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Dynamics of a ball bouncing on a rough inclined line
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We present here a simple theoretical model that describes the motion of ball bouncing on a rough inclined
line. The rough line consists of microfacets whose orientation can be different from the line inclination. We
examine the behavior of the ball as a function of the orientation of the microfacets and determine the condi-
tions under which the jumps of the ball are decreasing or increasing in their amplitude. In particular we show
that when the facet inclination varies along the line with a well-defined spatial periodicity the ball can reach a
steady bouncing regime that leads ultimately to chaotic behavior via a period-doubling scenario. Furthermore,
we find that the presence of noise associated with facet inclination destroys the structure of the chaotic regime.
[S1063-651%98)02202-9

PACS numbd(s): 83.70.Fn, 46.10-z, 46.30.Pa, 46.98.s

[. INTRODUCTION by Roux and Jenkingl8]. The key point of the approach is
to model the roughness of the inclined line in a very simple

Despite intensive efforts in the field of granular materialsway. Indeed, we consider that the inclined line is made up of
[1-3], the seemingly simple problem of the dynamics of amicrofacets whose inclination is not necessarily the same as
single grain interacting with a set of boundaries is far fromthe line slope. The originality of the model is to pose a com-
being completely understood. The interest for such a probplicated problem in simple terms still preserving the essential
lem has been brought back to the fore in the mid 1980s wheRhysical ingredients. In the first stage, we will analyze the
it had been recognized that the motion of a ball dropped ont®all motion in the simple situation where all the facets have
a flat oscillating surface may give rise to chaotic behaviothe same inclination. Then we will focus on the case where
[4-10]. More recently, experimental work41—13 investi- the inclination of the facets varies along the line. In particu-
gating the motion of a ball rolling on an inclined rough sur- lar we show that when the facet inclination has a well-
face have yielded interesting phenomena, which have not yétefined spatial periodicity, there exists steady bouncing re-
been elucidated. gimes that can destabilize and lead ultimately to chaotic

In this paper we are precisely dealing with some aspectdynamics via a period-doubling scenario. Furthermore, it is
of this problem. The study of such a system can be regardef@und that the presence of noise associated with facet incli-
as a first step towards the understanding of the energy exiation destroys the structure of the chaotic regime.
change problem between a rough substrate and an ensembleQur paper is organized as follows. In Sec. Il we present
of particles, which is of crucial importance in granular flow. Our model in detail. In Sec. Ill we analyze the motion of the
Within this context, numerous experimental and numericaball as a function of the inclination of the facets. We first
works[11—15 already have been devoted to the study of thelreat the case where the facet inclination is assumed to be
motion of a single sphere rolling on a rough inclined plane. Itconstant along the line. Then we investigate the case where
is worthwhile mentioning the main outcomes. Three differ-the inclination of the facets varies along the line with a well-
ent regimes have been clearly identifigd): a decelerated defined spatial periodicity. In Sec. IV we examine the effect
regime where the velocity of ball progressively decrease®f noise associated with facet inclination on the ball behav-
until it stops, (i) an intermediate regime where the ball ior. Section V contains the conclusion and prospects for fu-
reaches a steady motion with a constant velottitg effec-  ture investigation.
tive frictional force acting on the ball is viscoysand(iii) a
jumping regime where the ball experiences big bounces and Il. THEORETICAL APPROACH
apparently does not achieve a steady state. The two first re- ) ) i i )
gimes have been widely explorg#l—17 and are quite well _ 1he rough line, on which the ball is dropped, is depicted
understood, while the third still raises some fundamenta|? Fig- 1. The line forms an angle: with respect to the
questions. horizontal, vv_h|le_ the r_nlcrofacets mqke an _ang!emth re-

In this paper we focus on the bouncing regime. Our aim isspe_ct to _the inclined line. The facet |ncI|r_1at|0n iS not neces-
to analyze within a simple theoretical model the motion of aS&rily uniform, but can vary along the line. In the general
ball bouncing on a rough inclined line and to characterizec@S€, the facet orientation is taken to be dependent of the
carefully the role of the line roughness on the motion. Infacet positionx along the line and given by the function
particular we are interested in determining the conditiond3(x). The size of the facets is not taken into account here
under which the bouncing particle can reach steady regimednd is unimportant for our purpose. o _
and whether the particle dynamics may lead to chaotic be- Let us describe the motion of the ball on this line. At time
havior in the same fashion as a bouncing ball on a vibrating =0, the ball is launched from the positier-x, on the line
plate. with an initial velocity V,. The ball will experience succes-

