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Onset of self-assembly
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(Received 3 September 1997

We have formulated a theory of self-assembly based on the notion of local gauge invariance at the meso-
scale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible
for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation
above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the
Gaussian approximation and obtain a correlation leggtlfc—c*) 7, wherec* is the minimum concentra-
tion below which self-assembly is impossibteis the current concentration, andwas found numerically to
be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached,
indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition
point. [S1063-651X98)04902-2

PACS numbd(s): 61.25.Em, 64.60:i

[. INTRODUCTION ing problem. At this scale, raw simulations that begin at the
molecular level are simply impossible to perform for realistic

Microphase separation is the tendency in certain mixturegnolecules with the current computational technology.
such as amphiphilic fluids and diblock copolymers, of one of Parallel field theoretic efforts in both amphiphilic fluids as
the components to form mesoscale aggregates of the size wkll as diblock copolymers have been developed over the
~100 A. Such self-assembly is to be distinguished from theyears to provide an understanding of microphase separation
phenomenon of nucleation in single-component fluids[3,6—10. We will show in this paper that the principle of
Nucleation is the precursor of a phase transition, and as sudbcal gauge invariance with respect to the (8Qgroup can
indicates an instability. Self-assembly on the other hand inbe applied successfully to unify the above theories with a
dicates the ability of a given mixture to groslandsof one  common thread, and furthermore, to derive a generalization
of the components to the size of a couple of hundred angef these mesoscopic theories of self-assembly}. We have
stroms, and then stabilize the growth, so that phase separimterpreted the gauge fields we obtain as giving rise to sta-
tion occurs only on a mesoscale, rather than a macroscaléstical correlations between concentration fluctuations.
Above a certain temperatur€*, mesoscale structures are These statistical correlations could be thought of as effective
formed in a random fashion, as long as the concentration dhteractions that arise at the mesoscale from the underlying
the self-aggregating component is greater than some miniCoulombic interactions at the molecular level, between the
mum valuec*. As the concentration is increased continu-components of the mixture. While the use of local gauge
ously abovec*, the self-assembling systems first form invariance[12] is quite well established in particle physics,
spherulitic structures, changing to fibrillar and then lamellarits usefulness in settings other than quantum field theory
structures[1]. This is inferred experimentally using small- (QFT) is appreciated only under rare circumstanded. We
angle(x-ray or neutroh scattering. The correlation functions note that while thedlynamicaluse of local gauge invariance
in k space obtained from such experiments display a peals novel at the mesoscale, gauge theory has been used rou-
around some wave vector indicating the average spacing béinely in the past to classify defects in condensed matter
tween these island®,3]. The width of the peak represents physics[14]. Our theory is applicable to diblock copolymers,
the spread in the average spacing of these islands. BElgw oil-water-surfactant mixtures, and in general any self-
the mesoscale aggregates form regular arrangentergs assembling system, e.g., binary alldgs).
hcp, fcc, eto. via a first order transitiof4,5]. The regularity A further importance of our paper lies in the fact that we
of these lattices can be inferred from small-angle scatterinpave gone beyond the Gaussian approximation or the mean
experiments, which display harmonics of the main pptk field approximation(MFA) used conventionally in meso-

