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Dynamics of a ball bouncing on a rough inclined line

Alexandre Valance and Daniel Bideau
Groupe Matière Condense´e et Matériaux, UMR 6626, Universite´ Rennes 1, F35042 Rennes Cedex, France

~Received 20 May 1997; revised manuscript received 12 September 1997!

We present here a simple theoretical model that describes the motion of ball bouncing on a rough inclined
line. The rough line consists of microfacets whose orientation can be different from the line inclination. We
examine the behavior of the ball as a function of the orientation of the microfacets and determine the condi-
tions under which the jumps of the ball are decreasing or increasing in their amplitude. In particular we show
that when the facet inclination varies along the line with a well-defined spatial periodicity the ball can reach a
steady bouncing regime that leads ultimately to chaotic behavior via a period-doubling scenario. Furthermore,
we find that the presence of noise associated with facet inclination destroys the structure of the chaotic regime.
@S1063-651X~98!02202-8#

PACS number~s!: 83.70.Fn, 46.10.1z, 46.30.Pa, 46.90.1s
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I. INTRODUCTION

Despite intensive efforts in the field of granular materi
@1–3#, the seemingly simple problem of the dynamics o
single grain interacting with a set of boundaries is far fro
being completely understood. The interest for such a pr
lem has been brought back to the fore in the mid 1980s w
it had been recognized that the motion of a ball dropped o
a flat oscillating surface may give rise to chaotic behav
@4–10#. More recently, experimental works@11–13# investi-
gating the motion of a ball rolling on an inclined rough su
face have yielded interesting phenomena, which have no
been elucidated.

In this paper we are precisely dealing with some aspe
of this problem. The study of such a system can be regar
as a first step towards the understanding of the energy
change problem between a rough substrate and an ense
of particles, which is of crucial importance in granular flo
Within this context, numerous experimental and numeri
works @11–15# already have been devoted to the study of
motion of a single sphere rolling on a rough inclined plane
is worthwhile mentioning the main outcomes. Three diffe
ent regimes have been clearly identified:~i! a decelerated
regime where the velocity of ball progressively decrea
until it stops, ~ii ! an intermediate regime where the ba
reaches a steady motion with a constant velocity~the effec-
tive frictional force acting on the ball is viscous!, and~iii ! a
jumping regime where the ball experiences big bounces
apparently does not achieve a steady state. The two firs
gimes have been widely explored@11–17# and are quite well
understood, while the third still raises some fundamen
questions.

In this paper we focus on the bouncing regime. Our aim
to analyze within a simple theoretical model the motion o
ball bouncing on a rough inclined line and to character
carefully the role of the line roughness on the motion.
particular we are interested in determining the conditio
under which the bouncing particle can reach steady regi
and whether the particle dynamics may lead to chaotic
havior in the same fashion as a bouncing ball on a vibra
plate.

The approach adopted here is inspired by that sugge
571063-651X/98/57~2!/1886~9!/$15.00
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by Roux and Jenkins@18#. The key point of the approach i
to model the roughness of the inclined line in a very sim
way. Indeed, we consider that the inclined line is made up
microfacets whose inclination is not necessarily the same
the line slope. The originality of the model is to pose a co
plicated problem in simple terms still preserving the essen
physical ingredients. In the first stage, we will analyze t
ball motion in the simple situation where all the facets ha
the same inclination. Then we will focus on the case wh
the inclination of the facets varies along the line. In partic
lar we show that when the facet inclination has a we
defined spatial periodicity, there exists steady bouncing
gimes that can destabilize and lead ultimately to chao
dynamics via a period-doubling scenario. Furthermore, i
found that the presence of noise associated with facet in
nation destroys the structure of the chaotic regime.

Our paper is organized as follows. In Sec. II we pres
our model in detail. In Sec. III we analyze the motion of t
ball as a function of the inclination of the facets. We fir
treat the case where the facet inclination is assumed to
constant along the line. Then we investigate the case wh
the inclination of the facets varies along the line with a we
defined spatial periodicity. In Sec. IV we examine the effe
of noise associated with facet inclination on the ball beh
ior. Section V contains the conclusion and prospects for
ture investigation.