The approach adopted here is inspired by that suggestesive bounces and collisions with the facets of the inclined
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FIG. 1. Schematic view of the inclined line consisting of micro-
facets whose inclinatiop can vary according to their position. On
the scheme only the facets hit by the ball have been draw(i.
=0,1,2...) denotes the position of the successive collision im-
pacts, whileg; is the inclination of the corresponding facets.
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given by B(xi+1). In order not to complicate the problem,
we will ignore the rotation of the ball as it bounces down the
line. Furthermore, we assume that after the collision the ve-
locity components normal and tangential to the facet at the
point of impact are related to the corresponding velocities
before the collision by

V)=

- enVn ’ (7)

®

e, (&) is the normal(tangential coefficient of restitution
and the prime denotes values just after the collision. Finally,
the collision will be considered to be punctuygie point of
contact is at rest during the collisipand the restitution co-
efficients to be constartt.e., independent of the impact ve-
locity).

Using the above collision equations, we can determine the

velocity componentsV;, 1, and Vi, just after the {
+1)st collision. After some simple manipulations, we get

Vt’ = etVt .

line. The ball motion is a repetition of elementary sequences

and each sequence consists both of one ballistic bounce and/i+1x=
one collision. To describe the ball motion, it then suffices to
analyze one elementary sequence. Our aim is to find a map,

that relates the collision impact positions and the postcolli
sion velocities between two successive collisions.

First we analyze the ballistic bounce. Let us d4lithe ball
velocity just after theith collision andy; its position. The

ball velocity\7 just before the next collision impact is easily

calculated by solving Newton’s equation. The calculation

yields

VX:Vi,X+ 2Vi'ytam, (1)

Vy=—V,. 2

Vix andV; , are the components of the velocity vect&r
along thex andy axes, respectively. We note that the veloc-

ity of the ball at the end of the bounce is independent of the

gravitational acceleration. It is only a function of the initial
impulse and the inclination of the line.

The durationst; and the lengthdx; of the bounce are also
easily calculated. The timg, ; at which the (+1)st colli-
sion occurs and its impact positioq, ; are simply given by

ti=t+at, ()
Xi+1= Xt OX;, 4
where
2V,
2
i—m(viyxvi’y-l—vi’ytam). (6)

g is the gravitational acceleration.
The next step is to analyze the collision of the ball with

[e.co$ B—e,siPBIV,+[(e+e,)sinBcosB]V,,
(9

+1,y=[(et+en>sirwﬁcose]vx+[(etsinzﬁ—encoszﬁ)]\(/y )
10

where 8 stands for the facet inclination, which is located at
the positionx; , 1, so that

B=B(Xi+1)-

Combining these expressions with E¢B. and(2) allows us
to express the velocity just after the+{1)st collision as a
function of the velocity component just after th#n colli-
sion:

11

Virix=aw(B)VixtaB)Viy,

Vii1y=0b1(B)VixtbaB)Viy,

(12
(13
where
a1(B) =e,cosf—e,sirs,
a,(B) =2tam(e,co$B—e,sirtB) — (e +e,)sinBcoB,

b1(B)=(ei+e,)sinBcosB,
b,(B)=2(e,+ e,)tanasinBcosB+ e,cos B— eSirt 8.

One should point out that, in general, the velocity niap)
and(13) is nonlinear. Indeed, the coefficierdg andb, de-
pend on the velocity7i via the parameteB [see expressions
(12) and(4)].