It is generally believed that self-assembly in mixtures isscale theoretical investigatiof,8]. While the MFA may be
due to the competition between the tendency of the compaoa reasonable approximation to study self-assembling systems
nents to phase separate on a macroscale, and a long-rarfge from phase transitions, it is obvious that one must neces-
entropic(statistical force caused by the presence of chemi-sarily go beyond the MFA or the Gaussian approximation in
cal bonds linking the components in the mixtydd. In the  order to properly study the onset of self-assembly. To be
case of amphiphilic mixtures, it is the surfactant moleculegnore precise, we point out that investigations of the onset of
that provide the glue that allows mesoscale segregation teelf-assemblyas the composition is varigdh the literature
occur. In the case of diblock copolymers, end groups on th€6,9,1Q yield a correlation length diverging with the square-
two species create interspecie bonds, thereby playing the roteot signature of the MFA. Experimental observations cited
of a surfactant. A molecular-level description of mesoscaldy Woo et al. [10] suggest that the true exponent is larger
structuregmicelles in liquids, and aggregates in copolymers than 3. We will take seriously in this paper the quantitative
that are a couple of hundred angstroms in size is a challenguggestion of Woet al.that there is a need to go beyond the
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MFA or the Gaussian approximation to study the onset of g\ ac(s) dc(s)
self-assembly. ,BUo(C(S))=<§) Frera 3
There have indeed been investigations in the past where ! !

renormal|za}t|on group(RG)'t'echnlques have been used to wheret indicates a transpose, repeated indices are summed
study the first order transition from a disordered to an or-

dered phase in copolymers, as the temperature is varied o and
[4,16-18,]1. But the onset of the self-assembly of meso-
scopic structures into a random arrangement above a critical c(s)z(
temperature, as the concentration of one of the components
of the binary mixture is varied, is an issue that has not been
addressed theoretically in much detail beyond the Gaussian In the above equations is a dimensionless coordinate
approximation. Our investigation reveals that this transitionvariable,k is Boltzmann’s constant is the temperatures,
is analogous to the critical point in phase transition theory, ins the number concentration of the first type of species, and
that the correlation length diverges as a 2/3 power law, ands is the number concentration of the other species in a bi-
the diffusion constant goes to zero, implying critical slowing nary mixture. The concentrations are normalized to the total
down. But the correlation function itself does not diverge. Innumber concentration. The constanis essentially a dimen-
this sense, we are investigating a Lifshitz poj@®]. Our  sionless diffusion constant. Such energy functionals have
detailed calculations apply specifically to estane, a diblockeen considered over many years as contributing to the total
copolymer. However, one may invoke universality argu-internal energy of binary mixturel®,21]. We will use this
ments to argue that our results are applicable more generallform as our starting point to generate a more complete en-
Our theory represents a generalization of ## field  ergy functional using gauge invariance.
theory proposed by Landau and Ginzburg to study phase From Egs(1)—(4) we see that is invariant under global
transitions. While our theory is slightly similar to the stan- rotations of the vectoc. These are rotations in two dimen-
dard Landau-Ginzburg theory in that they are both nonlineasions, and the appropriate group to consider iSZCOThe
and deal with an order parameter, it is clear that there arphysical origin of this group can be traced back to the fact
some major differences. First of all, our theory is nonlocal inthat the quadrati¢positive, semi-definiteform of the energy
character. Secondly, the nonlinear term in our theory notlensity[Eq.(3)] is dictated by expanding the internal energy
only contains a cubic terniin addition to a quartic terjp  around a minimum, in a Landau-like fashion. The form of
which arises naturally from an expansion around the averagie energy density contains gradient operators, which per-
value of the fields, but the nonlinear term also contains demits us to perform SQ) transformations around not just the
rivatives of the concentration. The derivative form of the origin in (c,,cs) space, but around any arbitrary fixed vector
nonlinear coupling is dictated by the fact that ours is a gaugén this space. In particular, we shall use @Daround the
theory, in which covariant derivatives are defined. We haverector defined by the average concentration of each species
used this theory to investigate the onset of self-assembly imiz., (c2,c2). This is a natural representation for our system,
estane, a diblock copolymer, and we found that the correlasince our final goal is to study self-assembly in binary sys-
tion length diverges with a power that is fairly close to thetems, characterized by local, mesoscale fluctuations around
universal value of2/3). We also found that the renormalized the average concentrations. @Dtransformations of these
diffusion constant goes to zero as the minimum concentrafiyctuations demand thm’ﬁ+ c’§ = const, whereg}, andc/,
tion c* (below which self-assembly is imposiblés ap-  denote deviations of the species concentrations around their
proached. averages. Thus S©) transformations can cause the compo-
We foresee a rich variety of applications of our approachnents of ¢;,,c.) to become negative. But this is acceptable,
to other questions regarding diblock copolymers, such agince concentration fluctuations around the average can in-
their viscoelastic properties. We also foresee investigationgeed be negative or postive, as long as the total concentration
of time-dependent phenomena in copolymers, such as dgyr each species does not become negdtee Eq(11)]. In
tailed studies of critical slowing down at the onset of self-what follows we shall be tacitly performing local $)
assembly. transformations around the average concentration vector
(c?,c?), culminating in Eq(13), which is a central result in
our paper.

