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We study the shape, elasticity, and fluctuations of the recently predict&hdzihovsky and J. Toner, Phys.
Rev. Lett.75, 4752(1995] and subsequently observéid numerical simulations[M. Bowick, M. Falcioni,
and G. Thorleifsson, Phys. Rev. Lef9, 885 (1997); tubule phase of anisotropic membranes, as well as the
phase transitions into and out of it. This novel phase lies between the previously predicted flat and crumpled
phases, both in temperature and in its physical properties: it is crumpled in one direction, and extended in the
other. Its shape and elastic properties are characterized by a radius of gyration expandrdn anisotropy
exponeniz. We derive scaling laws for the radius of gyratiBg(L, ,L,) (i.e., the average thicknessf the
tubule about a spontaneously selected straight axis and for the tubule undutatighs ,L,) transverse to its
average extension. We show that for square membremigls intrinsic sizelL, =L,=L), Rg=L"”, andh
L1~ 72 with 7, a bending rigidity anomalous elasticity exponent related tand z. For phantom(i.e.,
non-self-avoiding membranes, we prediet= % z= % and ,=0, exactly in excellent agreement with simu-
lations. ForD =2 dimensional membranes embedded in the space of dimetisidA, self-avoidance greatly
swells the tubule and suppresses its wild transverse undulations, changing its shape expanentd 7, .
For aD-dimensional membrane embeddediind, [d, (D=2)>1], ,=0 andz=(D— 1+ 2v)/3, while for
d<d,, >0 andz=(D—-1+2v)/(3—7,). “Flory” theory yields, in the physical case dD=2 andd
=3, v=23/4, while the recent 11 e expansion results yield=0.52. The actual value af probably lies closer
to the Flory estimate, between these two limits. We give detailed scaling results for the shape of the tubule of
an arbitrary aspect ratio, i.e., for the tubule thickness, its transverse undulations, and a variety of other
correlation functions, as well as for the anomalous elasticity of the tubules, in termsod z. Finally we
present a scaling theory for the shape and specific heat near the continuous transitions into and out of the tubule
phase, and perform detailed renormalization group calculations for the crumpled-to-tubule transition for phan-
tom membraneq.S1063-651X98)05301-X]

PACS numbg(s): 82.65.Dp, 64.60.Fr, 05.48)]

[. INTRODUCTION plane tilt ordef9]) and found, astonishingly, that anisotropy,
a seemingly innocuous generalization, actually leads to a

Tethered membrang&—4] became a subject of great in- wealth of new phenomena. Most dramatically, we found an
terest when it was theoretically predict¢fl] that, unlike entire new phase of membranes, which we called the “tu-
polymers, which are always orientationally disordered, membule” phase, ubiquitously intervenes between the high tem-
branes can exhibit two distinct phases: crumpled and flatperature crumpled and low temperature “flat” phases. The
with a “crumpling” transition between them. The flat phase defining property of the tubule phase is that it is crumpled in
is particularly novel and intriguing, because it provides anone of the two membrane directions, but “flafi.e., ex-
example of a two-dimensional system with a continuougended in the other. Its average shape is a long, thin cylinder
symmetry that nonetheless exhibits a long-ranged dsgex-  of lengthR, =L, X O(1) and radiuRg(L, )<L, , whereL,
cifically, long-ranged orientational order in the normal to theandL, are the dimensions the membrane would have in the
membrangin apparent violation of the Hohenberg-Mermin- extended and crumpled directions, respectively, were it to be
Wagner theoren{6]. This ordering is made possible by flattened out. It should be clarified here that we use the term
“anomalous elasticity” [5,7,8: thermal fluctuations infi- “cylinder” extremeljoosely; as illustrated in Fig. 2, a cross
nitely enhance the bending rigidity of the membrane at section of the membrane perpendicular to the tubule aRis (
long wavelengths, thereby stabilizing the orientational ordewwill look as disordered as a flexible polymer. These tubules,
against these very fluctuations. This is perhaps the most draccurring as a low temperature phase of anisotrpplgmer-
matic illustration yet found of the phenomenon of “order izedmembranes, have little in comme@and therefore should
from disorder.” not be confusedwith microtubules that are found ilquid