II. THEORETICAL APPROACH

The rough line, on which the ball is dropped, is depict
in Fig. 1. The line forms an anglea with respect to the
horizontal, while the microfacets make an angleb with re-
spect to the inclined line. The facet inclination is not nec
sarily uniform, but can vary along the line. In the gene
case, the facet orientation is taken to be dependent of
facet positionx along the line and given by the functio
B(x). The size of the facets is not taken into account h
and is unimportant for our purpose.

Let us describe the motion of the ball on this line. At tim
t50, the ball is launched from the positionx5x0 on the line
with an initial velocityVW 0. The ball will experience succes
sive bounces and collisions with the facets of the inclin
1886 © 1998 The American Physical Society
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57 1887DYNAMICS OF A BALL BOUNCING ON A ROUGH . . .
line. The ball motion is a repetition of elementary sequen
and each sequence consists both of one ballistic bounce
one collision. To describe the ball motion, it then suffices
analyze one elementary sequence. Our aim is to find a
that relates the collision impact positions and the postco
sion velocities between two successive collisions.
First we analyze the ballistic bounce. Let us callVW i the ball
velocity just after thei th collision andxi its position. The
ball velocityVW just before the next collision impact is easi
calculated by solving Newton’s equation. The calculati
yields

Vx5Vi ,x12Vi ,ytana, ~1!

Vy52Vi ,y . ~2!

Vi ,x and Vi ,y are the components of the velocity vectorVW i
along thex andy axes, respectively. We note that the velo
ity of the ball at the end of the bounce is independent of
gravitational acceleration. It is only a function of the initi
impulse and the inclination of the line.

The durationdt i and the lengthdxi of the bounce are also
easily calculated. The timet i 11 at which the (i 11)st colli-
sion occurs and its impact positionxi 11 are simply given by

t i 115t i1dt i , ~3!

xi 115xi1dxi , ~4!

where

dt i5
2Vi ,y

gcosa
, ~5!

dxi5
2

gcosa
~Vi ,xVi ,y1Vi ,y

2 tana!. ~6!

g is the gravitational acceleration.
The next step is to analyze the collision of the ball w

the facets of the line. After the bounce, the ball hits the fa
that is located at the positionxi 11 and whose inclination is

FIG. 1. Schematic view of the inclined line consisting of micr
facets whose inclinationb can vary according to their position. O
the scheme only the facets hit by the ball have been drawn.xi ( i
50,1,2, . . . ) denotes the position of the successive collision i
pacts, whileb i is the inclination of the corresponding facets.
s
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given byB(x i 11). In order not to complicate the problem
we will ignore the rotation of the ball as it bounces down t
line. Furthermore, we assume that after the collision the
locity components normal and tangential to the facet at
point of impact are related to the corresponding velocit
before the collision by

Vn852enVn , ~7!

Vt85etVt . ~8!

en (et) is the normal~tangential! coefficient of restitution
and the prime denotes values just after the collision. Fina
the collision will be considered to be punctual~the point of
contact is at rest during the collision! and the restitution co-
efficients to be constant~i.e., independent of the impact ve
locity!.

Using the above collision equations, we can determine
velocity componentsVW i 11,x and VW i 11,y just after the (i
11)st collision. After some simple manipulations, we ge

Vi 11,x5@etcos2b2ensin2b#Vx1@~et1en!sinbcosb#Vy ,
~9!

Vi 11,y5@~et1en!sinbcosb#Vx1@~etsin2b2encos2b!#Vy ,
~10!

whereb stands for the facet inclination, which is located
the positionxi 11, so that

b[B~x i 11!. ~11!

Combining these expressions with Eqs.~1! and~2! allows us
to express the velocity just after the (i 11)st collision as a
function of the velocity component just after thei th colli-
sion:

Vi 11,x5a1~b!Vi ,x1a2~b!Vi ,y , ~12!

Vi 11,y5b1~b!Vi ,x1b2~b!Vi ,y , ~13!

where

a1~b!5etcos2b2ensin2b,

a2~b!52tana~etcos2b2ensin2b!2~et1en!sinbcosb,

b1~b!5~et1en!sinbcosb,

b2~b!52~et1en!tanasinbcosb1encos2b2etsin2b.

One should point out that, in general, the velocity map~12!
and ~13! is nonlinear. Indeed, the coefficientsak andbk de-
pend on the velocityVW i via the parameterb @see expressions
~11! and ~4!#.