The starting point of our mesoscale theory is an internal Our physical motivation for seeking local gauge invari-
energy functional that is quadratic in the gradient of a two-ance ofc’¢+c'Z under S@) is the same as that of Yang
dimensional vector. For the moment, we will consider iso-and Mills [12], and in quantum electrodynamics, where one
lated systems, so that the quantity that is conserved is thebserves the invariance of the noninteracting Lagrangian,

internal energizo:l_ We will Shorﬂy consider entropy effects which is bilinear combinations of the fields, under certain
as well. Consider the following form for the energy func- global transformations. One then demands covariance of the

tional: theory when these symmetry operations laal, i.e., when
the transformations are space-time dependent. A reason for

Ch(S)). @

cs(9)

II. THE GAUGE THEORY

_ 3 this, as given by Yang and Mills, is that one can now freely
BUo 'Bf Uo(c(9))d"s, @ interchange between the fields as one moves through space
and time, while leaving the physics covariant. It is intuitively
1 clear that such is the case in our problem, where chemical

p= kT’ @ connections between the two species in our system allow for
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an admixture of the two components, rather than permitting a 1 db; by [db;  db;

complete phase separation to occur on a macroscale. Thus, IBUYM:(Z> (g— g) (g— E)' (10

PR ; . : . i i

instituting local gauge invariance under @pin our binary ! !

mixture is equivalent to allowing interactions between the . ) i .

components. Beyond this initial motivation, it is equally im-  This equation can be cast into the following form:

portant to show that the result of local gauge transformations

of ugy leads to physically significant results as epitomized b

Eq. ?13)_ i Y9 P Y Buym=—13b;V?b;. (109
We remark in passing that, is also invariant under the

translation groupl,, where we consider the transformations

c—c+a. Based on the work of Edeld 3] in solid mechan-

ics, we believe that seeking local gauge invarianceugf

underT(2) may lead to a study of defects in our system.
Following Yang and Millg12], local gauge invariance of

Uy under S@2) motivates us to define new fields which

have invariance properties appropriate to(30We define a

covariant derivatived/ ds;— (d/ds;+q7b;), where 7 is the

generator of SQ), q is a “charge,” or, equivalently, a cou-

pling constan_t, a}nd thb fields are analogs _of the _mag_netic a single generator for the group &D[see Eq(9)], so that
vector ppter)tlal In glectrodynamms. Thesdields give rise o resulting functional is only quadratic and not quartic in
to effective interactions between the hard and soft segmen eb fields

of estane. These effective interactions are to be thought of as
arising from the underlying electrostatic interactions between,,
molecules, monomers, etc. The energy functional forkthe fu
fields is defineda la Yang and Mills, via the minimal pre-
scription. With this, our original internal energy density is
transformed into:

Equation(109 is obtained via an integration by parts, in
the transverse gauge. Since we are dealing with an Abelian
gauge theory, it is permissible to insert this transverse gauge
manually, without resorting to the formal machinery of Fad-
deev and Popov.

