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Onset of self-assembly

Shirish M. Chitanvis
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 3 September 1997!

We have formulated a theory of self-assembly based on the notion of local gauge invariance at the meso-
scale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible
for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation
above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the
Gaussian approximation and obtain a correlation lengthj;(c2c* )2g, wherec* is the minimum concentra-
tion below which self-assembly is impossible,c is the current concentration, andg was found numerically to
be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached,
indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition
point. @S1063-651X~98!04902-2#

PACS number~s!: 61.25.Em, 64.60.2i
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I. INTRODUCTION

Microphase separation is the tendency in certain mixtu
such as amphiphilic fluids and diblock copolymers, of one
the components to form mesoscale aggregates of the siz
;100 Å. Such self-assembly is to be distinguished from
phenomenon of nucleation in single-component flui
Nucleation is the precursor of a phase transition, and as s
indicates an instability. Self-assembly on the other hand
dicates the ability of a given mixture to growislandsof one
of the components to the size of a couple of hundred a
stroms, and then stabilize the growth, so that phase sep
tion occurs only on a mesoscale, rather than a macros
Above a certain temperatureT* , mesoscale structures a
formed in a random fashion, as long as the concentratio
the self-aggregating component is greater than some m
mum valuec* . As the concentration is increased contin
ously above c* , the self-assembling systems first for
spherulitic structures, changing to fibrillar and then lame
structures@1#. This is inferred experimentally using smal
angle~x-ray or neutron! scattering. The correlation function
in k space obtained from such experiments display a p
around some wave vector indicating the average spacing
tween these islands@2,3#. The width of the peak represen
the spread in the average spacing of these islands. BelowT* ,
the mesoscale aggregates form regular arrangements~e.g.,
hcp, fcc, etc.! via a first order transition@4,5#. The regularity
of these lattices can be inferred from small-angle scatte
experiments, which display harmonics of the main peak@4#.

It is generally believed that self-assembly in mixtures
due to the competition between the tendency of the com
nents to phase separate on a macroscale, and a long-
entropic~statistical! force caused by the presence of chem
cal bonds linking the components in the mixture@1#. In the
case of amphiphilic mixtures, it is the surfactant molecu
that provide the glue that allows mesoscale segregatio
occur. In the case of diblock copolymers, end groups on
two species create interspecie bonds, thereby playing the
of a surfactant. A molecular-level description of mesosc
structures~micelles! in liquids, and aggregates in copolyme
that are a couple of hundred angstroms in size is a challe
571063-651X/98/57~2!/1921~8!/$15.00
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ing problem. At this scale, raw simulations that begin at
molecular level are simply impossible to perform for realis
molecules with the current computational technology.

Parallel field theoretic efforts in both amphiphilic fluids a
well as diblock copolymers have been developed over
years to provide an understanding of microphase separa
@3,6–10#. We will show in this paper that the principle o
local gauge invariance with respect to the SO~2! group can
be applied successfully to unify the above theories with
common thread, and furthermore, to derive a generaliza
of these mesoscopic theories of self-assembly@11#. We have
interpreted the gauge fields we obtain as giving rise to
tistical correlations between concentration fluctuatio
These statistical correlations could be thought of as effec
interactions that arise at the mesoscale from the underly
Coulombic interactions at the molecular level, between
components of the mixture. While the use of local gau
invariance@12# is quite well established in particle physic
its usefulness in settings other than quantum field the
~QFT! is appreciated only under rare circumstances@13#. We
note that while thedynamicaluse of local gauge invarianc
is novel at the mesoscale, gauge theory has been used
tinely in the past to classify defects in condensed ma
physics@14#. Our theory is applicable to diblock copolymer
oil-water-surfactant mixtures, and in general any se
assembling system, e.g., binary alloys@15#.