Before proceeding further, we find it convenient to intr
duce the vectorial quantityWW i characterizing the ball stat
just after thei th collision:

WW i5~xi ,VW i !, ~14!

wherexi is the impact position andVW i the postimpact veloc-
ity of the ball at thei th collision. The map that allows us t
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1888 57ALEXANDRE VALANCE AND DANIEL BIDEAU
relate the state of the ball just after the (i 11)st collision as
a function of its state just after thei th collision can be thus
formally written as

WW i 115F~WW i !. ~15!

In the light of the above calculation, the mapF is given by

xi 115 f ~xi ,VW i !, ~16!

VW i 115M ~b!VW i , ~17!

where

f [xi1
2

gcosa
~Vi ,xVi ,y1Vi ,y

2 tana!, ~18!

b[B~xi 11!. ~19!

M (b) is a 232 matrix whose elements are nothing but t
coefficientsak(b) andbk(b) defined above@see expression
~12! and~13!#. Note that Eq.~18! simply results from expres
sions~4! and ~6!.

Finally, to determine the ball state at thenth collision
given the initial state of the ball@i.e., WW 05(x0 ,VW 0)#, it suf-
fices to iteraten times the mapF. We formally get

~20!

This equation completely describe the ball dynamics.

III. BALL DYNAMICS

In this section we analyze the ball motion in two partic
lar cases. The first one is the simplest we can think of
corresponds to the situation where the facet orientatio
uniform along the line. Then we will consider the case wh
the facet orientation varies along the line with a well-defin
periodicity.

A. Facets with uniform orientation

In the particular case where the facets have the same
entation@i.e., B(x)5const], the problem greatly simplifies
Indeed, the velocity map~17! becomes linear. The velocit
VW n of the ball at thenth collision can therefore be express
simply as

VW n5@M ~b!#nVW 0 . ~21!

Expression~21! allows us to calculate directly the ball ve
locity after n collisions. However, we should take care
analyze the state of the ball after each collision. Indeed
may happen that for particular values of the facet inclinat
the ball after few bounces hits a facet with such an incide
angle that the postcollision velocity points towards the s
strate delimited by the inclined line. As a result, the b
penetrates into the substrate which is clearly not reasona
In real experiments, the ball would undergo an additio
collision with the underlying substrate, which is not tak
into account in our model. These undesirable situations m
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occur when the facet inclinationb is either negative or large
than a (b is positive with respect to the trigonometric or
entation!. To avoid such troubles, it then suffices to restr
the range of permissible values forb. For our purpose we
will therefore confine our investigation to the cases wh
0,b,a.

In order to characterize the bouncing ball behavior,
should analyze the eigenvalues of the matrixM . If the modu-
lus of both eigenvalues is smaller than 1, the velocity of
ball and consequently the amplitude of its bounces will d
crease until it stops. On the contrary, if at least one of
eigenvalues is bigger than 1, the ball will experience boun
at higher and higher amplitude. The eigenvalues ofM are
easily calculated and are found to be

l1,2~b!5
~en1et!

2
l0~b!F16A12

4enet

~en1et!
2l0~b!2G ,

~22!

with

l0~b!5sin2btana1cos2b, ~23!

while the unit eigenvectorsUW 1,2 are given by

UW i5cos@u i~b!#UW x1sin@u i~b!#UW y, ~24!

where

tan@u i~b!#5@l i~b!2a1~b!#/a2~b!. ~25!

UW x (UW y) is the unit vector along thex direction (y direction!.
Note also that theb dependence of the different quantitie
has been explicitly indicated.

At this stage we find it worthwhile to introduce a furthe
assumption in order to greatly simplify the algebra. We w
consider that the normal restitution coefficienten is equal to
zero. This amounts to assuming that the collision betw
the ball and a facet is completely inelastic in the directi
perpendicular to the facet. As a result, during a collision
ball takes off again with an angle corresponding to the fa
inclination. Of course, this is a drastic and rather unrealis
approximation, but it turns out that the basic results found
this limiting case can be extended to the cases where
normal restitution coefficient is nonzero@19#. We shall dis-
cuss the implications of this assumption later on.

Within the above assumption, the eigenvalues and eig
vectors ofM then simply read

l15etl0 , l250, ~26!

while the corresponding eigendirections are defined by

u15b, u25arctan@1/~ tanb22tana!#. ~27!

Several comments are in order.
~i! One can easily shown that forb5a/2 the eigenvalue

l1 reaches a maximum given by

lmax5et /cosa. ~28!