Before proceeding further, we find it convenient to intro-
duce the vectorial quantityVi characterizing the ball state
just after theith collision:

Wi:(xi !\7i)! (14)

the facets of the line. After the bounce, the ball hits the facetvherex; is the impact position an¥l; the postimpact veloc-

that is located at the positiox), ; and whose inclination is

ity of the ball at theith collision. The map that allows us to
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relate the state of the ball just after thie-(1)st collision as occur when the facet inclinatiofi is either negative or larger

a function of its state just after tri¢h collision can be thus thana (g is positive with respect to the trigonometric ori-
formally written as entation). To avoid such troubles, it then suffices to restrict

. the range of permissible values f@: For our purpose we
W, 1=F(W,). (150  will therefore confine our investigation to the cases where
0<B<a.
In the light of the above calculation, the mdpis given by In order to characterize the bouncing ball behavior, we
- should analyze the eigenvalues of the malfixIf the modu-
Xi+1=F(Xi, Vi), (16)  |us of both eigenvalues is smaller than 1, the velocity of the
. . ball and consequently the amplitude of its bounces will de-
Vis1=M(B)V;, (17 crease until it stops. On the contrary, if at least one of the
eigenvalues is bigger than 1, the ball will experience bounces
at higher and higher amplitude. The eigenvaluedvofare
easily calculated and are found to be

where

2
f=xi+ ——(V; Vv, y+ V? tane), (18
'ogeosy UMY LY AB) (en+et))\ ) 1 \/1 deqe,
1, = 0 x T o a3l

B=B(Xi11)- (19 2 <en+et>2xo<ﬁ>2(22)
M(B) is a 2<2 matrix whose elements are nothing but the
coefficientsa,(8) andb,(B) defined abovésee expressions with
(12) and(13)]. Note that Eq(18) simply results from expres- .
sions(4) and (6), No(B) =sin2Btana + cos23, (23

. FmaIIy,'tc.).determlne the ball sta}e at tfmﬁih co.II|S|on while the unit eigenvector@lzare given by
given the initial state of the bali.e., Wy=(Xq, V)], it suf- ’
fices to iteraten times the mapgF. We formally get U,=cog 6,(8)]U,+sin 0i(,8)]0y, (29
W, =Fo Fo--- o0 F(Wo). (20 Where
n times tar 6;(B)]=[Ni(B)—aw(B))/ax(B). (25

This equation completely describe the ball dynamics. g, (Uy) i the unit vector along the direction (/ direction.

Note also that the8 dependence of the different quantities
IIl. BALL DYNAMICS has been explicitly indicated.

In this section we analyze the ball motion in two particu- At this stage we find it worthwhile to introduce a further
lar cases. The first one is the simplest we can think of angSSUmption in order to greatly simplify the algebra. We will
corresponds to the situation where the facet orientation i§ONSider that the normal restitution coefficientis equal to
uniform along the line. Then we will consider the case whereZ€70- This amounts to assuming that the collision between

the facet orientation varies along the line with a well-definediN€ ball and a facet is completely inelastic in the direction
periodicity. perpendicular to the facet. As a result, during a collision the

ball takes off again with an angle corresponding to the facet
inclination. Of course, this is a drastic and rather unrealistic
approximation, but it turns out that the basic results found in

In the particular case where the facets have the same orhis limiting case can be extended to the cases where the
entation[i.e., B(x)=const], the problem greatly simplifies. normal restitution coefficient is nonzef@9]. We shall dis-
Indeed, the velocity mapl7) becomes linear. The velocity cuss the implications of this assumption later on.

V,, of the ball at thenth collision can therefore be expressed ~ Within the above assumption, the eigenvalues and eigen-
simply as vectors ofM then simply read

A. Facets with uniform orientation

Vo=[M(B8)]"V,. (21) N1=€\g, =0, (26)

Expression(21) allows us to calculate directly the ball ve- While the corresponding eigendirections are defined by

locity after n collisions. However, we should take care to _ _

analyze the state of the ball after each collision. Indeed, it 01=8. O=arctanlitans—2tam)]. 27
may happen that for particular values of the facet inclinationgeyeral comments are in order.

the ball after few bounces hits a facet with such an incidence (i) One can easily shown that f@=a/2 the eigenvalue
angle that the postcollision velocity points towards the sub7\l reaches a maximum given by

strate delimited by the inclined line. As a result, the ball

penetrates into the substrate which is clearly not reasonable. Nmax= € /COSx. (28
In real experiments, the ball would undergo an additional

collision with the underlying substrate, which is not takenlt follows that if cosy is greater thame, , the eigenvalud ; is
into account in our model. These undesirable situations magmaller than 1 whatever the value gf In this case, the ball
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FIG. 2. Diagram showing the different regimes of the ball dy-
namics in the parameter spacg,€;). The curve represents the
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FIG. 3. Distribution of the facet orientatio@ as a function of
their positionx along the inclined line.

boundary between the accelerated regime and the decelerated one.