Note that we are utilizing a nonrelativistic version of the
Yang-Mills procedure, since we are only concerned with
time-independent problems. Furthermore, since we are con-
cerned with rotations in two-dimensional space, there is only

It is important to emphasize that the usual application of
e Yang-Mills procedure in QFT implies the existence of
ndamental interactions. In our case, we are applying the
principle of local gauge invariance at theesoscaleConse-
quently, we do not expect to discover any new fundamental
interactions by using gauge invariance. Rather, we interpret
the newb fields as yielding correlations between the concen-
Buo— BU= BuUg+ BUint+ Buywm , (5) ftration fields. As proof of this, we will show shortly that our

approach leads to a generalization of the theories of Still-

whereu,,, refers to the interaction energy density, ang, is  inger and Leibler, Whgre correlations were invoked on physi-
the energy density associated with the Yang-Mildields ~ cal grounds to describe mesoscale structures. These correla-

alone. Equiva|ent|y, we may define the total energy functionlions could also be thOUght of as effective interactions, which
als associated with these energy densities: arise at the mesoscale from the underlying electrostatic inter-

actions between molecules. We will not address the question
of how one can make a connection with molecular scale
properties in this paper.
Our approach is analogous to the Landau-Ginzburg theory
where of superconductors in magnetic fielf@3]. In the Landau-
_ Ginzburg theory, the energy functional involving a complex
Buin=Ji(C)bi(8) +Di(9)T(C)bi(s) ©®  order parameter is gauged with respect to th&)Wroup.
with This permits a successful treatment of a superconductor in a
magnetic field, and even permits a classification of supercon-
ductors. We have gone further in our theory, and invoked
(7) gauge invariance to study correlations that develop at the
mesoscale. In our theory, there is no external magnetic field
1 to consider.
f(c)= (§>ngc‘(s)c(s); (8) The partition function we need to evaluate is now

BUo— BU=BUg+ BUjn+ BUyw ,

—_

t
310= 5] el e rotsy 9 2

is gi by[22]:
7 is given by[22] Q=| II mc, 6c,) [I Doy, exp
a=hs K=13

T=

0 -1
1 0 ) © ~ B(Ug+ Ui+ Uyy). (11)

From the above equation, it can be shown that
Equation(11) is a functional integral, where the step func-
ack(s) tions denoted by imply that we must restrict integration to
Js, 7e(s) |. 98 positive semidefinite values of the fields.
Since theb fields appear only quadratically in the above
We need one more definition for completeness: functional, it is straightforward to integrate over them, and

Ji(C)=qg(
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obtain an effective internal energy functional involving only  Note that in doing so, we have ignored an overall trivial

c. The result i 24] normalization constant that appears in the evaluation of the
_ A partition functionQ. This is permissible, as this factor can-
BUet=BUo+ BAUer cels during the evaluation of averages of observable quanti-

ties.
To see the connection between this rather complicated
1 functional and the older theories, we expand the second term
XN Ji(c(s")). (120 on the right hand side of Eq12) around the average con-
f(c(s))—EV2 centrations of the two speciesﬂ(and cg) that appear in our
58’ theory, and retain only quadratic terms. The result is

=BU,— %f d3sJ d3s’ Ji(c(s)

Q exp(— V2g|s—s'|)
= c
2

,BUeff%BUo—( )fd?’s c’t(s)Sc’(s)+(;—W>fd3sf d3s’ c'(9)S = '(s), (13

WhereQ:gzqz,az(g/z)qz[(cg)z-}-(cg)z]’ I'=q%g?%g, and interpreted by saying that the gauge fields have acquired a
the primes orc denote deviations of the species concentra/Mass. In this sense, E€L3) exhibits the Higgs phenomenon

tions from their averages. The matikis defined thusly: ) )
Before we can compare our theory with experimental

data, we need to consider the fact that our system is not

( (c9)2 —cﬂcg) really isolated, and may be in contact with an energy reser-
= . (14)  voir, perhaps as it is being acted on by mechanical forces in
a stress experiment. For a system in contact with an energy

reservoir, the quantity that is conserved is the Helmholtz free

First of all, we see that by expanding around the averaggnergy[ZO] A=Uqq~ ST, whereSis the entropy of the sys-