A further importance of our paper lies in the fact that w
have gone beyond the Gaussian approximation or the m
field approximation~MFA! used conventionally in meso
scale theoretical investigations@6,8#. While the MFA may be
a reasonable approximation to study self-assembling syst
far from phase transitions, it is obvious that one must nec
sarily go beyond the MFA or the Gaussian approximation
order to properly study the onset of self-assembly. To
more precise, we point out that investigations of the onse
self-assembly~as the composition is varied! in the literature
@6,9,10# yield a correlation length diverging with the squar
root signature of the MFA. Experimental observations cit
by Woo et al. @10# suggest that the true exponent is larg
than 1

2. We will take seriously in this paper the quantitativ
suggestion of Wooet al. that there is a need to go beyond th
1921 © 1998 The American Physical Society



o

e
to
or
ri
o
tic
en
ee
si
io
, i
an
ng
In

c
u
a

as
n-
ea
a

l in
no

a
de
he
ug
v

y
el
he
d
tr

c
a

on
d
lf

na
o
o
t

s
c-

med

e

and
bi-
tal

ave
total

en-

-

act

gy
of
er-

e
or

cies
m,
ys-
und

their
o-
le,

in-
tion

ctor

ri-
g
ne
ian,
in
the

for
ly

pace
ly
ical
for

1922 57SHIRISH M. CHITANVIS
MFA or the Gaussian approximation to study the onset
self-assembly.

There have indeed been investigations in the past wh
renormalization group~RG! techniques have been used
study the first order transition from a disordered to an
dered phase in copolymers, as the temperature is va
@4,16–18,1#. But the onset of the self-assembly of mes
scopic structures into a random arrangement above a cri
temperature, as the concentration of one of the compon
of the binary mixture is varied, is an issue that has not b
addressed theoretically in much detail beyond the Gaus
approximation. Our investigation reveals that this transit
is analogous to the critical point in phase transition theory
that the correlation length diverges as a 2/3 power law,
the diffusion constant goes to zero, implying critical slowi
down. But the correlation function itself does not diverge.
this sense, we are investigating a Lifshitz point@19#. Our
detailed calculations apply specifically to estane, a diblo
copolymer. However, one may invoke universality arg
ments to argue that our results are applicable more gener

Our theory represents a generalization of thef4 field
theory proposed by Landau and Ginzburg to study ph
transitions. While our theory is slightly similar to the sta
dard Landau-Ginzburg theory in that they are both nonlin
and deal with an order parameter, it is clear that there
some major differences. First of all, our theory is nonloca
character. Secondly, the nonlinear term in our theory
only contains a cubic term~in addition to a quartic term!,
which arises naturally from an expansion around the aver
value of the fields, but the nonlinear term also contains
rivatives of the concentration. The derivative form of t
nonlinear coupling is dictated by the fact that ours is a ga
theory, in which covariant derivatives are defined. We ha
used this theory to investigate the onset of self-assembl
estane, a diblock copolymer, and we found that the corr
tion length diverges with a power that is fairly close to t
universal value of~2/3!. We also found that the renormalize
diffusion constant goes to zero as the minimum concen
tion c* ~below which self-assembly is imposible! is ap-
proached.

We foresee a rich variety of applications of our approa
to other questions regarding diblock copolymers, such
their viscoelastic properties. We also foresee investigati
of time-dependent phenomena in copolymers, such as
tailed studies of critical slowing down at the onset of se
assembly.

II. THE GAUGE THEORY

The starting point of our mesoscale theory is an inter
energy functional that is quadratic in the gradient of a tw
dimensional vector. For the moment, we will consider is
lated systems, so that the quantity that is conserved is
internal energy@20#. We will shortly consider entropy effect
as well. Consider the following form for the energy fun
tional:

bU05bE u0„c~s!…d3s, ~1!

b5
1

kT
, ~2!
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bu0„c~s!…5S g

2D ]ct~s!

]si

]c~s!

]si
, ~3!

where t indicates a transpose, repeated indices are sum
over, and

c~s![S ch~s!

cs~s! D . ~4!

In the above equations,s is a dimensionless coordinat
variable,k is Boltzmann’s constant,T is the temperature,ch
is the number concentration of the first type of species,
cs is the number concentration of the other species in a
nary mixture. The concentrations are normalized to the to
number concentration. The constantg is essentially a dimen-
sionless diffusion constant. Such energy functionals h
been considered over many years as contributing to the
internal energy of binary mixtures@9,21#. We will use this
form as our starting point to generate a more complete
ergy functional using gauge invariance.

