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Controlling the temperature of one-dimensional systems composed of elastic
and inelastic particles

Kenneth Geisshirt,1 Paz Padilla,2 Eigil Præstgaard,1 and So”ren Toxvaerd2
1Department of Life Sciences and Chemistry, Roskilde University, 4000 Roskilde, Denmark

2Department of Chemistry, H. C. O” rsted Institute, University of Copenhagen, 2100 Copenhagen O” , Denmark
~Received 31 July 1997!

We have studied systems composed of either elastic or inelastic particles constrained to move in one
dimension and confined on a line by using molecular dynamics~MD! simulation techniques. We have tested
several ways of modeling a boundary that exchanges energy with the system. Furthermore, we have studied
one-dimensional granular systems composed of soft particles under cooling and found that the decay in
temperature follows a power lawT}t2a similar to the case of rigid particles, but now, the value ofa depends
on the density and degree of inelasticity in the system. For systems composed of inelastic particles thermo-
stated by one of the boundaries we find that the ‘‘extraordinary’’ state reported by Y. Du, H. Li, and L. P.
Kadanoff @Phys. Rev. Lett.74, 1268 ~1995!# is an artifact introduced by method of providing energy to the
system.@S1063-651X~98!05202-7#

PACS number~s!: 81.05.Rm
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I. INTRODUCTION

Granular material flows appear in nature~sand dunes,
planetary rings, powders! and are of great technological im
portance~handling and transport of, e.g., seeds and phar
ceuticals!. In the dry state, granular materials interact main
by repulsive forces and there is energy dissipation dur
collisions due to the excitation of internal modes. Thus,
the absence of an energy source the granular medium c
and the motion of the grains eventually stops. On
dimensional models of granular media have been studie
the hope that the origin of phenomena that appear in mo
for two or three dimensions can be enlightened by res
from more ‘‘simple’’ one-dimensional models. The dynam
ics of particles in one dimension, nevertheless, has the p
liarity that their motion is confined between two neighbo
and therefore the transport of physical quantities across
system is very inefficient.

The present investigation was motivated by the work
Du et al. @1# where they report the appearance of an ‘‘e
traordinary’’ state in thermostated systems composed
model granular particles in one dimension. In such a st
the majority of the particles form a clump in the side of t
simulation box opposite to the thermostat, and they mov
a very low speed. The rest of the particles move at a m
higher speed between the thermostat and the clump.

The first part of this investigation is devoted to analyzi
the thermostating devices used in Ref.@1#. We have tested
whether these thermostating devices are able to produce
equilibrium states at a desired temperature. With this p
pose, we have studied systems composed of rigid and
particles constrained to move in one dimension. We fou
that the thermostating devices used in Ref.@1# either failed in
setting the system at the target temperature~which is the
assumed temperature of the boundary!, or produced a wrong
distribution of energies in the systems. Therefore, we p
pose alternative methods that successfully produce equ
rium states at a desired temperature in one-dimensional
571063-651X/98/57~2!/1929~10!/$15.00
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tems, and test another method due to Ciccottiet al. @2–4#.
In the second part of the paper, we elucidate whether

appearance of the ‘‘extraordinary’’ state is a universal beh
ior for systems composed of inelastic particles~granular par-
ticles! constrained to move in one dimension, or it is
artifact of the model. We found that the appearance of
‘‘extraordinary’’ state depends on how the energy is pump
into the system.

Additionally, we compare the behavior of soft and rig
inelastic particles under cooling, i.e., when there is no th
mostating device coupled to the system. It has been es
lished@5–7# that the cooling granular medium is not spatia
uniform but it shows clusters and voids. In the case of
elastic particles in one dimension and in absence of any t
mostating device, it is possible to show@5,8# that the tem-
perature of the system will decrease following a power la
i.e., t22; this is referred to as the cooling problem in granu
materials. We verify this result for rigid particles, but fin
that for soft particles, although the dependence of temp
ture on time is a power lawT}t2a, the value ofa depends
on the density and the degree of inelasticity in the syste
McNamara and Young have numerically verified the cooli
problem in one and two dimensions@5,9#.

The outline of the paper is the following: Sec. II describ
the system composed of rigid particles, Sec. III presents
system composed of soft particles and describes how ine
tic collisions can be introduced. The thermostating devi
studied in this paper are described in detail in Sec. IV.
Sec. V, we present and discuss the results from the sim
tions. A summary and the conclusions of the investigat
are collected in Sec. VI.