X . L m. The entr f our m will written in th I
value of the fields, we are in essence considering the effect (?Erm' e entropy of our syste be writte the usua
local SQ2) invariance on the correlations that develop be- '
tween theluctuations of the fields. Secondly, we notice that if

we setg—0, we recover a model very similar to that of - §:j d3s {cn(9)In[ch(9)]+cs(9)IN[cy(9)]}, (15
Stillinger and Leibler.Q) is the Flory-Huggins parameter, k

and represents the immiscibility of the two components in
our mixture. It is prescribed automatically via gauge theorywith this, our theory is formally complete.
as long ag is known. The nonlocal term in Eq13) gives While our theory has been able to reproduce the older
rise to correlations that tend to counteract the effecflof theories of self-assembly of Leibler, Stillinger, and Chandler,
This frustration is responsible for the formation of meso-we believe that the importance of our approach lies in the
structures. From the definition &, we see that we have fact that it provides a natural way to go beyond the Gaussian
retained in our model the notion ¢bseudo) electroneutral- approximation and the MFA used conventionally in meso-
ity emphasized by Stillingg©] and Chandlegt al. [3]. Fi- scale investigations. By this we mean that our effective func-
nally, we note that in generaj is not zero, so that we have tional can be expanded in an infinite series beyond the
a screened Coulombic correlation appearing in the secongaussian approximation. While the MFA is a reasonable ap-
term of Eq.(13). In this sense, Eq(13) may be viewed as Proximation to study self-assembling systems far from phase
being similar to the random phase approximatigPA) ap-  transitions, it appears obvious that one must necessarily go
plied to the full functional given by Eq(12). Note that for ~beyond the Gaussian approximation in order to properly
small deviations ¢{,c.) from the corresponding concentra- Study phase transitions, e.g., the onset of self-assembly.
tion averages, the step functions of Etjl) have a negligible
effect. , , lll. GOING BEYOND THE GAUSSIAN APPROXIMATION
Equation(13) is one of the main results of our paper. It
shows that Leibler and Stillinger's theories may be under- To see what lies beyond the Gaussian approximation, it is
stood in the context of gauge theories. Equatid® gives convenient to invoke incompressibility, so that we can cast
credence to the notion that gauge theoretic ideas may Wbéie Helmholtz free energy solely in terms of the concentra-
valid at the mesoscopic level. tion of ¢, the concentration of one of the species in our
Equation(13) was obtained by expanding fields around binary systemwith the average concentration of that species
their average values. In this sense we have broken the syrsubtracted from jt It is important to point out that the con-
metry of our system. Combined with gauge invariance, thendition of incompressibility is to be imposed after the starting
we get a Yukawa-type screened potential. This effect may b&unctional Uy has been gauged. The condition of incom-

0.0 0y2
—CnCs (Ch)
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pressibility is to be accounted for during the evaluation ofhigher order corrections tdAU.¢. We have ignored cubic

the partition function for the system.

A:f d®sa(s)=Ug+ AU ST, (16)
Ba(s)=Bay(s)+ LBAa(s), (17)
BA=BAy+ BAA, (18)

Uo= [ s ves 12 19

3.4
BAueﬁz—(_gsq )fd3s’
% [ 5T Lol ron+ hiols ¥ son(

(20

S
— o= [ s tewmiens1+ - ey o1,
(2

where3=1/kgT, and

Q
ﬂao<s>w{1/[cﬁ(1—cﬁ)]}ch<s>2+g[Vch(s>]2—(5) ci(s)

r ex —\/2—~s—s’)
+ E)Ch@ f s 20 |S_2,|| L oys)
(22

BAA~a f " BV Cn(9)-[ yen(9) + Cn(8)21¥ Cr(S),
(23)

whereQ =g?¢?, g=(9/2)q°[ (c})?+(c9)’], andl'=¢’g’g,
g is essentially a dimensionless diffusion constant, gigla

and quartic contributions, which come from the entropy
term, as our diagrammatic estimates indicate that they are
negligible.