From Eqs.~1!–~4! we see thatu0 is invariant under global
rotations of the vectorc. These are rotations in two dimen
sions, and the appropriate group to consider is SO~2!. The
physical origin of this group can be traced back to the f
that the quadratic~positive, semi-definite! form of the energy
density@Eq. ~3!# is dictated by expanding the internal ener
around a minimum, in a Landau-like fashion. The form
the energy density contains gradient operators, which p
mits us to perform SO~2! transformations around not just th
origin in (ch ,cs) space, but around any arbitrary fixed vect
in this space. In particular, we shall use SO~2! around the
vector defined by the average concentration of each spe
viz., (ch

0 ,cs
0). This is a natural representation for our syste

since our final goal is to study self-assembly in binary s
tems, characterized by local, mesoscale fluctuations aro
the average concentrations. SO~2! transformations of these
fluctuations demand thatc8h

21c8s
2 5 const, wherech8 andcs8

denote deviations of the species concentrations around
averages. Thus SO~2! transformations can cause the comp
nents of (ch8 ,cs8) to become negative. But this is acceptab
since concentration fluctuations around the average can
deed be negative or postive, as long as the total concentra
for each species does not become negative@see Eq.~11!#. In
what follows we shall be tacitly performing local SO~2!
transformations around the average concentration ve
(ch

0 ,cs
0), culminating in Eq.~13!, which is a central result in

our paper.
Our physical motivation for seeking local gauge inva

ance ofc8h
21c8s

2 under SO~2! is the same as that of Yan
and Mills @12#, and in quantum electrodynamics, where o
observes the invariance of the noninteracting Lagrang
which is bilinear combinations of the fields, under certa
global transformations. One then demands covariance of
theory when these symmetry operations arelocal, i.e., when
the transformations are space-time dependent. A reason
this, as given by Yang and Mills, is that one can now free
interchange between the fields as one moves through s
and time, while leaving the physics covariant. It is intuitive
clear that such is the case in our problem, where chem
connections between the two species in our system allow
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57 1923ONSET OF SELF-ASSEMBLY
an admixture of the two components, rather than permittin
complete phase separation to occur on a macroscale. T
instituting local gauge invariance under SO~2! in our binary
mixture is equivalent to allowing interactions between t
components. Beyond this initial motivation, it is equally im
portant to show that the result of local gauge transformati
of u0 leads to physically significant results as epitomized
Eq. ~13!.

We remark in passing thatu0 is also invariant under the
translation groupT2, where we consider the transformatio
c→c1a. Based on the work of Edelen@13# in solid mechan-
ics, we believe that seeking local gauge invariance ofu0
underT(2) may lead to a study of defects in our system.

Following Yang and Mills@12#, local gauge invariance o
u0 under SO~2! motivates us to define new fieldsb, which
have invariance properties appropriate to SO~2!. We define a
covariant derivative]/]si→(]/]si1qtbi), where t is the
generator of SO~2!, q is a ‘‘charge,’’ or, equivalently, a cou
pling constant, and theb fields are analogs of the magnet
vector potential in electrodynamics. Theseb fields give rise
to effective interactions between the hard and soft segm
of estane. These effective interactions are to be thought o
arising from the underlying electrostatic interactions betwe
molecules, monomers, etc. The energy functional for thb
fields is definedà la Yang and Mills, via the minimal pre-
scription. With this, our original internal energy density
transformed into:

bu0→bu5bu01buint1buYM , ~5!

whereuint refers to the interaction energy density, anduYM is
the energy density associated with the Yang-Millsb fields
alone. Equivalently, we may define the total energy functi
als associated with these energy densities:

bU0→bU5bU01bU int1bUYM ,

where

buint5Ji~c!bi~s!1bi~s! f ~c!bi~s! ~6!

with

Ji~c!5S 1

2DqgS ]ct~s!

]si
tc~s!1ct~s!t t

]c~s!

]si
D ~7!

f ~c!5S 1

2Dgq2ct~s!c~s!; ~8!

t is given by@22#:

t5S 0 21

1 0 D . ~9!