It follows that if cosa is greater thanet , the eigenvaluel1 is
smaller than 1 whatever the value ofb. In this case, the bal
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57 1889DYNAMICS OF A BALL BOUNCING ON A ROUGH . . .
velocity will decrease to zero and finally stop for allb ’s. On
the contrary, if cosa,et , there exists a finite range of value
for b for which l1 is greater than 1. It is found thatl1.1
for bP]b0 ,a2b0@ , where b0 and a2b0 are the critical
values ofb for which l1 is equal to 1. In the limit whereet
is close to 1,b0 is simply given by

b0.~12et!/~2tana!. ~29!

As a consequence, forb02a,b,b0 the ball motion is
accelerated~the bounce length and amplitude will increa
ad infinitum!, whereas forbP†0,b0@ø#a2b0 ,a‡ the ball
will stop after several bounces. These results are synthes
in Fig. 2, which shows the domain of existence of the diff
ent regimes in the parameter space (b,et). The curve of Fig.
2 represents the boundary between the two regimes: belo
the motion is decelerated and above it the motion is acce
ated.

~ii ! It can be interesting to analyze the ball motion
terms of forces acting on the ball. Using Eqs.~3!, ~26! and
~27!, it is not hard to show that aftern bounces the bal
velocity along the eigendirection corresponding to the n
zero eigenvalue is given by

~VW n•UW 1!5stn~VW 0•UW 1!1s0, ~30!

where

s5
gcosa~l121!

2cosb
. ~31!

s0 is a constant independent oftn . If the discrete timestn
are taken to be continuous, one can rewrite the above e
tion in terms of forces acting on the ball

dv
dt

5s, ~32!

where

v5VW n•UW 1 . ~33!

FIG. 2. Diagram showing the different regimes of the ball d
namics in the parameter space (b,et). The curve represents th
boundary between the accelerated regime and the decelerated
The parameter isa50.4.23°.
ed
-

it
r-

-

a-

The mass of the ball has been set tom51. s can be regarded
as the total force acting on the ball. This force is a comp
mise between the gravitational force and a frictional for
due to collisions. Whenl1 is greater than 1 the gravitationa
force dominates, whereas forl1,1 the frictional force pre-
vails. We can also note that the total force is velocity ind
pendent. As a consequence, the fictitious frictional force
thus independent of the velocity and therefore is reminisc
of the Coulomb-like frictional force. This last result can b
easily understood using a straightforward argument. By
tue of the collision model used here, the energy lost
collision is quadratic in the velocity. Furthermore, the d
tance between two collisions is also proportional to t
square of the velocity@see Eq.~6!#. Arguing that the fric-
tional force is simply the energy lost in each collision d
vided by the distance between two collisions, we get a fr
tional force independent of the velocity. Finally, we wou
like to point out that if we had dropped the assumption
zero normal restitution, we would have found the sa
qualitative picture for the ball dynamics.

B. Facets with a spatially modulated orientation

We consider here that the facet orientation varies alo
the line with a well-defined spatial periodicityD. This modu-
lation of facet orientation is intended to mimic, for examp
the rough profile of a line made up of beads regularly d
played on a flat substrate. In that caseD is nothing but the
diameter of the beads.

For our purpose, we will assume that the distributi
B(x) of the facet inclination is given by

B~x!5a~12f!, ~34!

where

f5x/D2Int~x/D !. ~35!

b is chosen for simplicity to be linear withx in each interval
@nD,(n11)D# and to vary between 0 anda ~see Fig. 3!.
Furthermore, the derivative ofB with respect tox has been
taken to be negative in order that the variation of facet in
nation mimics the roughness of a bumpy line. We sho
point out, however, that with regard to a real rough profi

ne.

FIG. 3. Distribution of the facet orientationb as a function of
their positionx along the inclined line.
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1890 57ALEXANDRE VALANCE AND DANIEL BIDEAU
made up of beads, our model does not take into accoun
modulation of height induced by the profile of each bead

As soon as the facet orientation isx dependent, the veloc
ity map ~17! becomes nonlinear and therefore nontrivial b
havior is expected. As seen before, the ball state just aft
collision is characterized by its postimpact velocity and i
pact position. In the specific case we are interested in,
find it more appropriate to use the parameterf ~defined
above! instead of the impact position. This phase parame
f ~which varies within the interval@0,1@) completely char-
acterizes the impact position. Indeed, to a value off corre-
sponds a unique value of the facet inclinationb @see Eq.
~34!#. Finally, we will introduce dimensionless variable
The lengths will be reduced by the periodicityD, whereas
the velocities will be reduced byAgD: x5 x̄ /D and V

5 V̄/AgD ~the overbar denotes the variables expressed
physical units!. We can rewrite the iterative map~16! and
~17! in terms of the new dimensionless variablesf i andVW i
as

f i 115 f ~f i ,VW i !, ~36!