The form of AA in Eq. (23) is a local form. The local
form is obtained by retaining only the lowest order nonlinear
terms in an expansion of the full nonlocal form of the inter-
action term. It is a reflection of the fact that the full form of
the nonlocal interaction term is screened on a length scale

1/\/2g. The asterisk on the integral in E@3) indicates that
a cutoff in momentum space is to be used in the short wave-

length limit, K= \/E There would be no need for a cut-
off if the full form of AA were to be used. We note that Egs.
(22) and(23) represent a generalization of thé field theory
proposed by Landau and Ginzburg to study phase transitions.

We will now apply this gauge theory to the onset of self-
assembly in estane, a diblock copolymer. Estane is com-
posed of hard segments of polyurethane, and soft strands of
polyester. The hard segments display microphase separation
on the scale of0(100) A. It is appropriate to consider an
approximation to the form od,, which ensures that Porod’s
law is satisfied in the small wavelength linjitO]

Bao(k)=ci (k) (a+g'k?+T'k*cp(k), (28)

where g'=g/{1-LZ(cp)*+(c)?l}, I'=14207(cp)?
+(c9)?]}, anda=1[2c2(1—cd)].

The term in parantheses in E@8) represents the inverse
of the structure factor(Fourier transform of the density-
density correlation functignin the Gaussian approximation.
Following the formulation of our gauge theorg, >0. As
such, the Gaussian approximation has to be improved upon
before seeking agreement with experiment. Unigsgets
remormalized to a negative value, the structure function will
not yield a peak at some nonzero value of the wave number,
which would characterize a microphase separated system. In
what follows, we shall drop the subscript which appears
on the fieldc. The partition function is defined ad (s an
auxiliary field)

pseudocharge that arises out of our gauge theoretic consid-

erationsc? andc? are the average concentrations of the two

individual species in our system, and

~ 1 -1
go=(f(ch(3))— EVZ) , (24)
1 2§ ~2 2
f(ch(s)= 799 {ch(s)+[1—cn(9)]7}, (25
SO R (26)
T Az (D
y=4(cd—1/2). 27)

Q[J]= J’ Dc exp— Bla,(s)+Aa(s)+v2I(s)c(9)].
(29

We can now use standard perturbation technig@ésto
develop a series expansion for corrections to the Gaussian
approximation. As such, it is meaningful to make certain that
the dimensionless coupling constantefined in Eq(27) is
less than one. On the other hand, it is well kno\&i] that
such series are asymptotic in nature. Thus1 is not a
panacea. We define the two-point correlation function as fol-
lows:

o )
S(X1,X2) = mm'nQ[J] Y (30

The competition between the Flory-Huggins separation

parametef) and the attractive nonlocal term g [Eq. (22)]

Figure 1 gives a pictorial representation of the two terms

gives rise to the formation of mesostructures. In obtainingn the definition ofAa. It is clear that each of these two
Eqg. (23), we have ignored terms linear in the fields, andinteraction terms yields a separate perturbation series. In ad-
constant terms, as they do not contribute to the densitydition, there will be a series formed out of the cross terms as

density correlation function. In Eq423), we have looked for

well. There are no cross terms up to the two-loop level. The



1926 SHIRISH M. CHITANVIS 57

(@) )

3 CH

3 di

Hy Hy "y Hg

FIG. 3. (a) and(b) represent 1-loop contributions from the quar-
FIG. 1. (a) is a pictorial representation of the cubic termAa. tic interaction term to the correlation term.

