) _ _
B. Inelastic particles

This is obvio_usly not the case for the Ga_uss_ian_wall or the The main purpose of the present investigation is to study
lcor)s_tant fvehlocny V.VT"' Fur_thermoreﬁ the S'St”gu“.on Of.”VE' the behavior of one-dimensional systems where particles un-
ocities of the particles arriving at these boundaries will beqe 4 jnelastic collisions, since these are models for granular
different from that of the particles emitted by these bou”d'materials

aries, and therefore, equilibrium will never be reached. We start looking at the system under cooliig., there is
The fact that the frequency thermostat works so well for o thermostating device coupled to the systertts Fig. 3,

the system composed of rigid particles is easy to undersfcan_ e typical behavior of the temperature as a function of time

Due to the one-dimensional nature of the system, the distrig, - system composed ®f=1000 soft particles is shown
bution of velocities remains unchanged when there iS NQygor o'transient, whose length depends on the density of the

thermostatlng deV|c_:e coupled to it. This is so because, in .thgystem, the temperature decays following a power ta
collisions, the particles simply exchange momentum. W|thtfn

_For rigid particles, we found similar behavior and a value of
the frequency thermostat, a random number generator wi

ations [5]. For the system composed of soft particles, the
o . lue of the exponent seems to depend on the density and the
distribution function. In the case of the frequency thermostatdegree of inelasticity in the system. The values of the expo-

the frequ_engy at WhiCh particle 1 gets a hew velocity _fromnenta obtained for different densities and degrees of inelas-
the MB distribution is totally uncorrelated with the previous gcity are collected in Table II. At sufficiently high density

velocity Qf the particle. In the case C.)f a system composed o nd weak inelasticity the value of the exponardgrees with
soft p:_:lrncles, energy should be d|st(|buted amaong qll th‘:‘[he theoretical prediction5,8] for rigid particles. This is
potential and kinetic energy of the particles. If the velocity Ofinteresting in the case of Haff's theofg] since it was de-

particle 1 is not changed too rapidly by the random numbeq 6 for very dense granular systems, where the interpar-

generator, particle 1 will be n eqwhbnum with the 'res't of ticle distances are significantly smaller than the diameter of
the system because energy will have time to be redistributed

among all the degrees of freedom in the system. Equiparti-

tion will then be fulfilled, and the system will reach the de- ' /BLE Il Values of the exponent in the cooling lawe<t .

sired temperature, i.e., the temperature of particle 1. Whe . -

the veIoci?y of particle 1 is exchgnged at toophigh frequencyBenSIty Inelasticity *

the system has not time enough to rel@zdistribute the 0.2 Weak 1.16

energy. Indeed, our results show nonequipartition of the en-0.2 Strong 1.39

ergy in the system when the frequency is high. 0.83 Weak 1.90
The system thermostated with the wall particle coupled tq g3 Strong 1.59

a NoseHoover thermostat works as one should expect, since
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the particles. On the other hand, the theory developed by - - - '

McNamaraet al. [5] was based in the fact that in one- 041 (a) i
dimensional granular systems composed of point rigid par-
ticles under cooling, a bimodal velocity distribution raises.
They predict that the temperature will decay as 0.2 ]
(17) (Xy 0.0 !\/\/\hd—

T U
(1+2eptUg)?’

where U, is the mean value of the velocity modulus at
t=0, € is the friction parameter introduced in Eq4) and
(2), andp is the density. Nevertheless, we do not find any
trace qf a bimodal velocity d|str|but|or_1 as the one- 0 500 00 500 00 1000
dimensional system composed of soft particles cools down.

Finally, we analyze the behavior of one-dimensional sys-
tems with inelastic collisions and a thermostat coupled to the N
system. As mentioned, for one-dimensional systems of par- 04 F (b -
ticles undergoing inelastic collisions an *“extraordinary”
state was found in Ref1]. In such an “extraordinary” state,
the majority of the particles get clamped in a small region of 02 x ]
space moving with very low velocities, and few remaining
particles travel between one of the boundaries and the group ()
of clamped particles at a much higher speed. In the present
investigation, nevertheless, we find that the thermostating de-
vices used in Ref.1] failed to produce equilibrium states for 0.2 1 1
elastic particles. Therefore, we have carried out simulations
where our one-dimensional systems are coupled to thermo-
stats that we have shown perform well in equilibrium,
namely, the stochastic wall and a wall particle coupled to a 0 200 100 500 200 1000
NH thermostat.