VW i 115M ~b!VW i , ~37!

where f andb are now given by

f [f i1dxi2Int~f i1dxi !, ~38!

b[B~f i 11!. ~39!

M (b) is still given by Eqs.~12! and~13!. We recall thatdxi
is the reduced length of the bounce next to thei th collision
and is given by

dxi5
2Vi ,y

cosa
~Vi ,x1Vi ,ytana!. ~40!

We can note that in terms of dimensionless variables
iterative mapF depends only on three parameters, name
the line inclinationa and the restitution coefficientsen and
et . As in Sec. III A, we will focus on the limiting case wher
et50 for the sake of simplicity. In that case, given the li
inclination a, the only free parameter of the problem is t
restitution coefficientet .

Let us now analyze the ball dynamics. First we wish
determine the conditions under which the ball motion c
reach a steady state. The simplest steady states we can
of are those corresponding to the fixed points of the itera
mapF. These steady states correspond to regimes where
ball experiences regular bounces: The impact positions
characterized by a unique phase parameterfs and the ball
after each collision restarts with the same velocityVW s ~the
subscripts refers to steady states!. The determination of the
fixed points ofF ~which be denoted byWW s in the following!
is easily achieved by taking advantage of Eqs.~36! and~37!.
We find that they should satisfy the conditions

dxs5n0 , ~41!

l1~bs!51, ~42!
he
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e
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VW s5VsUW 1~bs!, ~43!

wheren0 is an integer anddxs , bs , andVs are, respectively,
the bounce length, the facet inclination~corresponding to the
phase parameterfs characterizing the impact position!, and
the postcollision velocity of the steady state to be det
mined. Equation~41! just states that the length of th
bounces should be a multiple ofD, while Eqs.~42! and~43!

simply express the fact thatVW s should be a fixed point of the
velocity map~37!. The velocity map has fixed points only
the nonzero eigenvalue of the matrixM (bs) ~i.e., l1) is
equal to 1. We will see that this condition is fulfilled only fo
particular values ofbs ~or equivalentlyfs).

If et,cosa, there is no steady state. Indeed, the eig
value l1(b) is greater than 1 whatever the value ofb. On
the other hand, ifet.cosa, there exist~for a given value of
n0) two steady states corresponding to the two values ob
for which the eigenvaluel1(b) is equal to 1, namelybs
5b0 andbs5a2b0. The use of Eqs.~41! and ~43! allows
us to determineVs :

Vs
25

n0cosa@11tan2bs#

2tanbs@11tanatanbs#
. ~44!

For each of the two values ofbs , there exist an infinity of
solutions associated with different values ofn0. As a result,
there are two classes of steady states~corresponding to the
two possible values ofbs), which will be denoted by
WW s(bs ,n0).

In order to know whether the system dynamics can
hibit the steady motions defined above, it is necessary
investigate their linear stability. The linear stability analys
consists in studying the regression of small fluctuatio
around the periodic state. Assuming that the system, initi
in the steady stateWW s , undergoes a small perturbationdWW 0
during a collision, the ball state just after the next collisi
will differ from WW s and the difference will be denoted b
dWW 1. After n collisions, the difference will bedWW n . The
regime will be stable if the differencedWW n tends to zero asn
increases and it will be unstable if the difference diverg
As we are interested in small deviations fromWW s , we can
linearize the mapF in the vicinity of this state.dWW n is then
linearly related todWW n21 by

dWW n5
]F
]WW

~WW s!dWW n21 . ~45!

]F/]WW is a 333 matrix; this is the so-called Floquet o
Jacobian matrix. The regime will be stable as soon as
three eigenvalues of the Floquet matrix have a modu
smaller than 1. The matrix elements are calculated ana
cally, whereas the determination of the eigenvalues has b
performed numerically.