Rich as these phenomena are, most past theoretical woghospholipid membrand4.0].
[4] was restricted tdsotropic membranes. In a recent paper  Only in the special case of perfectly isotropic membranes
[1], we extended these considerationdrwinsically aniso- [11] is it possible for the membrane to undergo a direct tran-
tropic membranede.g., polymerized membranes with in- sition from the flat to the crumpled phase. The theoretically
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FIG. 2. Schematic picture of the tubule phase of anisotropic

polymerized membrane, with the definition of its thickn&sand
t.L roughnessh,,s, our predictions for which are given in Eqd.1)
and(1.2.

average axis of orientation, obey the scaling laws

Y-TUBULE
£,=0, ¢ >0 Ro(L, ,Ly)=LYSg(Ly/LY), (1.
FLAT
£ >0, L >0 hrmd L, \Ly)=LiSh(Ly /L), (1.2
L v |
wherel=v/z,
FIG. 1. Phase diagram for anisotropic tethered membranes
showing the tubule and previously studied flat and crumpled phases. z= 3= (1+2v), (1.3

predicted[1] and recently observef] phase diagram is o ) )
shown in Fig. 1. we have specialized in Eq1.3) to D=2 (with a general

The direct crumpling transition studied previously occurs€xpression for & -dimensional membrane given in the main
in our more generic model only for that special set of cutsteX), the universal exponents and z are <1, 7, is the
through the phase diagraftike P,) that pass through the anomalous elasticity exponent for the tubule bending rigidity
origin. Generic pathglike P;) will experiencetwo phase « (as defined byx~LJ*; also see beloy and for conve-
transitions, crumpled-to-tubule, and tubule-to-flat, that are imience we chose to measure the intrinsic lengthsindL

new, heretofore uninvestigated universality classes. in units of the ultraviolet cutoff, set approximately by the
This prediction was recently dramatically confirmed in monomer(e.g., phospholipigsize.
Monte Carlo simulations of phantotne., non-self-avoiding The scaling function$g p(x) have the limiting forms

membranes by Bowick, Falcioni, and Thorleifss@FT)

[2]. They simulated membranes with different bare bending x¢~e!z - for x—0

moduli k, and «, in the orthogonak andy directions. As SR(X)= const for x— oo, 14
temperature(or one of the bending rigidities, e.gk,) is

varied, we predicted our model would follow a generic path const  for x—0

like P, in Fig. 1. And, indeed, these simulatiofig] ob- Sh(X)“[Xs/zg for X—so0 (1.9

served two specific heat bumps, corresponding to two dis-

tinct continuous transitions crumpled-to-tubule and tubule\,\,here,,p is the radius of gyration exponent of a coiled linear
to-flat (rounded by finite membrane sizejust as we polymer~2 These scaling functions armiversal(i.e., in-
predicted 1]. Furthermore, the shape of the membrane in thgjependent of material parameters and temperatugeto an
phase between these two transitions was exactly that of theerall nonuniversal multiplicative factor, which can, and
tubule abovesee Fig. 2 and had, within numerical errors, i depend on material parameters and temperature.

precisely the scaling properties and exponents that we pre- The scaling forms, Eq€1.4) and (1.5), imply that for a

study of these transitions anq the tubule phas_e, in the pfeﬁleyE L—in the limit L —soe
ence of both thermal fluctuations and self-avoidance.

There are a number of possible experimental realizations Ro(L, ~Ly=L)exL?, (1.6)
of anisotropic membranes. One is polymerized membranes
with in-plane tilt ordef9]. Fluid membranes with such order Ay Ly ~Ly=L)oc L1 7?2, 1.7

have already been found?2,13; it should be possible to

polymerize these without destroying the tilt order. SecondWwhere we have used the fact that, fgr~L , , the argument

membranes could be fabricated by cross-linking DNA mol-x=L,/L? of the scaling function§g n(x) goes to infinity as

ecules trapped in a fluid membraf2,13. Performing the L—o, and used Eq(1.3) to simplify Eq. (1.7).