II. RIGID PARTICLES

We consider a system ofN point particles of equal mas
m, which are constrained to move in one dimension a
confined in a box. The interaction between particles occ
through collisions only. If the collisions are elastic, in th
particular case of one dimension, a collision simply mea
1929 © 1998 The American Physical Society
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1930 57GEISSHIRT, PADILLA, PRÆSTGAARD, AND TOXVAERD
an exchange of momenta between the colliding partic
Moreover, it should be noticed that the particles are po
make the properties of the system independent of the den
of particles in the box. The walls confining the system a
hard walls of infinite mass. In some of the simulations t
particles are allowed to exchange energy with one of
walls, which, thus, acts as a thermostat. This is describe
detail in Sec. IV.

Inelasticity is introduced into the system in the same w
as in previous simulations@1,5#. Let i and j denote the in-
dexes of two colliding particles. The velocities after col
sion,v i8 andv j8 , are related to the velocities before collisio
v i andv j , as

v i85ev i1~12e!v j , ~1!

v j85~12e!v i1ev j , ~2!

wheree5(12r )/2 and r is the restitution coefficient. The
parameterr is the ratio of the relative velocities right afte
and just before a collision and provides a measure of h
inelastic the collisions are. The caser 51 the collisions are
elastic, and the caser 50 the collisions are completely in
elastic. This model is identical to the one chosen in Ref.@1#,
where the simulation results indicate a breakdown of hyd
dynamics for inelastic particles in one dimension.

The temperature of the system is defined as@10#

T5
1

N(
i 51

N

v i
2 , ~3!

whereN is the number of particles. The temperature as
fined above is used in all simulations.

For this model, all the results are reduced with the mas
the particle,m, the length of the simulation box,L, and the
time between collisionstcoll . Thus, for instance, the units fo
energy aremL2tcoll

22 .
We have studied systems ofN5100 particles. The simu

lation program for the rigid particles is simple, and we w
describe our program in general terms. The program tra
the collisions, advances the position, and changes the ve
ties. Finding the next collision is easy for a one-dimensio
system: a particlei can only collide with two particles
namely,i 21 andi 11 ~and we only have to check with on
of them!. The computational effort is, therefore, clear
O(N) whereN is the number of particles.

III. SOFT PARTICLES

Our soft particle models are disks of equal massm con-
strained to move in one dimension and confined in a b
The interaction between particles is purely repulsive and
shape of the potential is the Weeks-Chandler-Ander
~WCA! potential@11#:

u~xi j !5H 4eF S s

xi j
D 12

2S s

xi j
D 6G1e for xi j <21/6s

0 for xi j .21/6s,

~4!

~5!
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wherexi j is the distance between the centers of the dis
The potential parameterss, e and the massm of the particles
are the units of length, energy, and mass, respectively.
the quantities obtained for this model are presented in
duced units. The reduced temperature is defined askBT/e
(kB is Boltzmann’s constant! and the reduced time a
s(m/e)1/2.

Inelasticity can be brought into the system by introduci
dissipative forces during collision. In the present model, c
trary to rigid particles, collisions have finite duration. W
have chosen to let the particles experience dissipative fo
whenever the distance between them is less than 21/6s, i.e.,
during the whole period of time of the collision. The sha
of the dissipative force is

Fdis5gD1/2
dD

dt
, ~6!

whereD is a so-called deformation parameter defined as

D521/6s2xi j , xi j <21/6s, ~7!

D50, xi j .21/6s ~8!

andg is related with the degree of dissipative friction in th
system. Hence, the dissipative forces depend on the de
of deformation of the grains and the relative velocities b
tween the colliding particles,v i j :

Fdis5gD1/2
dD

dt
~9!

52gD1/2v i j . ~10!

The forceFdis represents the dissipation that arises fro
frontal friction between two granular particles. This speci
form of the dissipative force was recently proposed indep
dently by Morgadoet al. @12# and Brilliantovet al. @13#. To
the best of our knowledge, this is the first time it has be
implemented in a MD simulation.

Actually, the loss of kinetic energy due to tangential co
lisions should also be taken into account, but because we
considering the relative motion in one dimension only, ta
gential collisions will not be considered here.