The parameter isr=0.4=23°.

velocity will decrease to zero and finally stop for gfls. On
the contrary, if coe<g, there exists a finite range of values
for B for which \; is greater than 1. It is found that;>1
for Be]lBo,@— Bol, Wwhere By and a— B, are the critical
values ofg for which \, is equal to 1. In the limit where,

is close to 1,8, is simply given by

Bo=(1—¢,)/(2tar). (29

As a consequence, foB,— a<B< B, the ball motion is

The mass of the ball has been seirte 1. o can be regarded
as the total force acting on the ball. This force is a compro-
mise between the gravitational force and a frictional force
due to collisions. When ; is greater than 1 the gravitational
force dominates, whereas faf <1 the frictional force pre-
vails. We can also note that the total force is velocity inde-
pendent. As a consequence, the fictitious frictional force is
thus independent of the velocity and therefore is reminiscent
of the Coulomb-like frictional force. This last result can be
easily understood using a straightforward argument. By vir-
tue of the collision model used here, the energy lost per
collision is quadratic in the velocity. Furthermore, the dis-

acceleratedthe bounce length and amplitude will increaset@nce between two collisions is also proportional to the

ad infinitum), whereas for8e[0,8,[ U Ja— By, «] the ball

square of the velocitysee Eq.(6)]. Arguing that the fric-

will stop after several bounces. These results are synthesiz&ignal force is simply the energy lost in each collision di-

in Fig. 2, which shows the domain of existence of the differ-

ent regimes in the parameter spagke;). The curve of Fig.

2 represents the boundary between the two regimes: below

the motion is decelerated and above it the motion is accele
ated.

(ii) It can be interesting to analyze the ball motion in
terms of forces acting on the ball. Using E¢3), (26) and
(27), it is not hard to show that aftem bounces the ball
velocity along the eigendirection corresponding to the non
zero eigenvalue is given by

(Vo-Up) =at,(Vo-Uy) + o, (30
where
gcosx(N{—1)
= 0w 3D

o is a constant independent tf. If the discrete timeg,

vided by the distance between two collisions, we get a fric-
tional force independent of the velocity. Finally, we would
like to point out that if we had dropped the assumption of
Zero normal restitution, we would have found the same
qualitative picture for the ball dynamics.

B. Facets with a spatially modulated orientation

We consider here that the facet orientation varies along
the line with a well-defined spatial periodicily. This modu-
lation of facet orientation is intended to mimic, for example,
the rough profile of a line made up of beads regularly dis-
played on a flat substrate. In that cd3ds nothing but the
diameter of the beads.

For our purpose, we will assume that the distribution
B(x) of the facet inclination is given by

B(x)=a(1-¢), (34)

where

are taken to be continuous, one can rewrite the above equa-

tion in terms of forces acting on the ball

dv_ 32

T (32
where

v=V,-U;. (33

¢=x/D—Int(x/D). (35

B is chosen for simplicity to be linear within each interval
[nD,(n+1)D] and to vary between 0 and (see Fig. 3.
Furthermore, the derivative d with respect tax has been
taken to be negative in order that the variation of facet incli-
nation mimics the roughness of a bumpy line. We should
point out, however, that with regard to a real rough profile
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made up of beads, our model does not take into account the

modulation of height induced by the profile of each bead.
As soon as the facet orientationxislependent, the veloc-
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Ve=VUi(Bs), (43)

whereng is an integer andx,, B, andVg are, respectively,

ity map (17) becomes nonlinear and therefore nontrivial be-the pounce length, the facet inclinatiGrorresponding to the
havior is expected. As seen before, the ball state just after Fhase parametes, characterizing the impact positigrand

collision is characterized by its postimpact velocity and im-

the postcollision velocity of the steady state to be deter-

pact position. In the specific case we are interested in, Weyined. Equation(41) just states that the length of the

find it more appropriate to use the parameder(defined

above instead of the impact position. This phase parameter.