Each leg corresponds to a factormfthe field. Ag; indicates that a
derivative of the field is to be taken in thth direction. A sum over  pare diffusion constarg, if left unregulated, would tend to
i is understood. The dark circle symbolizes a factor-aty, the  smooth out concentration gradients in our system. It is the
coupling constant. The negative sign comes from the argument gigle of the screened “Coulomb” interactions, having a sta-
the Boltzmann factortb) is a pictorial representation of the quartic istical origin, which is responsible for self-assembly. And it
term in Aa. A factor of — « is to be inserted at the intersection. is up to these interactions to counteract the smoothing ten-
dency of the diffusion term. This is accomplished as de-

rnug'eccg]rfzrgfégn teerrtTrS;Stito)getlr?; dnqn;/aggh;rrl]g Z%;]jm_?ﬁgonsscribed above, by the tadpole diagram, which renormalizes
: rp E".g " ) the bare diffusion constant so that the renormalized diffusion
quartic term yields nonzero contributions at the one-loop

. o L constant is less than or equal to zero.
5;’%&2?&5232&53& We havg .vern‘ledt E)t(ﬁl'c,:tly _tlhat Figure Zb) yields two terms in leading order, one that
y i grams ansing up to the two-loop renormalizesgy’, and the other that renormaliz€s:
level add up to yield a null contribution. Similar cancella-
tions are also obtained in theories of dendritic grop28]. K K4
In our calculation, the two series arising out of each of the §g’(2)= —( z)azyzj dk 75
two interaction terms were evaluated only to the first nonva- 24 0 (a+g'k™+1"k%)
nishing order. (32
Figure 2a) (tadpole renormalizesy’:

L 1) ,, kaax k?
sg'(1=—| L azyszmaxdk k24 _ oI''(1) 16772)a v . dk(a+g’k2+I"k4)2'
16am 0 (a+g'k"+T"k")
(31 The renormalization off caused by this diagram is domi-
_ nated by the contribution of the tadpole diagram discussed
whereKma= \/5 . above.

This tadpole diagram is crucial in helping us achieve Figure 3a) (one-loop renormalizegy’:
agreement with experiment. It dominates the contributions
from Egs.(32) and(33). Note that it has a sign opposite that , 1 Kmax k?
given by Eq.(33) below. Without Eq(31), the renormalized 89'(3)= ﬁ) afo K AT g IkEF Tk (33
structure function would not yield the characteristic peak in

scattering data. This tadpole diagram is reminiscent of the Figure 3b) (one-loop renormalizes the constaatin Eq.

standard(Hartreg tadpole diagram in many-body physics. (,g) ‘A closed form expression for the contribution from this
The physical importance of this diagram is as follows. Thediagram is

(a)

1 kmax k4

We evaluated the integrals appearing above numerically,
and then fitted experimental dd&] on estane. We had three
free parameters to manipulate. The three parameters at our
disposal areg, a dimensionless diffusion constam, the
pseudo chargeof our gauge theory, and finally the length
scale\, which we used to turn the spatial lengths in our
theory dimensionless. It is important to point out that the
form of the renormalized structure function was crucial in

FIG. 2. (a) represents theadpolediagram, which is crucial in Obtaining reasonable agreement with experiment. The results
our calculations(b) represents theetting sundiagram. Both(a) ~ Of fitting Bonart's data are displayed in Fig. 4. The values
and (b) are second order contributions to the correlation functionneeded are listed in the figure caption. It is worth noting that
coming from the cubic interaction term, the first order correctionsthe value of the length scake~150 A we obtained can be
being null. interpreted physically as the mean distance over which aver-

86 (b)

X
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FIG. 4. Comparison of experimental data and theory for estane. FIG. 5. This is a plot of the location of the maximum in the
The dark circles are experimental data points without the backtheoretlca(I) structure factdd(k), as the concentration of the poly-
ground subtracted from them; the solid curve is theory. The experitrethanecy is varied in the neighborhood of the critical concentra-

mental background is negligible, except for the data point closest tdon c*, which is ~0.19216. The open circles denote numerical
the origin. Both data and theory are normalized to the peak valugiesults obtained in the manner discussed in the text. The solid line is