The equations of motion are solved using the leap-f
algorithm @14#. Since dissipative forces depend on the re
tive velocity of a pair of particles, for our one-dimension
system the resolution of the equations of motion involv
solving a set of linear equations, where the velocities at ti
t1h/2 (h is the length of the time step! are the unknown
quantities. The matrix of this set of equations is presente
Appendix A. This matrix is tridiagonal, and therefore, th
resolution of the system is a fast procedure from a comp
tional point of view@15#. The use of this model of dissipativ
forces in a system of two or three dimensions will be
more expensive computationally since it will entail an iter
tive process to compute the forces.

The length of the time step was set to 0.002 reduced u
of time and systems ofN5100 and 1000 particles were con
sidered.
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IV. THERMOSTATING

As written previously, without any energy supply, the m
tion of inelastic particles will eventually stop. In order
investigate steady states of the flow of granular materi
one needs to pump energy into the system, i.e., we hav
introduce a thermostating device. We have chosen to su
energy into the system from the left boundary~thermal wall!,
which should basically act as a wall held at constant te
peratureTwall . The right boundary is an insulating wall mod
eled as a hard wall of infinite mass~reflecting wall!. Thus, in
our one-dimensional systems, only the left-most particle w
exchange energy with the thermal wall. In this section
describe a number of ways of doing this. In Sec. V we w
reveal how the different implementations work.

Gaussian wall: When a particle hits a wall~the left-most
particle–particle 1!, it is sent back with a random velocit
drawn from a Gaussian distribution. The distribution is
Maxwell-Boltzmann~MB! distribution, corresponding to a
temperatureTwall . This type of thermostat was used in Re
@1#.

Stochastic wall: The original idea of a stochastic boun
ary is due to Lebowitzet al. @16# and used intensively by
Ciccotti et al. @2–4#. In their work, after a particle hits the
stochastic wall it comes off with a distribution correspondi
to Twall . This is done by sampling the value of the veloc
component in the direction normal to the wall from the pro
ability density:

P~vn!5
mvn

kBTwall
expS 2

mvn
2

2kBTwall
D ~11!

wherekB is Boltzmann’s constant,Twall the temperature o
the thermal wall,m the mass, andvn the component of the
velocity normal to the wall~we setkB and m to 1 in our
simulations!. The rest of the components are sampled from
MB distribution at the temperature of the thermal wall. N
tice that for a one-dimensional system, the distribution of
velocities of the particles emitted by the Gaussian wal
different than in the present case due to the factorvn in Eq.
~11!. This is discussed in the next section.

Constant velocity wall: After the collision with the wall,
the left-most particle is always returned with the same vel
ity, ATwall. It has been used in previous studies@1,17#.

Frequency: This type of thermostat does not involve
collision with a wall. Instead, the velocity of the left-mo
particle is changed with a certain frequency. The velocity
drawn from a MB distribution with temperatureTwall . This
way of thermostating the system has, to the best of
knowledge, never been used before.

Wall particle coupled to a Nose´-Hoover (NH) thermostat:
We substitute the left hard wall by a particle tethered to
point x050 by a harmonic potentialUwall5

1
2 kwall(x2x0)2.

The value ofkwall is set to 100 reduced units. The dynami
of this particle is coupled to a Nose´-Hoover thermostat@18#.
Moreover, the wall particle interacts with the left-most pa
ticle of the system through a WCA potential with the sam
parameters as for the rest of the particles in the system. T
is no dissipation of energy during the collision of the le
most particle and the wall particle. The equations of mot
for the wall particle are
s,
to
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ẋ5
p

m
, ~12!

ṗx5 f x2zpx , ~13!

ż5
1

t2S px
2

mkBT
21D , ~14!

wherez and t are, respectively, the friction parameter a
the relaxation time of the thermostat. The relaxation time
the thermostat was set to 0.15 reduced units.

The system composed of rigid particles was thermosta
with the first four devices. The system composed of s
particles were thermostated with all of them.

V. RESULTS

A. Elastic particles

We have performed simulations of one-dimensional s
tems containing rigid and soft particles. The results of o
simulations will be discussed in this section. To begin wi
we analyzed the final states obtained with the thermosta
devices described above. Our goal is to obtain equilibri
states at a temperatureTwall .