¢ (which varies within the intervdl0,1) completely char-
acterizes the impact position. Indeed, to a valuepaforre-
sponds a unique value of the facet inclinatiBn[see Eq.
(34)]. Finally, we will introduce dimensionless variables.
The lengths will be reduced by the periodici®y, whereas

the velocities will be reduced by/gD: x=x/D and V

bounces should be a multiple Bf, while Egs.(42) and(43)

simply express the fact th&?tS should be a fixed point of the
velocity map(37). The velocity map has fixed points only if
the nonzero eigenvalue of the mat(B;) (i.e., \;) is
equal to 1. We will see that this condition is fulfilled only for
particular values of3g (or equivalentlyg,).

If e;<cosy, there is no steady state. Indeed, the eigen-
value \(B) is greater than 1 whatever the value ®f On

=V/\/gD (the overbar denotes the variables expressed ithe other hand, ig,>cosy, there existfor a given value of

physical unity. We can rewrite the iterative mafi6) and

(17) in terms of the new dimensionless variabigsand \7i
as

1=, Vi), (36)
Via=M(B)V;, (37
wheref and 3 are now given by
f= ¢+ x;— Int( p; + 5%;), (38
B=B(¢i+1). (39)

M (B) is still given by Eqs(12) and(13). We recall thatdx;
is the reduced length of the bounce next to ittiecollision
and is given by

2V, y
" cosw

5)(i (Vi’x+Vi’ytam). (40)

We can note that in terms of dimensionless variables th

ny) two steady states corresponding to the two valueg of
for which the eigenvalue\,(B) is equal to 1, namel\3,
=By and Bs=a— B,. The use of Eqs41) and(43) allows
us to determind/q:

_ ngcosa[ 1+ tart ]
S 2tanB4 1+ tanatanB,]’

2

(44)

For each of the two values @, there exist an infinity of
solutions associated with different valuesmf As a result,
there are two classes of steady stdimresponding to the
two possible values of3;), which will be denoted by
Ws(:BsynO)-

In order to know whether the system dynamics can ex-
hibit the steady motions defined above, it is necessary to
investigate their linear stability. The linear stability analysis
consists in studying the regression of small fluctuations
around the periodic state. Assuming that the system, initially

in the steady stat\i‘(/s, undergoes a small perturbatidsﬁ/o
during a collision, the ball state just after the next collision

(\_!,vill differ from WS and the difference will be denoted by

iterative mapF depends only on three parameters, namelydWi. After n collisions, the difference will besW,. The

the line inclinatione and the restitution coefficients, and
€. Asin Sec. lll A, we will focus on the limiting case where

regime will be stable if the differenc&W, tends to zero as
increases and it will be unstable if the difference diverges.

;=0 for the sake of simplicity. In that case, given the line As we are interested in small deviations fraf, we can
inclination «, the only free parameter of the problem is the i, aarize the mapF in the vicinity of this stateéWn is then

restitution coefficient, .

Let us now analyze the ball dynamics. First we wish to

linearly related to&\/?/n,1 by

determine the conditions under which the ball motion can

reach a steady state. The simplest steady states we can think
of are those corresponding to the fixed points of the iterative

. OF L
oW, =—=(Wg) W, _;. (45)
IW

map F. These steady states correspond to regimes where the  _
ball experiences regular bounces: The impact positions aréF/JW is a 3X3 matrix; this is the so-called Floquet or

characterized by a unique phase parameétgand the ball
after each collision restarts with the same veloaity (the
subscripts refers to steady statesThe determination of the
fixed points ofF (which be denoted bWs in the following

is easily achieved by taking advantage of E@®) and(37).
We find that they should satisfy the conditions
5)(5: no y (41)

Ai(Bs)=1, (42

Jacobian matrix. The regime will be stable as soon as the
three eigenvalues of the Floquet matrix have a modulus
smaller than 1. The matrix elements are calculated analyti-
cally, whereas the determination of the eigenvalues has been
performed numerically.