cross-linking in an applied electric field would align the Detailed renormalization group calculations show that

DNA and “freeze in” the anisotropy induced by the electric is strictly positive. Hencé,,«<L for a roughly square mem-

field, which could then be removed. brane asL—~. Thus the end-to-end orientational fluctua-
The tubule cross-sectional radiRg (hereafter called the tions 6~ h,pne/L<L~7¥?—-0 asL—» for such a roughly

radius of gyratioh, and its undulation$, s transverse to its square membrane, proving that tubule or@ehnich requires
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orientational persistence in the extended diregtisrstable ; ;
against undulations of the tubule embedded in3 dimen- regime |1 regime || regime |
sions.

On the other hand, in the limit,>L, , in which the
tubule looks more and more like a linear polyntarribbon
of width L, and lengthL,), we find

3 d~=65 d:11 d

FIG. 3. lllustration(in D=2) of the three regimes of embedding
L 12 dimensiond with qualitatively and quantitatively different tubule
y ) . (L8 shape scaling properties. Our estimatesl pf~6.5 place the physi-
cal tubule @=3) deep in regime llI; the strict boumﬂ*>§ guar-

h
Lp(Ly)
anteesthis.

3/2 3/2

. L y _ L y _

rms Li(S/Z_ 0L 12+ .22~ =Y
i

acting like a rigid polymer with golymerbending rigidity
version of Eqs(5.5 and(5.7)] at wave vecton will produce
Kp(LL)ochrZ”“. (1.9  results that depend strongly ap even in the limig—0. In
particular, this apparent wave-vector-dependent stretching
It is well known [14], of course, that a linear polymer modulusg,(q) vanishesas|q|—0, according to the scaling
doesnot have long-ranged orientational order, i.e., it has alaw
finite orientational persistence lendth . For length smaller
thanLp(L, ) we recover the well-knowpl4] L3 growth of 9y(a)=0a,"Sy(ay/qa?), (1.12
transverse fluctuations. By equatihg,s from Eq.(1.8) with _ _
the lengthL, of the tubule, and definingribbon width- ~ where 7,>0 is another universal exponent, abg(x) an-
dependent persistent lengihs(L, ) to be the value of, at ~ Other universal scaling function. _
which this equality occurs, we obtain an estimate for the Similarly, the tubule bend modulus [also defined more

orientational persistence lengths of a long, skinny tubule: ~ Precisely by the renormalized version of E¢&4) and(5.6)]
becomes strongly wave vector dependentqas0, but it

Lp(L,)ocl Tt 7, (1.10  divergesin that limit,

We see that onlyvery long, skinny membranesL, x(@)=a, "S.(a,/d5), (1.13
>L,) will be orientationally disordered; for any membrane )
with a reasonable aspect rafie.,L,~L, ), L, is much less With 7,=0 yet another universal exponent, a8{(x) yet
thanLp(L,), and the orientational order of the tubule per- @nother universal scaling function. _
sists throughout it. This proves that the tubule phase is stable Relations Eqs(1.1) and(1.2) summarize all of the scaling
in the thermodynamic limit against thermal fluctuations. ~ Properties in terms of the two universal exponentand z
Equation(1.9) indicates that the effective polymer bend (or, equivalentlyn,). Clearly, we would like to predict their
modulus k(L) is “anomalous,” by which we mean the numerical values. There are three distinct cases to be consid-

fact thatx,(L,), grows as a power ok, greater(by the ered, as we dec_rease the embedding dlmenstm_m which .
“anomalous dimension” 5,2z) than 1 (naively expected theD=2-dimensional membrane fluctuates, as illustrated in
based on dimensional analysighis, together with the con- Fig. 3 (the generalization to arbitraly is given in the main
comitant anomalous dimension of the persistent IengtﬁeXt)-

Lp(L,), Eg. (1.10, embodies the phenomenon known as

“anomalous elasticity”[15,5,7,§. In addition to fluctuating Regime |

membranes, they have consequences for polymers whose in- For a phantom membrane, or for a membrane with intrin-

ternal structure is that of a long ribbon of dimensibn sic dimensionD=2 embedded in a space of dimensidn