From the above equation, it can be shown that

Ji~c!5qgS ]ct~s!

]si
tc~s! D . ~9a!

We need one more definition for completeness:
a
us,

s
y

ts
as
n

-

buYM5S 1

4D S ]bi

]sj
2

]bj

]si
D S ]bi

]sj
2

]bj

]si
D . ~10!

This equation can be cast into the following form:

buYM52 1
2 bi¹

2bi . ~10a!

Equation~10a! is obtained via an integration by parts,
the transverse gauge. Since we are dealing with an Abe
gauge theory, it is permissible to insert this transverse ga
manually, without resorting to the formal machinery of Fa
deev and Popov.

Note that we are utilizing a nonrelativistic version of th
Yang-Mills procedure, since we are only concerned w
time-independent problems. Furthermore, since we are c
cerned with rotations in two-dimensional space, there is o
a single generator for the group SO~2! @see Eq.~9!#, so that
the resulting functional is only quadratic and not quartic
the b fields.

It is important to emphasize that the usual application
the Yang-Mills procedure in QFT implies the existence
fundamental interactions. In our case, we are applying
principle of local gauge invariance at themesoscale. Conse-
quently, we do not expect to discover any new fundamen
interactions by using gauge invariance. Rather, we inter
the newb fields as yielding correlations between the conce
tration fields. As proof of this, we will show shortly that ou
approach leads to a generalization of the theories of S
inger and Leibler, where correlations were invoked on phy
cal grounds to describe mesoscale structures. These cor
tions could also be thought of as effective interactions, wh
arise at the mesoscale from the underlying electrostatic in
actions between molecules. We will not address the ques
of how one can make a connection with molecular sc
properties in this paper.

Our approach is analogous to the Landau-Ginzburg the
of superconductors in magnetic fields@23#. In the Landau-
Ginzburg theory, the energy functional involving a compl
order parameter is gauged with respect to the U~1! group.
This permits a successful treatment of a superconductor
magnetic field, and even permits a classification of superc
ductors. We have gone further in our theory, and invok
gauge invariance to study correlations that develop at
mesoscale. In our theory, there is no external magnetic fi
to consider.

The partition function we need to evaluate is now

Q5E )
a5h,s

Dca u~ca! )
k51,3

Dbk exp

2b~U01U int1UYM !. ~11!

Equation~11! is a functional integral, where the step fun
tions denoted byu imply that we must restrict integration t
positive semidefinite values of the fields.

Since theb fields appear only quadratically in the abov
functional, it is straightforward to integrate over them, a
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obtain an effective internal energy functional involving on
c. The result is@24#

bUeff5bU01bDUeff

5bU02
1

4E d3sE d3s8 Ji„c~s!…

3S 1

f „c~s!…2
1

2
¹2D

s,s8

Ji„c~s8!…. ~12!
ra
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Note that in doing so, we have ignored an overall triv
normalization constant that appears in the evaluation of
partition functionQ. This is permissible, as this factor can
cels during the evaluation of averages of observable qua
ties.

To see the connection between this rather complica
functional and the older theories, we expand the second t
on the right hand side of Eq.~12! around the average con
centrations of the two species (ch

0 andcs
0) that appear in our

theory, and retain only quadratic terms. The result is
bUeff'bU02S V

2 D E d3s c8t~s!Sc8~s!1S G

2p D E d3sE d3s8 c8t~s!S
exp~2A2 g̃ us2s8u!

us2s8u
c8~s8!, ~13!
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whereV5g2q2, g̃5(g/2)q2@(ch
0)21(cs

0)2#, G5q2g2g̃ , and
the primes onc denote deviations of the species concent
tions from their averages. The matrixS is defined thusly:

S5S ~cs
0!2 2ch

0cs
0

2ch
0cs

0 ~ch
0!2 D . ~14!