Figure 1 shows the temperature as a function of time fo
system composed of rigid point particles undergoing ela
collisions when the different thermostats described in
previous section are coupled to the system. The target t
perature of the thermostats isTwall51.0 in all the cases. The
velocities of the starting configuration were drawn from
MB distribution with T51.0. Apparently, the only thermo
stat that fails to maintain the temperature of the system is
Gaussian wall used in Ref.@1#, which sets the temperature o
the system below the target temperature@see Fig. 1~a!#.
However, the constant velocity thermostat@Fig. 1~b!# for
one-dimensional systems composed of rigid particles p
duces configurations where the velocities of the partic
take the values6ATwall only, and therefore, these configu
rations are not equilibrium configurations. This is due to t
fact that in such a one-dimensional system the collisions
tween particles involve exchange of momenta only, sin
there is no scattering. This introduces an extra peculiarity
the system since equilibrium states can never be reac
with the thermostating devices used in this work if the init
configuration includes particles whose velocity is 0. In su
mary, given an initial configuration where all the velocity
the particles are non-negligible only the stochastic wall@Fig.
1~d!# and the frequency thermostat@Fig. 1~c!# are able to
generate equilibrium states atTwall .

We have also performed simulations with hard disks
stead of point particles at low~0.01! and high density~0.83!
and there is no qualitative difference.

The same analysis for the one-dimensional system c
posed of soft particles~undergoing elastic collisions! yields
similar results. In Table I, we summarize the temperature
the final states obtained for both rigid and soft particles. T
results for soft particles are for a densityr50.83;r defined
asN/L (N5100 andL is the length of the box!, the target
temperature of the thermostats is 1.0, and the temperatu
the system was averaged over 53106 time steps after equili-
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FIG. 1. The temperature as a function of time. Both quantities are in reduced units. System of point rigid particles and elastic c
is shown. The number of particles is 100, and the length of the system is 1. The target temperature of the thermostats is 1.0.~a! Gaussian
wall. ~b! Constant velocity wall.~c! Frequency.~d! Stochastic wall.
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bration for the soft particles. As in the case of rigid particl
the Gaussian wall coupled to the system composed of
particles does not perform well as a thermostat. Furtherm
the constant velocity thermostat and the frequency ther
stat at high frequency also fail to set the temperature of
system to the target temperature. All three devices set

TABLE I. Equilibrium temperatures.

Thermostat Hard particles Soft particle

Gaussian wall 0.1560.05 0.6260.02
Stochastic wall 1.0060.14 0.9860.02
Constant 1.0060.03 0.50760.005
Frequency 1.0060.13 1.0160.01a

Frequency 1.0260.09 0.4960.02b

Wall particle1NH 0.9960.01

aThe velocity of particle 1 is taken from an MB distribution eve
100th time step~soft particles! or with frequency 1/0.0243~rigid
particles!.
bThe velocity of particle 1 is taken from a MB distribution eve
time step ~soft particles! or with frequency 1/2.4299~rigid par-
ticles!.
,
ft
e,
o-
e

he

temperature of the soft particle system below the target t
perature. Moreover for the system composed of soft p
ticles, the final states obtained with these thermostats do
fulfill equipartition, i.e., the kinetic energy is not equal
distributed among the particles in the systems. This is ill
trated in Fig. 2, where we show the mean kinetic ene
~temperature! for each particle in the system for a final sta
reached with the Gaussian wall. The kinetic energy of
left-most particle is significantly lower than the average te
perature of the system (T50.62). This indicates that this i
not an equilibrium state but a nonequilibrium steady stat

The explanation of why the Gaussian wall proposed
Ref. @1# and the constant velocity thermostat does not p
duce equilibrium states at the target temperature is as
lows. The principle behind a thermal wall is to change t
distribution of velocities of the particles arriving at the wa
to the distribution corresponding to the temperature of
wall @16#. Let us assume a three-dimensional system,
denote asnW the unit vector normal to a wall boundary. The
the probability that a particle with velocityvW arrives at the
wall ~or, in general, crosses a planar surface! is

vW •nW f ~vx ,vy ,vz!dvxdvydvz , ~15!
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wheref (vx ,vy ,vz) is the MB distribution of velocities at the
temperature of the fluid. At equilibrium, the probability th
a particle with velocityvW leaves the wall will have the sam
shape. For our one-dimensional system this probability i

vxf ~vx!dvx . ~16!

This is obviously not the case for the Gaussian wall or
constant velocity wall. Furthermore, the distribution of v
locities of the particles arriving at these boundaries will
different from that of the particles emitted by these boun
aries, and therefore, equilibrium will never be reached.