We have analyzed the stability of the periodic sbﬁt@as
a function of the free parameter of the probléne., the
restitution coefficiente;) given the line inclinatione. The
calculations have been done far=0.4=23° and yield the

following results. The steady stathﬁts(ﬁsza—ﬂo,no) are
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FIG. 5. Fourier transform of the postimpact velocitig, in

FIG. 4. Poincaresection of the ball motion(a) the period-1 the chaotic regime. The parameters are 0.4 ande,—0.9318,

regime, filled diamond ¢=0.4 ande;=0.9215);(b) the period-2

regime, open diamonds=0.4 ande,=0.923). of the postimpact velocitie¥,, , and the Poincarsection of

the ball motion in the chaotic regime. The Fourier transform
reveals clear peaks: The first one is the basic frequency of
P _ the motion and the other one is nothing but higher harmon-
\rlc\alg(/f) Sr;jﬁ 0 tgg)]:alrelilc?gegu tuhrftsg;a e):ge?r:];hzs(;';iig?:cs. The motion is nearly periodic with a peripd=22. The

. ponding tono= L. Al y reg postimpact velocities visit sequentially a set of 22 distinct
with Wy(Bs= o, No=1) is found to be stable foe;<€ intervals. However, the behavior inside each interval is com-
<ey, wheree,=cosx=0.9211 ande;=0.9218. This result petely erratic, as will be seen below. We should point out
is confirmed by computing the full ball dynamics from the pere that the power spectrum does not exhibit a continuum at
map 7. The ball motion in this steady regime is illustrated in |oy frequencies as expected for a chaotic motion. This is due
Fig. 4 in parameter spac&/{ 1x,Vn,). This diagram is a = tg the fact that we have calculated the Fourier transform of
Poincaresection of the motion in the velocity space. Here theype impact velocitie®/,, and not that of the velocity function
Poincares_ection simply consists of a sipgle spot. We yvill V(t) describing the full ball motion at any time The cha-
refer to this steady state as a perjpdegime with a basic  otic feature of the motion is only clearly revealed in the
period p=1: the ball recovers periodically the same statepgincare map in Fig. 6. The motion attractor consists of sev-
after each collision. If the restitution co%fﬂment IS greaterera| distinct branches suggesting the quasiperiodicity of the
thane,, the steady motion associated wit(8s= By, Ng motion, but a careful analysis shows that each branch has a
=1) becomes unstable. complex structure indicating the presence of a chaotic mo-

The linear analysis constitutes an essential step in th#on. Each branch exhibits self-similarity properties. Succes-
analysis of the steady regimes but does not provide any irsive magpnifications of the branches of the Poincsaetion
formation about the subsequent dynamics above the instabiteveal that the same structure appears at different sisdes
ity threshold. A nonlinear analysis, which, of course, can beFigs. b) and Gc)]: Each branch is divided into two parsl
only achieved numerically by computing the full ball dynam- infinitum We have furthermore calculated the fractal dimen-
ics from the map#, is therefore needed. The computation of sion, the strange attractor of which is found to be equal to
the ball motion reveals that above the instability thresholdv=1.2 (see Fig. 7. Other characteristics such as the
(i.e., e.>e,) the system undergo a period-doubling instabil- Lyapunov exponents confirm the chaotic structure of the mo-
ity leading to a new steady periodic motion characterized bytion. If we further increase the restitution coefficient, we still
a basic periogp=2. The ball recovers periodically the same observe chaotic behaviors broken with periodic motions per-
state after two successive collisiorier two successive sisting only within extremely narrow ranges&f. Neverthe-
bounceg This motion is represented in Fig. 4 through theless, above a certain value of the restitution coefficieat,
Poincaresection. One can see the apparition of a second spa,>0.94), the ball motion does not possess any attractor:
indicating that the period of the motion is double what it wasThe ball motion becomes accelerated and the ball velocity
below the instability threshold. This period-2 state is stablediverges.
as soon a®;<e;<e,, wheree,=0.9316. As we increase Our results are synthesized in Fig. 8, which shows the
slightly further the restitution coefficient, the ball motion un- bifurcation diagram of the ball motion in parameter space
dergoes a second instability, which leads to chaotic behavio(e;,V,, ). The first branch stands for the periodic motion of
Here we do not reach the chaotic regime via the simple uniperiod p=1 and splits into two branches indicating the ap-
versal cascade of period-doubling bifurcations. In our sysparition of the period-2 motion. Then the period-2 state de-
tem, the bifurcation cascade is not fully developed. The nustabilizes, leading to chaos. The chaotic state is characterized
merical analysis has not revealed perjpdnotions withp by an infinite number of points: There is no more periodicity.
=2" andn=2. Only the two first states of the cascade., Although these results have been obtained in the limiting
those corresponding tp=1 andp=2) appear before the case where,=0, they seem to be generic for the parameters
system enters the chaotic regime. investigated so far. For example, in the more realistic case