First of all, we see that by expanding around the aver
value of the fields, we are in essence considering the effe
local SO~2! invariance on the correlations that develop b
tween theluctuations of the fields. Secondly, we notice tha
we set g̃→0, we recover a model very similar to that o
Stillinger and Leibler.V is the Flory-Huggins paramete
and represents the immiscibility of the two components
our mixture. It is prescribed automatically via gauge theo
as long asg is known. The nonlocal term in Eq.~13! gives
rise to correlations that tend to counteract the effect ofV.
This frustration is responsible for the formation of mes
structures. From the definition ofS, we see that we have
retained in our model the notion of(pseudo) electroneutral
ity emphasized by Stillinger@9# and Chandleret al. @3#. Fi-
nally, we note that in generalg̃ is not zero, so that we hav
a screened Coulombic correlation appearing in the sec
term of Eq.~13!. In this sense, Eq.~13! may be viewed as
being similar to the random phase approximation~RPA! ap-
plied to the full functional given by Eq.~12!. Note that for
small deviations (ch8,cs8) from the corresponding concentra
tion averages, the step functions of Eq.~11! have a negligible
effect.

Equation~13! is one of the main results of our paper.
shows that Leibler and Stillinger’s theories may be und
stood in the context of gauge theories. Equation~13! gives
credence to the notion that gauge theoretic ideas may
valid at the mesoscopic level.

Equation~13! was obtained by expanding fields arou
their average values. In this sense we have broken the s
metry of our system. Combined with gauge invariance, th
we get a Yukawa-type screened potential. This effect may
-

e
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-
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n
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-

nd

-

be
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e

interpreted by saying that the gauge fields have acquire
mass. In this sense, Eq.~13! exhibits the Higgs phenomeno
@25#.

Before we can compare our theory with experimen
data, we need to consider the fact that our system is
really isolated, and may be in contact with an energy res
voir, perhaps as it is being acted on by mechanical force
a stress experiment. For a system in contact with an ene
reservoir, the quantity that is conserved is the Helmholtz f
energy@20# A5Ueff2ST, whereS is the entropy of the sys
tem. The entropy of our system will be written in the usu
form:

2
S

k
5E d3s $ch~s!ln@ch~s!#1cs~s!ln@cs~s!#%, ~15!

with this, our theory is formally complete.
While our theory has been able to reproduce the ol

theories of self-assembly of Leibler, Stillinger, and Chandl
we believe that the importance of our approach lies in
fact that it provides a natural way to go beyond the Gauss
approximation and the MFA used conventionally in mes
scale investigations. By this we mean that our effective fu
tional can be expanded in an infinite series beyond
Gaussian approximation. While the MFA is a reasonable
proximation to study self-assembling systems far from ph
transitions, it appears obvious that one must necessarily
beyond the Gaussian approximation in order to prope
study phase transitions, e.g., the onset of self-assembly.

III. GOING BEYOND THE GAUSSIAN APPROXIMATION

To see what lies beyond the Gaussian approximation,
convenient to invoke incompressibility, so that we can c
the Helmholtz free energy solely in terms of the concent
tion of ch the concentration of one of the species in o
binary system~with the average concentration of that spec
subtracted from it!. It is important to point out that the con
dition of incompressibility is to be imposed after the starti
functional U0 has been gauged. The condition of incom



o

s
wo

io

in
nd
it

py
are

ar
r-
f

cale

ve-

t-
s.

ons.
lf-
om-
s of

ation
n
s

e
-
.

pon

ill
ber,
. In

sian
hat

fol-

ms
o
ad-
as
he

57 1925ONSET OF SELF-ASSEMBLY
pressibility is to be accounted for during the evaluation
the partition function for the system.

A5E d3s a~s![U01DUeff2ST, ~16!

ba~s!5ba0~s!1bDa~s!, ~17!

bA5bA01bDA, ~18!

U05E d3s g@“ch~s!#2, ~19!

bDUeff52S g3q4

8 D E d3s8

3E d3s¹W s8ch~s8!•@ ĝ0~gch1ch
2!ĝ0] s8,s¹W sch~s!

~20!

2
S

k
5E d3s $ch~s!ln@ch~s!#1~12ch~s!ln@12ch~s!#%,

~21!

whereb51/kBT, and

ba0~s!'$1/[ch
0(12ch

0!#%ch~s!21g@“ch~s!#22S V

2 D ch
2~s!

1S G

2p D ch~s!E d3s8
exp~2A2 g̃ us2s8u!

us2s8u
ch~s8!