The fact that the frequency thermostat works so well
the system composed of rigid particles is easy to underst
Due to the one-dimensional nature of the system, the di
bution of velocities remains unchanged when there is
thermostating device coupled to it. This is so because, in
collisions, the particles simply exchange momentum. W
the frequency thermostat, a random number generator
ensure that particle 1 has the kinetic energy correspondin
the desired temperature. Thus, particle 1 simply provi
velocities to the rest of the system sampled from the cor
distribution function. In the case of the frequency thermos
the frequency at which particle 1 gets a new velocity fro
the MB distribution is totally uncorrelated with the previou
velocity of the particle. In the case of a system composed
soft particles, energy should be distributed among all
potential and kinetic energy of the particles. If the velocity
particle 1 is not changed too rapidly by the random num
generator, particle 1 will be in equilibrium with the rest
the system because energy will have time to be redistribu
among all the degrees of freedom in the system. Equipa
tion will then be fulfilled, and the system will reach the d
sired temperature, i.e., the temperature of particle 1. W
the velocity of particle 1 is exchanged at too high frequen
the system has not time enough to relax~redistribute the
energy!. Indeed, our results show nonequipartition of the e
ergy in the system when the frequency is high.

The system thermostated with the wall particle coupled
a Nosé-Hoover thermostat works as one should expect, si

FIG. 2. Mean kinetic energy~in reduced units! for each particle
of the soft particles system atr50.83 when the Gaussian wa
thermostat is applied.
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it is a well-defined system, where the equations of mot
can be derived from an extended Hamiltonian@18#.

B. Inelastic particles

The main purpose of the present investigation is to stu
the behavior of one-dimensional systems where particles
dergo inelastic collisions, since these are models for gran
materials.

We start looking at the system under cooling~i.e., there is
no thermostating device coupled to the systems!. In Fig. 3,
the typical behavior of the temperature as a function of ti
for a system composed ofN51000 soft particles is shown
After a transient, whose length depends on the density of
system, the temperature decays following a power lawt2a.
For rigid particles, we found similar behavior and a value
the exponenta52 ~within the statistical uncertainty! that
agrees with theoretical predictions@5,8# and previous simu-
lations @5#. For the system composed of soft particles, t
value of the exponent seems to depend on the density an
degree of inelasticity in the system. The values of the ex
nenta obtained for different densities and degrees of inel
ticity are collected in Table II. At sufficiently high densit
and weak inelasticity the value of the exponenta agrees with
the theoretical predictions@5,8# for rigid particles. This is
interesting in the case of Haff’s theory@8# since it was de-
veloped for very dense granular systems, where the inter
ticle distances are significantly smaller than the diamete

FIG. 3. lnT plotted versus lnt. The temperatureT and the timet
are in reduced units. Results for a system of soft particles unde
ing inelastic collisions and no thermostating device coupled to
system. The system is composed ofN51000 particles.r50.83 and
g50.001.L: simulation results; straight line: least square fit.

TABLE II. Values of the exponent in the cooling lawT}t2a.

Density Inelasticity a

0.2 Weak 1.16
0.2 Strong 1.39
0.83 Weak 1.90
0.83 Strong 1.59
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the particles. On the other hand, the theory developed
McNamara et al. @5# was based in the fact that in one
dimensional granular systems composed of point rigid p
ticles under cooling, a bimodal velocity distribution raise
They predict that the temperature will decay as

T5
U0

2

~112ertU0!2
, ~17!

where U0 is the mean value of the velocity modulus
t50, e is the friction parameter introduced in Eqs.~1! and
~2!, andr is the density. Nevertheless, we do not find a
trace of a bimodal velocity distribution as the on
dimensional system composed of soft particles cools dow

Finally, we analyze the behavior of one-dimensional s
tems with inelastic collisions and a thermostat coupled to
system. As mentioned, for one-dimensional systems of
ticles undergoing inelastic collisions an ‘‘extraordinary
state was found in Ref.@1#. In such an ‘‘extraordinary’’ state
the majority of the particles get clamped in a small region
space moving with very low velocities, and few remaini
particles travel between one of the boundaries and the g
of clamped particles at a much higher speed. In the pre
investigation, nevertheless, we find that the thermostating
vices used in Ref.@1# failed to produce equilibrium states fo
elastic particles. Therefore, we have carried out simulati
where our one-dimensional systems are coupled to ther
stats that we have shown perform well in equilibrium
namely, the stochastic wall and a wall particle coupled t
NH thermostat.