The parameters used to obtain the fit wefe-0.25,g=8000 A,  the curve given by 0.71406f—c*)®654%¢
q=0.63x10"% A~2, andA=263.91 A. The peak in the experi-

mental data and theory occurs at about 200 A, indicating the avelsants of the structure factor start to be swamped by the

age distance between aggregates. Note that the slight peak in ﬂ&‘?rect portion of the beam, and the error bars increase dra-
theoretical curve is obscured by the experimental data. It neverthe- ’

less exists and can be verified numerically. The apparent disagregja_tlca”y’ as the peak marches towards the long wavelength

ment between data and theory for large momenta is due to the fa It.
that the experimental background, which has not been subtracted
from the data, becomes important in this regime.
V. CONCLUSIONS

aging has been performed to go from an atomistic descrip- ) )
tion to a mesoscale model. The volume described by this We have shown that the concept of gauge invariance can

length scale can accommodate roughly® jblyurethane be utilized successfully at the mesoscale to generate the
(hard segmeftmonomers. With the current values of the entropic-statistical long-range forces responsible for self-
parameters, our coupling constantwas just under 0.5. assembly. This was done by using local gauge invariance
Armed with values for our parameters appropriate for esunder the S@) group to derive the oldeiGaussiantheories
tane, we varied the concentratiofy of the hard segments of Of self-assembly. Our approach allows us to go naturally
polyurethane in estane, decreasing it from Bonart’s value oPeyond the Gaussian approximation. We computed the first
0.25. In this way, we could probe how the location of thenonvanishing contributions beyond the Gaussian approxima-

peak in the structure factd@(k) changed, as we varied the tion to the density-density correlation function from the cu-
concentration of the hard segments. The location of the pediC and quartic terms in our energy functional. We applied
is a measure of the inverse of the correlation length in thé@ur theory to estane, a diblock copolymer, above its critical
system. The purpose of this exercise was to investigate hoigmperature. We found that as the concentration approaches
the correlation length behaves as the onset of self-assemb#f from above, the correlation length diverges witti243)

is approached. Figure 5 shows a plot of the inverse correlggower law, and the renormalized diffusion constant tends to
tion length as the concentration is varied in the vicinitecdf  zero, implying critical slowing down. The correlation func-
(the minimum concentration below which self-assembly istion however, remains finite at the transition. The divergence
impossiblg. We foundc* to be approximately 0.1922 while of the correlation length can be interpreted to mean that as
the critical exponent was found to be fairly close to 2/3¢c* is approached from above, the probability of finding me-
(0.6543. We also found that as* is approached, the renor- soscale aggregates vanishes, so that the average distance be-
malized effective diffusion constangr=[g’'+ 5g’(1) tween aggregates diverges. Experiments by Kobersteih
+69'(2)+ 89’ (3)]—0, implying that we have a precursor [/30] on polyurethane-polypropylene systems indicate quali-
of critical slowing down. Our calculation of this critical ex- tative agreement with our theory. Universality arguments
ponent is the first that goes beyond the Gaussian approximaay be used to argue that our results are applicable more
tion [29], and makes a prediction for diblock copolymers generally.

regarding the the correlation length near the onset of self- We foresee a rich variety of applications of our approach
assembly, and shows that the onset is accompanied by critie other questions regarding diblock copolymers, such as
cal slowing down. Experiments by Koberstaihal.[30] on  their viscoelastic properties. We also foresee investigations
polyurethane-polypropylene systems indicate qualitativaéo time-dependent phenomena in copolymers, such as de-
agreement with our theory. The difficulty in obtaining quan-tailed studies of critical slowing down at the onset of self-
titative agreement lies in the fact that experimental measureassembly, and constitutive relations at nonzero strain rates.
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