~22!

bDA'aE*
d3s¹W sch~s!•@gch~s!1ch~s!2#¹W sch~s!,

~23!

whereV5g2q2, g̃5(g/2)q2@(ch
0)21(cs

0)2#, andG5q2g2g̃ ,
g is essentially a dimensionless diffusion constant, andq is a
pseudocharge that arises out of our gauge theoretic con
erations,ch

0 andcs
0 are the average concentrations of the t

individual species in our system, and

ĝo5S f „ch~s!…2
1

2
¹2D 21

, ~24!

f „ch~s!…5
1

2
gq2$ch

2~s!1@12ch~s!#2%, ~25!

a5
g

4@~ch
0!21~cs

0!2#
, ~26!

g54~ch
021/2!. ~27!

The competition between the Flory-Huggins separat
parameterV and the attractive nonlocal term ina0 @Eq. ~22!#
gives rise to the formation of mesostructures. In obtain
Eq. ~23!, we have ignored terms linear in the fields, a
constant terms, as they do not contribute to the dens
density correlation function. In Eq.~23!, we have looked for
f

id-

n

g

y-

higher order corrections toDUeff . We have ignored cubic
and quartic contributions, which come from the entro
term, as our diagrammatic estimates indicate that they
negligible.

The form of DA in Eq. ~23! is a local form. The local
form is obtained by retaining only the lowest order nonline
terms in an expansion of the full nonlocal form of the inte
action term. It is a reflection of the fact that the full form o
the nonlocal interaction term is screened on a length s

1/A2 g̃ . The asterisk on the integral in Eq.~23! indicates that
a cutoff in momentum space is to be used in the short wa

length limit, kmax5A2 g̃ . There would be no need for a cu
off if the full form of DA were to be used. We note that Eq
~22! and~23! represent a generalization of thef4 field theory
proposed by Landau and Ginzburg to study phase transiti

We will now apply this gauge theory to the onset of se
assembly in estane, a diblock copolymer. Estane is c
posed of hard segments of polyurethane, and soft strand
polyester. The hard segments display microphase separ
on the scale ofO(100) Å. It is appropriate to consider a
approximation to the form ofao , which ensures that Porod’
law is satisfied in the small wavelength limit@10#

bâ0~k!' ĉh* ~k!~a1g8k21G8k4!ĉh~k!, ~28!

where g85g/$121/2@(ch
0)21(cs

0)2#%, G851/$2q2@(ch
0)2

1(cs
0)2#%, anda51/@2ch

0(12ch
0)#.

The term in parantheses in Eq.~28! represents the invers
of the structure factor~Fourier transform of the density
density correlation function! in the Gaussian approximation
Following the formulation of our gauge theory,g8.0. As
such, the Gaussian approximation has to be improved u
before seeking agreement with experiment. Unlessg8 gets
remormalized to a negative value, the structure function w
not yield a peak at some nonzero value of the wave num
which would characterize a microphase separated system
what follows, we shall drop the subscripth, which appears
on the fieldc. The partition function is defined as (J is an
auxiliary field!

Q@J#5E Dc exp2b@ao~s!1Da~s!1&J~s!c~s!#.

~29!

We can now use standard perturbation techniques@26# to
develop a series expansion for corrections to the Gaus
approximation. As such, it is meaningful to make certain t
the dimensionless coupling constanta defined in Eq.~27! is
less than one. On the other hand, it is well known@27# that
such series are asymptotic in nature. Thusa,1 is not a
panacea. We define the two-point correlation function as
lows:

S~x1,x2!5F d

dJ~x1!

d

dJ~x2!
lnQ@J#G

J50

. ~30!