We have analyzed the stability of the periodic stateWW s as
a function of the free parameter of the problem~i.e., the
restitution coefficientet) given the line inclinationa. The
calculations have been done fora50.4.23° and yield the
following results. The steady statesWW s(bs5a2b0 ,n0) are
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57 1891DYNAMICS OF A BALL BOUNCING ON A ROUGH . . .
found to be unstable for all permissible values ofet ~i.e.,
cosa,et,1). The steady states of the other class@i.e.,
WW s(bs5b0 , n0)# are also all unstable, except the one c
responding ton051. Indeed, the steady regime associa
with WW s(bs5b0 , n051) is found to be stable fore0,et
,e1, wheree05cosa.0.9211 ande1.0.9218. This result
is confirmed by computing the full ball dynamics from th
mapF. The ball motion in this steady regime is illustrated
Fig. 4 in parameter space (Vn11,x ,Vn,x). This diagram is a
Poincare´ section of the motion in the velocity space. Here t
Poincare´ section simply consists of a single spot. We w
refer to this steady state as a period-p regime with a basic
period p51: the ball recovers periodically the same sta
after each collision. If the restitution coefficient is grea
thane1, the steady motion associated withWW s(bs5b0 , n0
51) becomes unstable.

The linear analysis constitutes an essential step in
analysis of the steady regimes but does not provide any
formation about the subsequent dynamics above the inst
ity threshold. A nonlinear analysis, which, of course, can
only achieved numerically by computing the full ball dynam
ics from the mapF, is therefore needed. The computation
the ball motion reveals that above the instability thresh
~i.e., et.e1) the system undergo a period-doubling instab
ity leading to a new steady periodic motion characterized
a basic periodp52. The ball recovers periodically the sam
state after two successive collisions~or two successive
bounces!. This motion is represented in Fig. 4 through t
Poincare´ section. One can see the apparition of a second
indicating that the period of the motion is double what it w
below the instability threshold. This period-2 state is sta
as soon ase1,et,e2, wheree2.0.9316. As we increase
slightly further the restitution coefficient, the ball motion u
dergoes a second instability, which leads to chaotic behav
Here we do not reach the chaotic regime via the simple u
versal cascade of period-doubling bifurcations. In our s
tem, the bifurcation cascade is not fully developed. The
merical analysis has not revealed period-p motions with p
52n andn>2. Only the two first states of the cascade~i.e.,
those corresponding top51 and p52) appear before the
system enters the chaotic regime.

In Figs. 5 and 6 we have displayed the Fourier transfo

FIG. 4. Poincare´ section of the ball motion:~a! the period-1
regime, filled diamond (a50.4 andet50.9215);~b! the period-2
regime, open diamonds (a50.4 andet50.923).
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of the postimpact velocitiesVn,x and the Poincare´ section of
the ball motion in the chaotic regime. The Fourier transfo
reveals clear peaks: The first one is the basic frequenc
the motion and the other one is nothing but higher harm
ics. The motion is nearly periodic with a periodp522. The
postimpact velocities visit sequentially a set of 22 distin
intervals. However, the behavior inside each interval is co
pletely erratic, as will be seen below. We should point o
here that the power spectrum does not exhibit a continuum
low frequencies as expected for a chaotic motion. This is
to the fact that we have calculated the Fourier transform
the impact velocitiesVn and not that of the velocity function
V(t) describing the full ball motion at any timet. The cha-
otic feature of the motion is only clearly revealed in th
Poincare map in Fig. 6. The motion attractor consists of s
eral distinct branches suggesting the quasiperiodicity of
motion, but a careful analysis shows that each branch h
complex structure indicating the presence of a chaotic m
tion. Each branch exhibits self-similarity properties. Succ
sive magnifications of the branches of the Poincare´ section
reveal that the same structure appears at different scales@see
Figs. 6~b! and 6~c!#: Each branch is divided into two partsad
infinitum. We have furthermore calculated the fractal dime
sion, the strange attractor of which is found to be equa
n.1.2 ~see Fig. 7!. Other characteristics such as th
Lyapunov exponents confirm the chaotic structure of the m
tion. If we further increase the restitution coefficient, we s
observe chaotic behaviors broken with periodic motions p
sisting only within extremely narrow ranges ofet . Neverthe-
less, above a certain value of the restitution coefficient~i.e.,
et.0.94), the ball motion does not possess any attrac
The ball motion becomes accelerated and the ball velo
diverges.