In Figs. 5 and 6 we have displayed the Fourier transfornwheree, is nonzero ance,=¢;, the ball dynamics remains

found to be unstable for all permissible valuesepf(i.e.,
cose<g<1). The steady states of the other clds.,
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\ law C(r)~r” (wherev corresponds to the fractal dimension of the
446 \\ | attractoy. Here v=1.2. The parameters ar=0.4 and e
i \\ =0.9318.
> \\
\ We will consider here that the facet inclination along the
: inclined line is given by
1.42 ! : = —
1.70 1.71 1.72 173 B(¢)=a(l-¢)+ n(¢p), (46)
vV, . . . . .
(o) where 7 is a white noise term with spatially uncorrelated
1.490 . ‘ . fluctuations
(n()n(d")=n50($p—¢"). (47
1.485 .
70 IS @ mean quadratic value of the noise and can be consid-
« 1 480 | ered as a measure of the noise strength. The distribution is
>§ ‘ “ intended to mimic, for example, the roughness of a surface
made up of randomly spaced beads of diam&ewith a
1.475 | . spacingD(1+ 7).
We examine first the incidence of the noise on the steady
. periodic regimes of the ball. If the noise strength is not too
147 e 1710 1712 1714 1716 strong(i.e., 7,<5x 10" 2), the main features of the periodic
v motion of the ball remain qualitatively and quantitatively

(©

n,x

unchanged in comparison to the noiseless situation. Of
course, as soon as stochastic noise is present in the system,

FIG. 6. (a) Poincaresection in the chaotic regiméb) and (c)
Magnifications of one branch of the attractor; the same structure
appears at different scales. The parameters e&+€0.4 and e,
=0.9318.

qualitatively unchangefil9]: There still exists periodic mo-
tion that undergo period-doubling instabilities before leading
to chaotic motion.

IV. EFFECT OF NOISE ASSOCIATED WITH FACET
INCLINATION ON BALL DYNAMICS

In real experiments, the rough surface hardly exhibits a

perfect spatial order. The rough surface is usually made up of
beads randomly stuck on a plane substrate. The roughness
therefore does not possess a well-defined spatial periodicity.

1.8

1.6

0.93

0.93 0.94

coefficient of restitution e,

So we may wonder whether the steady periodic regimes as FIG. 8. Bifurcation diagram in the plane(V,,,). In the cha-
well as the chaotic regime can persist in the presence djtic regime, only the state correspondingdge=0.9318 has been

noise associated with facet inclination.

plotted.
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FIG. 9. (a) Poincaresection of the ball motion foe,=0.923 in B o '
the presence of noiséb) Velocity histogram of the ball motion.
The parameters are=0.4 andzy,=5x10"3.
-3
one cannot observe periodic motion in a strict mathematical =
sense. Nevertheless, the ball motion exhibits nearly periodic <
features. For example, fap,=5x10"2 and e;=0.923 the g
- . . . . . 5|
ball motion [represented via the Poincasection in Fig.
9(a)] shows similarities to the period-2 state presented in Fig.
4. The Poincareection exhibits two spots with a finite spa-
tial extension characterizing the dispersion around the actual -7 7 é 5 '4 3
period-2 regime. The dispersion around each of the two ) . Io_ ] ) )
states characterizing the actual period-2 motion is found to (© Yro