Figure 1 gives a pictorial representation of the two ter
in the definition ofDa. It is clear that each of these tw
interaction terms yields a separate perturbation series. In
dition, there will be a series formed out of the cross terms
well. There are no cross terms up to the two-loop level. T
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cubic interaction term first yields nonvanishing contributio
in second order perturbation theory@Figs. 2~a! and 2~b!#. The
quartic term yields nonzero contributions at the one-lo
level @Figs. 3~a! and 3~b!#. We have verified explicitly that
all other ~asymmetric! diagrams arising up to the two-loo
level add up to yield a null contribution. Similar cancell
tions are also obtained in theories of dendritic growth@28#.
In our calculation, the two series arising out of each of t
two interaction terms were evaluated only to the first non
nishing order.

Figure 2~a! ~tadpole! renormalizesg8:

dg8~1!52S 1

16ap2Da2g2E
0

kmax
dk

k4

~a1g8k21G8k4!
,

~31!

wherekmax5A2 g̃ .
This tadpole diagram is crucial in helping us achie

agreement with experiment. It dominates the contributio
from Eqs.~32! and~33!. Note that it has a sign opposite tha
given by Eq.~33! below. Without Eq.~31!, the renormalized
structure function would not yield the characteristic peak
scattering data. This tadpole diagram is reminiscent of
standard~Hartree! tadpole diagram in many-body physic
The physical importance of this diagram is as follows. T

FIG. 1. ~a! is a pictorial representation of the cubic term inDa.
Each leg corresponds to a factor ofc, the field. A] i indicates that a
derivative of the field is to be taken in thei th direction. A sum over
i is understood. The dark circle symbolizes a factor of2ag, the
coupling constant. The negative sign comes from the argumen
the Boltzmann factor.~b! is a pictorial representation of the quart
term in Da. A factor of 2a is to be inserted at the intersection.

FIG. 2. ~a! represents thetadpolediagram, which is crucial in
our calculations.~b! represents thesetting sundiagram. Both~a!
and ~b! are second order contributions to the correlation funct
coming from the cubic interaction term, the first order correctio
being null.
p

e
-

s

e

e

bare diffusion constantg, if left unregulated, would tend to
smooth out concentration gradients in our system. It is
role of the screened ‘‘Coulomb’’ interactions, having a s
tistical origin, which is responsible for self-assembly. And
is up to these interactions to counteract the smoothing
dency of the diffusion term. This is accomplished as d
scribed above, by the tadpole diagram, which renormali
the bare diffusion constant so that the renormalized diffus
constant is less than or equal to zero.

Figure 2~b! yields two terms in leading order, one th
renormalizesg8, and the other that renormalizesG8:

dg8~2!52S 1

24p2Da2g2E
0

kmax
dk

k4

~a1g8k21G8k4!2 ,

~32!

dG8~1!52S 1

16p2Da2g2E
0

kmax
dk

k2

~a1g8k21G8k4!2 .

The renormalization ofg caused by this diagram is dom
nated by the contribution of the tadpole diagram discus
above.

Figure 3~a! ~one-loop! renormalizesg8:

dg8~3!5S 1

8p2DaE
0

kmax
dk

k2

~a1g8k21G8k4!
. ~33!

Figure 3~b! ~one-loop! renormalizes the constanta in Eq.
~28!. A closed form expression for the contribution from th
diagram is

da~1!5S 1

8p2DaE
0

kmax
dk

k4

~a1g8k21G8k4!
. ~34!

We evaluated the integrals appearing above numerica
and then fitted experimental data@2# on estane. We had thre
free parameters to manipulate. The three parameters a
disposal areg, a dimensionless diffusion constant,q the
pseudo chargeof our gauge theory, and finally the lengt
scalel, which we used to turn the spatial lengths in o
theory dimensionless. It is important to point out that t
form of the renormalized structure function was crucial
obtaining reasonable agreement with experiment. The res
of fitting Bonart’s data are displayed in Fig. 4. The valu
needed are listed in the figure caption. It is worth noting t
the value of the length scalel;150 Å we obtained can be
interpreted physically as the mean distance over which a

FIG. 3. ~a! and~b! represent 1-loop contributions from the qua
tic interaction term to the correlation term.
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aging has been performed to go from an atomistic desc
tion to a mesoscale model. The volume described by
length scale can accommodate roughly 103 polyurethane
~hard segment! monomers. With the current values of th
parameters, our coupling constanta was just under 0.5.