We have repeated the simulations performed in Ref.@1#
for rigid point particles but now coupling the system to
stochastic wall~the left-side wall! and we have reproduce
their main findings. In other words, we observe that the ‘‘e
traordinary’’ state also appears when a correct thermosta
device is used. The appearance of the ‘‘extraordinary’’ st
is illustrated in Fig. 4~b! for a system composed ofN5100
particles. This figure shows the position of the center
mass,̂ x&5(1/N)( i 51

N xi , as function of time. The position
of the center of mass of the system moves to the right sid
the box and remains there as steady state is reached. Fo
sake of completeness we also show results without a ther
stat in Fig. 4~a!; the value of^x& stays around zero, which
shows that the particles are uniformly distributed. This
indeed what we would except with onlyN5100 particles
~for e50.005 clustering does not occur for a number of p
ticles less than or equal toNmin5599 @5#!. In Ref. @1# it is
found that the particles in the clump get squeezed int
smaller space and move with slower speeds, for a fixed n
ber of particles and decreasinge. We, on the contrary, find
that when the initial distribution of velocities is Maxwellia
the formation of the clump disappears. This is illustrated
Fig. 4~c!, where one can see that fore51027, the position of
the center of mass fluctuates about the center of the sim
tion box. Furthermore, the density profile shows that,
steady state, the particles remain homogeneously distrib
in the simulation box in agreement with the predictions
the hydrodynamic equations. Nevertheless, we have
started the simulations with all the particles uniformly d
tributed, and with only the leftmost particle having nonze
y
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velocity. In this case, the position of the center of mass
cillates with a greater amplitude and a long period~about 106

collision times!, and the distribution of particles is not un
form but the system is more dense on the right side, but
do not see the formation of a clear clump. Furthermore,
velocities of the particles are smaller than in the previo

FIG. 4. The center of mass position versus time.X and t are in
reduced units. Results for a system composed of rigid point p
ticles undergoing inelastic collisions. The length of the system is
and the ‘‘box’’ is the interval from20.5 to 0.5. ~a! e50.005,
reflecting walls~b! e50.005, stochastic wall~c! e51027, stochas-
tic wall.



a

e
h
at

’’
s
wa
a

g
th

pa
in

an

d
to

qu
cr
t

ra
c
si

pr
ila
s
a

d
to
c
th
us

a
e

a
cl

a
-
fil
d
d
le
h
s

w
icl

x-

the

er-
stic

rriv-
an
of
nt

in-
all

left
the
y

ag-
ll
re
an
red
hat
ary
han

led
ion

em
par-
the
ve
e
into

ar-
re

and
e to
p.

led
to
of

for
ms.
as-
le

ium

els
For
l-
l

ee

57 1935CONTROLLING THE TEMPERATURE OF ONE- . . .
case. Thus, fore→0, we observe a dependence of the fin
steady state on the initial conditions of the simulations. W
assume then that the observations from Ref.@1# quoted
above correspond to our second initial conditions. Howev
even in this case we do not observe that the particles, w
e→0, get squeezed into a smaller space than for gre
values ofe.

In order to investigate the origin of the ‘‘extraordinary
state, we have simulated a similar system composed of
particles. This allows us to use as a thermal boundary a
particle coupled to a NH thermostat, which is the most re
istic way, among those described in Sec. IV, of modelin
wall held at constant temperature. Moreover, in this case,
exchange of energy between the wall and the left-most
ticle takes place during a finite time interval, instead of
stantaneously.

Figure 5 shows the steady state profiles of density
temperature for the soft particle system atr50.2 for differ-
ent degrees of inelasticity in the collisions~we have chosen
three values of the friction coefficientg50.001, 0.01, and
0.1). The density is normalized asrnor(x)5r(x)/r and the
X coordinated asx/L. The results are for a system couple
either to the wall particle coupled to a NH thermostat or
the stochastic wall. At the lowest inelasticity (g50.001), the
steady states produced by the two thermostats are e
Density and temperature can be considered constant a
the system, and the average value of temperature is abou
in both cases@see Figs. 5~a! and 5~d!#. In the figures, the
quasi straight lines in the middle of the density and tempe
ture profiles are the arithmetic mean of those, and one
see that they form a symmetry axis about which the den
and temperature profiles are mirror images.