be Gaussian as expectgsee the velocity histogram Fig.
9(b)]. As one increases the noise strength, the dispersion in- FIG. 10. (a) Poincaresection of the ball motion foe,=0.9318
creases, but the periodic features of the ball motion still perin the presence of noiséb) Fourier transform of the postimpact
sists. However, for strong noisey¢=10"1), the ball comes velocities.(c) FunctionC(r) calculated from the Poincamection;
to a stop. The fluctuations are so important that the ball ca(r)~r” with »=2. The parameters awe=0.4 andy,=10"3.
leave the attraction basin of the periodic state and reach that
of the rest state. ~10"4), one reaches a regime where stochastic noise com-
The other important point is to know whether the chaoticpetes with deterministic noise and then alters the chaotic fea-
regime is destroyed by the presence of noise. We may natadres. The motion attractor still possesses self-similarity
rally think that even the presence of extremely weak noiseroperties, but its fractal dimensianis increased. Upon a
will destroy all the attributes of the chaos such as the selffurther increase of noise intensityy§~10 %), the chaotic
similarity of the strange attractor. One surprisingly finds thatregime is completely spoiled and loses its specific properties.
the system still exhibits chaotic features for very weak noiseAlthough the global structure of the attractor of the motion
(i.e., 7o<5x107%). For such small values of,, the sto- [Fig. 10a)], is reminiscent of that without noisgf. Fig.
chastic noise is not significant in comparison to the determiné(a)], the attractor has completely lost its self-similarity. The
istic noise induced by the chaotic behavior. As a result, théall motion still shows periodic featurdsee the Fourier
peculiar properties of the chaotic reginguch as the self- transform in Fig. 1(b)], but the behavior inside each branch
similarity of the attractorare preserved. The fractal dimen- of the attractor is now purely stochastic. The points consti-
sion v of the strange attractor is equal to 1.2, as in the cas&uting each branch are randomly distributed. The dimension
without noise. If one increases the noise strengtyy ( of the attractor is found to approach the vale?2 confirm-
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ing the predominance of the stochastic ndisig. 10c)]. At  tains the essential physical ingredients. In that model the
higher noise intensity 4,=10"1), the ball comes to a stop rough line simply consists of facets having different orienta-
for the same reason as in the periodic regime. tions. Despite the simplicity of the model, it leads to non-
As a conclusion, the deterministic chaotic regime foundtrivial behaviors going from periodic motion to chaos. In
without noise is preserved in presence of noise only if theparticular when the distribution of the facet orientation ex-
noise strength is extremely weajg~10"°. In other words,  hibits a well-defined spatial periodicity along the line, the
this means that there is no chance to observe this chaotiga|| motion can enter a steady periodic regime that leads
regime in real experiments even with a surface made up Qfjtimately to a chaotic behavior via period-doubling insta-
regularly spaced beadwhere the unavoidable imperfections pjisies. Furthermore, we find that the presence of stochastic
of the t_)tga_ds induces a disorder corresponding to a value ofyise associated with the facet orientation destroys the struc-
70~ 10" in the most optimistic cageOn the other hand, .o of the deterministic chaotic regime except in the case of
the different regimes observed in the absence of nfifee weak noise. However, the periodic features of the ball dy-

pen_odlc regimes as well as the chaot.|c psél exhibit pe- namics found in the absence of noise are still revealed in the
riodic features in the presence of noise. One may thereforeresence of noise

wonder whether these steady bouncing regimes can be ob A few concluding remarks should be brought to the fore.

served experimentally. As far as we know, there has been no. i th d h ; d he simol
experimental evidence of the existence of such regimes. The/'St In the present study, we have focused on the simple

nonobservation of steady bouncing regimes is, in general!Miting case where the normal restitution coefficieptvan-
attributed to the supposed long transient time and the finitéshes. AIthou.gh this situation is rather pamgular, it turns out
length of the rough substrate used in the experiments. Withifhat the basic features of the ball dynamics that we have
our model the transients are rather siafter about hundred found remain qualitatively unchanged when we release the
bounces whose average length is of orfethe ball reaches assumption of zero normal restitution coeffici¢®]. Sec-

a steady stajeand therefore cannot explain that steadyond, the distribution of the facet orientation has been as-
bouncing regimes are not seen in experiments using a 2-nsumed to vary simply linearly withx in each interval
long plane made rough by sticking glass beads of diametdmD,(n+1)D]. We may wonder, for example, whether the
D=1 mm[13]. So we are tempted to think that the restitu- ball dynamics(and the route to chapstrongly depends on
tion coefficient of the beads used in the experiments is tothe details of the facet distribution. Moreover, it would be
high to observe steady bouncing regimes since, as mentionégteresting to implement a more realistic facet distribution in
before, above a critical value @& the ball motion acceler- order to draw conclusive answers with regard to experi-
ates. Of course, our model is very crude and in order to makghents. We are presently dealing with these questions and we
conclusive comparisons with experiments, it would behope to report results in the near future.

strongly desired to analyze in detail more realistic situations
with a nonzero normal restitution coefficient and a facet dis-
tribution that would exactly mimic a bumpy profile. This
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