Armed with values for our parameters appropriate for
tane, we varied the concentrationch

0 of the hard segments o
polyurethane in estane, decreasing it from Bonart’s value
0.25. In this way, we could probe how the location of t
peak in the structure factorŜ(k) changed, as we varied th
concentration of the hard segments. The location of the p
is a measure of the inverse of the correlation length in
system. The purpose of this exercise was to investigate
the correlation length behaves as the onset of self-asse
is approached. Figure 5 shows a plot of the inverse corr
tion length as the concentration is varied in the vicinity ofc*
~the minimum concentration below which self-assembly
impossible!. We foundc* to be approximately 0.1922 while
the critical exponent was found to be fairly close to 2
~0.6542!. We also found that asc* is approached, the renor
malized effective diffusion constantgR85@g81dg8(1)
1dg8(2)1dg8(3)#→0, implying that we have a precurso
of critical slowing down. Our calculation of this critical ex
ponent is the first that goes beyond the Gaussian approx
tion @29#, and makes a prediction for diblock copolyme
regarding the the correlation length near the onset of s
assembly, and shows that the onset is accompanied by
cal slowing down. Experiments by Kobersteinet al. @30# on
polyurethane-polypropylene systems indicate qualita
agreement with our theory. The difficulty in obtaining qua
titative agreement lies in the fact that experimental meas

FIG. 4. Comparison of experimental data and theory for esta
The dark circles are experimental data points without the ba
ground subtracted from them; the solid curve is theory. The exp
mental background is negligible, except for the data point close
the origin. Both data and theory are normalized to the peak va
The parameters used to obtain the fit werech

050.25,g58000 Å2,
q50.6331023 Å22, and l5263.91 Å. The peak in the exper
mental data and theory occurs at about 200 Å, indicating the a
age distance between aggregates. Note that the slight peak i
theoretical curve is obscured by the experimental data. It never
less exists and can be verified numerically. The apparent disag
ment between data and theory for large momenta is due to the
that the experimental background, which has not been subtra
from the data, becomes important in this regime.
p-
is

-

of

ak
e
w

bly
a-

s

a-

lf-
iti-

e
-
e-

ments of the structure factor start to be swamped by
direct portion of the beam, and the error bars increase
matically, as the peak marches towards the long wavelen
limit.

V. CONCLUSIONS

We have shown that the concept of gauge invariance
be utilized successfully at the mesoscale to generate
entropic-statistical long-range forces responsible for s
assembly. This was done by using local gauge invaria
under the SO~2! group to derive the older~Gaussian! theories
of self-assembly. Our approach allows us to go natura
beyond the Gaussian approximation. We computed the
nonvanishing contributions beyond the Gaussian approxi
tion to the density-density correlation function from the c
bic and quartic terms in our energy functional. We appli
our theory to estane, a diblock copolymer, above its criti
temperature. We found that as the concentration approa
c* from above, the correlation length diverges with a~2/3!
power law, and the renormalized diffusion constant tends
zero, implying critical slowing down. The correlation func
tion however, remains finite at the transition. The divergen
of the correlation length can be interpreted to mean tha
c* is approached from above, the probability of finding m
soscale aggregates vanishes, so that the average distan
tween aggregates diverges. Experiments by Kobersteinet al.
@/30# on polyurethane-polypropylene systems indicate qu
tative agreement with our theory. Universality argume
may be used to argue that our results are applicable m
generally.

We foresee a rich variety of applications of our approa
to other questions regarding diblock copolymers, such
their viscoelastic properties. We also foresee investigati
to time-dependent phenomena in copolymers, such as
tailed studies of critical slowing down at the onset of se
assembly, and constitutive relations at nonzero strain rat
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r-
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FIG. 5. This is a plot of the location of the maximum in th
theoretical structure factorS(k), as the concentration of the poly
urethanech

0 is varied in the neighborhood of the critical concentr
tion c*, which is '0.19216. The open circles denote numeric
results obtained in the manner discussed in the text. The solid lin
the curve given by 0.71406(ch

02c* )0.65424.
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