Our results are synthesized in Fig. 8, which shows
bifurcation diagram of the ball motion in parameter spa
(et ,Vn,x). The first branch stands for the periodic motion
period p51 and splits into two branches indicating the a
parition of the period-2 motion. Then the period-2 state d
stabilizes, leading to chaos. The chaotic state is character
by an infinite number of points: There is no more periodici
Although these results have been obtained in the limit
case whereet50, they seem to be generic for the paramet
investigated so far. For example, in the more realistic c
whereet is nonzero anden5et , the ball dynamics remains

FIG. 5. Fourier transform of the postimpact velocitiesVn,x in
the chaotic regime. The parameters area50.4 andet50.9318.
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1892 57ALEXANDRE VALANCE AND DANIEL BIDEAU
qualitatively unchanged@19#: There still exists periodic mo
tion that undergo period-doubling instabilities before lead
to chaotic motion.

IV. EFFECT OF NOISE ASSOCIATED WITH FACET
INCLINATION ON BALL DYNAMICS

In real experiments, the rough surface hardly exhibit
perfect spatial order. The rough surface is usually made u
beads randomly stuck on a plane substrate. The rough
therefore does not possess a well-defined spatial periodi
So we may wonder whether the steady periodic regime
well as the chaotic regime can persist in the presence
noise associated with facet inclination.

FIG. 6. ~a! Poincare´ section in the chaotic regime.~b! and ~c!
Magnifications of one branch of the attractor; the same struc
appears at different scales. The parameters area50.4 and et

50.9318.
g

a
of
ss

ty.
as
of

We will consider here that the facet inclination along t
inclined line is given by

B~f!5a~12f!1h~f!, ~46!

where h is a white noise term with spatially uncorrelate
fluctuations

^h~f!h~f8!&5h0
2d~f2f8!. ~47!

h0 is a mean quadratic value of the noise and can be con
ered as a measure of the noise strength. The distributio
intended to mimic, for example, the roughness of a surf
made up of randomly spaced beads of diameterD with a
spacingD(11h).

We examine first the incidence of the noise on the ste
periodic regimes of the ball. If the noise strength is not t
strong~i.e., h0,531022), the main features of the periodi
motion of the ball remain qualitatively and quantitative
unchanged in comparison to the noiseless situation.
course, as soon as stochastic noise is present in the sy

re

FIG. 7. Function C(r )5 limn→`(1/n2)( i , j 51
n H(r 2uRW i2RW j u)

@whereRW i5(Vi ,x ,Vi 11,x) and H is the Heaviside function# calcu-
lated from the Poincare´ section shown in Fig. 6~a!. C obeys a power
law C(r );r n ~wheren corresponds to the fractal dimension of th
attractor!. Here n.1.2. The parameters area50.4 and et

50.9318.

FIG. 8. Bifurcation diagram in the plane (et ,Vn,x). In the cha-
otic regime, only the state corresponding toet50.9318 has been
plotted.
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one cannot observe periodic motion in a strict mathemat
sense. Nevertheless, the ball motion exhibits nearly perio
features. For example, forh05531023 and et50.923 the
ball motion @represented via the Poincare´ section in Fig.
9~a!# shows similarities to the period-2 state presented in F
4. The Poincare´ section exhibits two spots with a finite sp
tial extension characterizing the dispersion around the ac
period-2 regime. The dispersion around each of the
states characterizing the actual period-2 motion is found
be Gaussian as expected@see the velocity histogram Fig
9~b!#. As one increases the noise strength, the dispersion
creases, but the periodic features of the ball motion still p
sists. However, for strong noise (h0>1021), the ball comes
to a stop. The fluctuations are so important that the ball
leave the attraction basin of the periodic state and reach
of the rest state.

The other important point is to know whether the chao
regime is destroyed by the presence of noise. We may n
rally think that even the presence of extremely weak no
will destroy all the attributes of the chaos such as the s
similarity of the strange attractor. One surprisingly finds th
the system still exhibits chaotic features for very weak no
~i.e., h0,531025). For such small values ofh0, the sto-
chastic noise is not significant in comparison to the determ
istic noise induced by the chaotic behavior. As a result,
peculiar properties of the chaotic regime~such as the self-
similarity of the attractor! are preserved. The fractal dimen
sion n of the strange attractor is equal to 1.2, as in the c
without noise. If one increases the noise strength (h0