We have repeated the simulations performed in REf.
for rigid point particles but now coupling the system to a T T T
stochastic wall(the left-side wall and we have reproduced 04 (o) 7
their main findings. In other words, we observe that the “ex-
traordinary” state also appears when a correct thermostating
device is used. The appearance of the “extraordinary” state
is illustrated in Fig. 4b) for a system composed &f=100
particles. This figure shows the position of the center of x;
mass,(x)=(1/N)=]N ,x;, as function of time. The position
of the center of mass of the system moves to the right side of
the box and remains there as steady state is reached. For thr  -0Zr 7
sake of completeness we also show results without a thermo-
stat in Fig. 4a); the value of(x) stays around zero, which

04} 4

X i S L 0.4 .
shows that the particles are uniformly distributed. This is

indeed what we would except with only=100 particles 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
(for e=0.005 clustering does not occur for a number of par- :

ticles less than or equal ty,,;,=599[5]). In Ref.[1] it is

found that the particles in the clump get squeezed into a FIG. 4. The center of mass position versus tirdeandt are in
smaller space and move with slower speeds, for a fixed nunrteduced units. Results for a system composed of rigid point par-
ber of particles and decreasirg We, on the contrary, find ticles undergoing inelastic collisions. The length of the systemis 1,
that when the initial distribution of velocities is Maxwellian and the “box” is the interval from—0.5 to 0.5.(a) €=0.005,

the formation of the clump disappears. This is illustrated infeflecting walls(b) €=0.005, stochastic wallc) e=10"", stochas-
Fig. 4(c), where one can see that fer= 10"7, the position of  tic wall.

the center of mass fluctuates about the center of the simula-

tion box. Furthermore, the density profile shows that, atvelocity. In this case, the position of the center of mass os-
steady state, the particles remain homogeneously distributetillates with a greater amplitude and a long periatout 16

in the simulation box in agreement with the predictions ofcollision timeg, and the distribution of particles is not uni-
the hydrodynamic equations. Nevertheless, we have alstwrm but the system is more dense on the right side, but we
started the simulations with all the particles uniformly dis-do not see the formation of a clear clump. Furthermore, the
tributed, and with only the leftmost particle having nonzerovelocities of the particles are smaller than in the previous



57 CONTROLLING THE TEMPERATURE OF ONE- ... 1935

case. Thus, foe—0, we observe a dependence of the finalin the clump. This steady state is very much like the “ex-

steady state on the initial conditions of the simulations. Wetraordinary” state described in Rdf1].

assume then that the observations from Héf. quoted The differences between the steady states created with the

above correspond to our second initial conditions. Howevertwo different thermostating deviceld=igs. §c) and §f)]

even in this case we do not observe that the particles, wheghould emerge from differences in the way that the two ther-

e—0, get squeezed into a smaller space than for greatép@l boundaries pump energy into the system. The stochastic

values ofe. wall can be interpreted as a boundary that destroys the arriv-
In order to investigate the origin of the “extraordinary” ing particles and emits new ones with a velocity drawn for an

state, we have simulated a similar system composed of SO@FB distribution for the target temperature. Thus, the value of

particles. This allows us to use as a thermal boundary a wall® velocity of the outcoming particle is totally independent

particle coupled to a NH thermostat, which is the most real—Of the v_alu_e Of_ the incoming vel(_)C|ty, _a_nd therefore the in-
o . . . crease in kinetic energy of a particle hitting a stochastic wall
istic way, among those described in Sec. IV, of modeling a