For g50.01, the steady state density and temperature
files obtained with the two thermostats also show sim
fashion@Figs. 5~b! and 5~e!#. Now there is no symmetry a
we observed atg50.001. Moreover, the average temper
tures of the two steady states are different,T50.427(6)
when the system is coupled to the stochastic wall, anT
50.28(1) when it is coupled to the wall particle coupled
the NH thermostat. The shape of the temperature profiles
be assumed as exponentials within the left-hand half of
box, i.e., in the side closest to the thermostat. This is ill
trated in Fig. 6 where the lnT is plotted versusx/L. The
straight lines are the least square fits to the simulation d
The exponential decay of temperature is what one could
pect from a hydrodynamic approach.

Finally, we show the results forg50.1. Here, the final
steady states obtained with the two thermostats are cle
different. The steady state obtained with the wall parti
coupled to the NH thermostat corresponds to a state with
average temperature ofO(1024), this means that the par
ticles have practically stopped moving. The density pro
indicates that the particles are homogeneously distribute
the simulation box@see Fig. 5~c!#. The steady state obtaine
with the stochastic wall is very different. The density profi
indicates the appearance of a clump of particles in the rig
side of the box and mean kinetic energy of these particle
practically zero@see Fig. 5~f!#. Although the velocities of the
rest of the particles close to the thermal wall are very lo
they are several orders of magnitude higher than the part
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in the clump. This steady state is very much like the ‘‘e
traordinary’’ state described in Ref.@1#.

The differences between the steady states created with
two different thermostating devices@Figs. 5~c! and 5~f!#
should emerge from differences in the way that the two th
mal boundaries pump energy into the system. The stocha
wall can be interpreted as a boundary that destroys the a
ing particles and emits new ones with a velocity drawn for
MB distribution for the target temperature. Thus, the value
the velocity of the outcoming particle is totally independe
of the value of the incoming velocity, and therefore the
crease in kinetic energy of a particle hitting a stochastic w
can be arbitrarily large. On the other hand, when the
boundary is a wall particle coupled to the NH thermostat,
left-most fluid particle will also increase its kinetic energy b
the interaction with the wall particle. Nevertheless, the m
nitude of the velocity of the particle after hitting the wa
particle will depend on its incoming velocity and therefo
the amount of kinetic energy that the left-most particle c
load in this way is limited. Furthermore, we have measu
in our simulations for soft particles the amount of energy t
a particle loads, in a time step, from a stochastic bound
and found that it is several orders of magnitude greater t
from a wall particle coupled to a NH thermostat.

When our one-dimensional inelastic models are coup
to a thermostat in the left-side boundary of the simulat
box, as the inelasticity of the model increases~the value ofe
or g increases!, a temperature gradient appears in the syst
and the density profiles indicate that the more energetic
ticles on the left side of the box press the particles on
right side of the box to the right-side boundary. We belie
that the origin of this ‘‘extraordinary’’ state is due to th
great amount of energy that the stochastic wall pumps
the system in the limit of~relatively! high inelasticity, where
the temperature of the particles~due to inelastic collisions! is
well below the temperature of the boundary. Thus, the p
ticles emitted by the stochastic wall have significantly mo
kinetic energy than the rest of the particles in the system
press them against the other side of the box, where du
their low kinetic energy remain together and form a clum
In the same limit of~relatively! high inelasticity, but when
the thermal boundary of the system is a wall particle coup
to a NH thermostat, the thermostat will simply not be able
maintain the temperature of the system, and the motion
particles will eventually stop.

VI. CONCLUSION

We have tested several models used in the literature
modeling a thermal boundary in one-dimensional syste
The results of our simulations indicate that only the stoch
tic wall, the frequency thermostat, and the wall partic
coupled to a NH thermostat are able to generate equilibr
states at the desired temperature of the boundary.

We have studied the cooling of one-dimensional mod
for granular systems, modeled as rigid and soft particles.
rigid particles we found that the cooling of the system fo
lows the power law,T}t22, which agrees with theoretica
predictions@5,8#, and previous simulations@5#. For soft par-
ticles we found a similar power law,T}t2a, but now, the
value of the exponent,a, depends on density and the degr
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FIG. 5. Temperature~in reduced units! and density profiles. Density is expressed asr(X)/r wherer(X) is the local density andr
5N/L, L being the length of the box. Results for a system of soft particles undergoing inelastic collisions. The system is composN
51000 particles at a densityr50.2. Thin lines: density profiles. Thick lines: temperature profiles.~a! System thermostated with a wa
particle coupled to a NH thermostat andg50.001,~b! g50.01,~c! g50.1, ~d! system thermostated with a stochastic wall andg50.001,~e!
g50.01, ~f! g50.1.
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of inelasticity in the system. In the limit of high density an
low inelasticity the value of the exponent for soft particl
seems to tend to the value for rigid particles.