FIG. 9. ~a! Poincare´ section of the ball motion foret50.923 in
the presence of noise.~b! Velocity histogram of the ball motion
The parameters area50.4 andh05531023.
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;1024), one reaches a regime where stochastic noise c
petes with deterministic noise and then alters the chaotic
tures. The motion attractor still possesses self-simila
properties, but its fractal dimensionn is increased. Upon a
further increase of noise intensity (h0;1023), the chaotic
regime is completely spoiled and loses its specific propert
Although the global structure of the attractor of the moti
@Fig. 10~a!#, is reminiscent of that without noise@cf. Fig.
6~a!#, the attractor has completely lost its self-similarity. T
ball motion still shows periodic features@see the Fourier
transform in Fig. 10~b!#, but the behavior inside each branc
of the attractor is now purely stochastic. The points con
tuting each branch are randomly distributed. The dimens
of the attractor is found to approach the valuen52 confirm-

FIG. 10. ~a! Poincare´ section of the ball motion foret50.9318
in the presence of noise.~b! Fourier transform of the postimpac
velocities.~c! FunctionC(r ) calculated from the Poincare´ section;
C(r );r n with n.2. The parameters area50.4 andh051023.
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1894 57ALEXANDRE VALANCE AND DANIEL BIDEAU
ing the predominance of the stochastic noise@Fig. 10~c!#. At
higher noise intensity (h0>1021), the ball comes to a stop
for the same reason as in the periodic regime.

As a conclusion, the deterministic chaotic regime fou
without noise is preserved in presence of noise only if
noise strength is extremely weakh0;1025. In other words,
this means that there is no chance to observe this cha
regime in real experiments even with a surface made up
regularly spaced beads~where the unavoidable imperfection
of the beads induces a disorder corresponding to a valu
h0;1023 in the most optimistic case!. On the other hand
the different regimes observed in the absence of noise~the
periodic regimes as well as the chaotic one! still exhibit pe-
riodic features in the presence of noise. One may there
wonder whether these steady bouncing regimes can be
served experimentally. As far as we know, there has bee
experimental evidence of the existence of such regimes.
nonobservation of steady bouncing regimes is, in gene
attributed to the supposed long transient time and the fi
length of the rough substrate used in the experiments. Wi
our model the transients are rather short~after about hundred
bounces whose average length is of orderD, the ball reaches
a steady state! and therefore cannot explain that stea
bouncing regimes are not seen in experiments using a 2
long plane made rough by sticking glass beads of diam
D51 mm @13#. So we are tempted to think that the restit
tion coefficient of the beads used in the experiments is
high to observe steady bouncing regimes since, as mentio
before, above a critical value ofet the ball motion acceler-
ates. Of course, our model is very crude and in order to m
conclusive comparisons with experiments, it would
strongly desired to analyze in detail more realistic situatio
with a nonzero normal restitution coefficient and a facet d
tribution that would exactly mimic a bumpy profile. Th
analysis is presently under study.

V. CONCLUSION

We have analyzed the dynamics of a ball bouncing o
rough inclined line within a very simple model that still re
.
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tains the essential physical ingredients. In that model
rough line simply consists of facets having different orien
tions. Despite the simplicity of the model, it leads to no
trivial behaviors going from periodic motion to chaos.
particular when the distribution of the facet orientation e
hibits a well-defined spatial periodicity along the line, th
ball motion can enter a steady periodic regime that le
ultimately to a chaotic behavior via period-doubling inst
bilities. Furthermore, we find that the presence of stocha
noise associated with the facet orientation destroys the st
ture of the deterministic chaotic regime except in the case
weak noise. However, the periodic features of the ball
namics found in the absence of noise are still revealed in
presence of noise.

A few concluding remarks should be brought to the fo
First, in the present study, we have focused on the sim
limiting case where the normal restitution coefficienten van-
ishes. Although this situation is rather particular, it turns o
that the basic features of the ball dynamics that we h
found remain qualitatively unchanged when we release
assumption of zero normal restitution coefficient@19#. Sec-
ond, the distribution of the facet orientation has been
sumed to vary simply linearly withx in each interval
@nD,(n11)D#. We may wonder, for example, whether th
ball dynamics~and the route to chaos! strongly depends on
the details of the facet distribution. Moreover, it would b
interesting to implement a more realistic facet distribution
order to draw conclusive answers with regard to expe
ments. We are presently dealing with these questions and
hope to report results in the near future.
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