Il held at tant t t M in thi thcan be arbitrarily large. On the other hand, when the left
wall held at constant temperature. VIoreover, in this case, Soundary is a wall particle coupled to the NH thermostat, the

exchange of energy between the wall and the left-most pafyg_most fiuid particle will also increase its kinetic energy by
ticle takes place during a finite time interval, instead of in-y,q interaction with the wall particle. Nevertheless, the mag-
stantaneously. . _ nitude of the velocity of the particle after hitting the wall
Figure 5 shows the steady state profiles of density an@article will depend on its incoming velocity and therefore
temperature for the soft particle systempat 0.2 for differ-  the amount of kinetic energy that the left-most particle can
ent degrees of inelasticity in the collisiose have chosen |oad in this way is limited. Furthermore, we have measured
three values of the friction coefficient=0.001, 0.01, and in our simulations for soft particles the amount of energy that
0.1). The density is normalized as,(X) =p(Xx)/p and the a particle loads, in a time step, from a stochastic boundary
X coordinated as/L. The results are for a system coupled and found that it is several orders of magnitude greater than
either to the wall particle coupled to a NH thermostat or tofrom a wall particle coupled to a NH thermostat.
the stochastic wall. At the lowest inelasticity £ 0.001), the When our one-dimensional inelastic models are coupled
steady states produced by the two thermostats are equd® @ thermostat in the left-side boundary of the simulation
Density and temperature can be considered constant acrd@gx, as the inelasticity of the model increastte value ofe
the system, and the average value of temperature is about 0% ¥ increasel a temperature gradient appears in the system
in both casegsee Figs. &) and 5d)]. In the figures, the @nd the density profiles indicate that the more energetic par-
quasi straight lines in the middle of the density and temperalic/és on the left side of the box press the particles on the
ture profiles are the arithmetic mean of those, and one cafight side of the box to the right-side boundary. We believe
see that they form a symmetry axis about which the densitjhat the origin of this “extraordinary” state is due to the
and temperature profiles are mirror images. great amount of energy that the stochastic wall pumps into
For y=0.01, the steady state density and temperature pr&he system in the limit ofrel_atlvely) hlgh |nel'c_15t|C|ty,_wh_ere
files obtained with the two thermostats also show similathe temperature of the particlédue to inelastic collisionss
fashion[Figs. §b) and Se)]. Now there is no symmetry as Well below the temperature of the boundary. Thus, the par-
we observed aty=0.001. Moreover, the average tempera-t'F|e§ emitted by the stochastic wall hgve s_|gn|f|cantly more
tures of the two steady states are differefit:0.427(6) kinetic energy th_an the rest of th_e particles in the system and
when the system is coupled to the stochastic wall, and Press them against the other side of the box, where due to
—0.28(1) when it is coupled to the wall particle coupled to th€ir low kinetic energy remain together and form a clump.
the NH thermostat. The shape of the temperature profiles cdfl the same limit of(relatively) high inelasticity, but when

be assumed as exponentials within the left-hand half of th&h€ thermal boundary of the system is a wall particle coupled
box, i.e., in the side closest to the thermostat. This is illus{0 @ NH thermostat, the thermostat will simply not be able to

trated in Fig. 6 where the This plotted versus</L. The maintain the temperature of the system, and the motion of
straight lines are the least square fits to the simulation dat&articles will eventually stop.

The exponential decay of temperature is what one could ex-
pect from a hydrodynamic approach.

Finally, we show the results foy=0.1. Here, the final
steady states obtained with the two thermostats are clearly We have tested several models used in the literature for
different. The steady state obtained with the wall particlemodeling a thermal boundary in one-dimensional systems.
coupled to the NH thermostat corresponds to a state with amhe results of our simulations indicate that only the stochas-
average temperature @(10 %), this means that the par- tic wall, the frequency thermostat, and the wall particle
ticles have practically stopped moving. The density profilecoupled to a NH thermostat are able to generate equilibrium
indicates that the particles are homogeneously distributed iatates at the desired temperature of the boundary.
the simulation boxXsee Fig. &c)]. The steady state obtained  We have studied the cooling of one-dimensional models
with the stochastic wall is very different. The density profile for granular systems, modeled as rigid and soft particles. For
indicates the appearance of a clump of particles in the rightrigid particles we found that the cooling of the system fol-
side of the box and mean kinetic energy of these particles iws the power law;T«t~2, which agrees with theoretical
practically zerdsee Fig. ¥)]. Although the velocities of the predictions[5,8], and previous simulatior[$]. For soft par-
rest of the particles close to the thermal wall are very low/icles we found a similar power lawf=t™ ¢, but now, the
they are several orders of magnitude higher than the particlegalue of the exponenty, depends on density and the degree