Finally, we have investigated the appearance of the ‘‘
traordinary’’ state in one-dimensional granular systems th
mostated at the boundaries, described in Ref.@1#. We believe
that the origin of such a state is in the way that the therm
boundaries chosen in Ref.@1# or the stochastic boundar
-
r-

l

used by Ciccottiet al. @2–4# work. The interaction with any
of these boundaries can be interpreted as an exchang
incoming particles and outgoing particles whose velocity
set to a value totally independent of the incoming velocity.
other words, the kinetic energy of the particles after leav
the boundary can be arbitrarily high in comparison with t
mean kinetic energy of the rest of the particles in the flu
This is the case when the particles undergo inelastic co
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sions if the energy dissipated during the collisions is h
enough. Hence in this case, the particles emitted by
boundary press the majority of the particles in the syst
against the opposite boundary forming a clump. If, on
other hand, the interaction with a thermal boundary is s
that the particle hitting the boundary can only load a limit
amount of kinetic energy, in the limit of high inelasticity th
system will simply cool down until all motion stops.
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APPENDIX: INELASTIC COLLISIONS
FOR SOFT PARTICLES

The equations for the time evolution of velocities for o
~one-dimensional! system of soft particles undergoing inela
tic collisions are

FIG. 6. lnT plotted vsX/L. The temperature is in reduced unit
Soft particles undergoing inelastic collisions forr50.2 and g
50.01.L: System thermostated with a wall particle coupled to
NH thermostat.n: System thermostated with a stochastic wa
straight lines: least square fits.
h
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e
h
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v̇15a11gD12
1/2v12,

v̇25a22gD12
1/2v121gD23

1/2v23,
~A1!

v̇35a32gD23
1/2v231gD34

1/2v34,

. . .

whereai are the accelerations coming from the conservat
forces, and the second term in the right-hand side is
accelerations coming from the dissipative forces due to c
lisions (v i j 5v i2v j and g and D are defined in Sec. III!.
These equations conserve the momentum of the cente
mass but kinetic energy is dissipated.

In the leap-frog algorithm scheme, the velocity of the sy
tem at timet1h/2 (h is the length of the time step! is cal-
culated as

v~ t1h/2!5v~ t2h/2!1ha~ t ! ~A2!

and the velocity at timet is approximated as

v~ t !5 1
2 @v~ t1h/2!1v~ t2h/2!#. ~A3!

Writing Eq. ~A1! in the leap-frog scheme:

v1~ t1h/2!5v1~ t2h/2!1h@a1~ t !1g128 ~ t !v12~ t !#,

v2~ t1h/2!5v2~ t2h/2!1h@a2~ t !2g128 ~ t !v12~ t !

1g238 ~ t !v23~ t !#,
~A4!

v3~ t1h/2!5v3~ t2h/2!1h@a3~ t !2g238 ~ t !v23~ t !

1g348 ~ t !v34~ t !#,

. . .

where for the sake of compactness we rename the pro
gDi j

1/2(t) as g i j8 (t). Substituting the value ofv i j (t) for the
expression given in Eq.~A3!, we obtain a set of linear equa
tions where the unknown quantities arev i(t1h/2). The ma-
trix of this set of equations is
S 11
h

2
g128 ~ t ! 2

h

2
g128 ~ t ! 0 . . .

2
h

2
g128 ~ t ! 11

h

2
g128 ~ t !1

h

2
g238 ~ t ! 2

h

2
g238 ~ t ! . . .

0 2
h

2
g238 ~ t ! 11

h

2
g238 ~ t !1

h

2
g348 ~ t ! 2

h

2
g348 ~ t !

. . . 12
h

2
gn21,n8 ~ t !

D
and the right-hand side term is
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S v1S t2
h

2D F12
h

2
g128 ~ t !G1ha1~ t !1v2S t2

h

2D Fh

2
g128 ~ t !G

v1S t2
h

2D Fh

2
g128 ~ t !G1v2S t2

h

2D F12
h

2
g128 ~ t !2

h

2
g238 ~ t !G1ha2~ t !1v3S t2

h

2D Fh

2
g238 ~ t !G

. . .
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