VI. CONCLUSION
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FIG. 5. Temperaturéin reduced unitsand density profiles. Density is expressedpéX)/p where p(X) is the local density ang
=N/L, L being the length of the box. Results for a system of soft particles undergoing inelastic collisions. The system is conigosed of
=1000 particles at a densify=0.2. Thin lines: density profiles. Thick lines: temperature profil@s.System thermostated with a wall
particle coupled to a NH thermostat age- 0.001,(b) y=0.01,(c) y=0.1,(d) system thermostated with a stochastic wall a%0.001,(e)
v=0.01,(f) y=0.1.

of inelasticity in the system. In the limit of high density and used by Ciccottiet al. [2—4] work. The interaction with any
low inelasticity the value of the exponent for soft particlesof these boundaries can be interpreted as an exchange of
seems to tend to the value for rigid particles. incoming particles and outgoing particles whose velocity is
Finally, we have investigated the appearance of the “exset to a value totally independent of the incoming velocity. In
traordinary” state in one-dimensional granular systems therether words, the kinetic energy of the particles after leaving
mostated at the boundaries, described in Rigf.We believe  the boundary can be arbitrarily high in comparison with the
that the origin of such a state is in the way that the thermamean kinetic energy of the rest of the particles in the fluid.
boundaries chosen in Refl] or the stochastic boundary This is the case when the particles undergo inelastic colli-
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- 1
vi=a,+yDiFv 1y,

- / /
vo=a,— YDi5fv it ?’D%32023'
(A1)

- U 2
It v3=a3— YD350 3+ YD3 V34,
n

wherea; are the accelerations coming from the conservative
forces, and the second term in the right-hand side is the
accelerations coming from the dissipative forces due to col-
lisions (vj;=v;—v; and y andD are defined in Sec. NI
These equations conserve the momentum of the center of
mass but kinetic energy is dissipated.

In the leap-frog algorithm scheme, the velocity of the sys-
tem at timet+h/2 (h is the length of the time steps cal-
culated as

FIG. 6. InT plotted vsX/L. The temperature is in reduced units.
Soft particles undergoing inelastic collisions fpr=0.2 and y
=0.01. & : System thermostated with a wall particle coupled to a
NH thermostat.A: System thermostated with a stochastic wall, v(t+h/2)=v(t—h/2)+ha(t) (A2)
straight lines: least square fits.

and the velocity at time is approximated as
sions if the energy dissipated during the collisions is high
enough. Hence in this case, the particles emitted by the v(t)= 2 [v(t+h/2)+v(t—h/2)]. (A3)
boundary press the majority of the particles in the system
against the opposite boundary forming a clump. If, on theWriting Eq. (A1) in the leap-frog scheme:
other hand, the interaction with a thermal boundary is such ,
that the particle hitting the boundary can only load a limited ~ V1(t+0/2)=va(t=h/2)+h[a, () + y1(t)v )],
amount of kinetic energy, in the limit of high inelasticity the ,
system will simply cool down until all motion stops. va(t+h/2)=v5(t=h/2)+hlax(t) = y1(Dvaat)

+ Yés(t)vzs(t)],
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APPENDIX: INELASTIC COLLISIONS

FOR SOFT PARTICLES where for the sake of compactness we rename the product

yD{A(t) as ¥};(t). Substituting the value ob;;(t) for the

The equations for the time evolution of velocities for our expression given in EGA3), we obtain a set of linear equa-
(one-dimensionalsystem of soft particles undergoing inelas- tions where the unknown quantities argt+h/2). The ma-
tic collisions are trix of this set of equations is

h h
1+ E?’iz(t) - E?’iz(t) 0
h h h h
- 5712(0 1+ E?’iz(tﬂ‘ E?’és(t) - E?’és(t)
O h ! h ! ! h !
- 57’23“) 1+ 5723('[) +t3 Yat) — 5 Y34t

h !
1- E ')’nfl,n(t)

and the right-hand side term is
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+hay(t)+v,

h\lh
t‘g){g)’iz(t)}

N[ h,  h
t—5 1—5712(0—5723(0

h h
Ul(t_i){l_ 5712“)

h\lh
Ul(t_ E) {E Y1)

+v,y +haz(t)+U3

h\[h
t_§>[§723(t)}
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