XLy, with Ly>Lp(L )>L, . Pr(_)v_ided thaﬂ‘i_ is I_arge =d =11, self-avoidance effects can be asymptotically ig-
enough that the anomalous elasticity can manifest itself, thﬁored in the tubule phase, and we prediit

radius of gyrationRf of this polymer (which, sincel,

>Lp, will be coiled will, in fact, grow more rapidly with y=1, (1.14
thetransversalimensionL ; of the polymer than the conven-
tional elastic theory would predict. Specifically, we expect 1
=3, (1.13
Ly |\’
Rg%LP(LJ_) TL) ' 771(:01 (116)
PRt (1.19)
7,=1. (1.1

o L;pL(Ll*Vp)(lJr 7,Z) ,

while conventional elastic theory would impR&eLT ™", Regime Il

In addition to this anomalous elasticity in the effective For a self-avoiding membrane witll, <d<d,=11
polymer bend modulus, the fluctuating tubule also displaygwith d, > %), we have showr(as we describe in detail in
anomalous elasticity for stretching the tubule. In particular,Sec. V) that the bending elasticity inot anomalous, i.e.,
experiments that attempt to measure the stretching modulug,=0, as guaranteed by a&axact tubule-gauge” symmetry
gy of the tubule[defined more precisely by the renormalized (see Sec. VI B This, using Eq(1.3), immediately leads to
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the exponent relatiom=(1+2v)/3, which states that, for

d>d, , all properties of a self-avoiding tubule can be ex- 27+ m=3- -, (1.29

pressed in terms of a single radius of gyration exponefr

this ranged, <d<d =11 of embedding dimensionality, the 2
70> 0. (1.26

exponentsy andz can be computed in aa=11—d expan-

sion. This has been done recently by Bowick and Guittefye cannot calculate exactly the critical embedding dimen-
(BG) [3], who verified the validity of the Ward identitg  sjon d, (D) that separates regimes Il and IlI, but wan
=(1+2v)/3 (for D=2) perturbatively, to all orders i&.  derive arigorous lower bound on itd, (2)>2. Thus the
Furthermore, forll embedding dimensions>d, , the ab-  physical tubule,D=2, d=3 falls in regime Ill. Our best
sence of anomalous bend elastiditg., ,=0) renders the  estimate ofd, (2) is that it lies between 5 and 7.
self-avoiding interaction ineffective in stabilizing wild trans- |t should be emphasized that all of the exponentsuaie
verse tubule undulations and for square membranes, EG$ersalin a given embedding dimensiath Indeed, ford,
(1.7) and(1.10 show that the D =2)-dimensional phase is <d<11, whereall of the exponents are determined by the
only marginally stable. ForD=2, thisd, <d<d,c=11re-  single unknown exponent, there are two different analyti-
gime has cal approximations ta that agree to better than 1% fdr
>8, and to better than 10% fat's greater than the likely

2 1
5=v=>a, (1.18 values ofd, . These analytical methods are Flory thefity,
which predicts
z=%(1+2v), (1.19
3
7,.=0, (1.20 VFTd+ 1 (1.29
1 and the leading order ia=11—d expansion of Bowick and
7,=3— = (1.20)  Guitter[3], which gives
3 1 )

Regime IlI Ve~ _ce 2° (1.28

Finally, as we describe in Sec. VI, the physics of theWith
physicaltubule (i.e., D=2-dimensional tubule embedded in
d.:3 dimension}:is much richer than that for the embedding c=0.131 25. (1.29
dimensionsd>d, , where “tubule-gauge” symmetry im-

poses strichorrenormalization of the tubule bending rigidity \ve suspect, based on the experience of comparing polymer
«. Ford<d, , because of the presence of additional elasticexponents obtained from Flory theory with those obtained
nonlinearities(which are irrelevant fod neard,.=11, but  fom the ¢ expansion, that, although BG’s results are cer-
become strongly relevant for physical dimensionaldy tainly more accurate neat=11, when the BG and Flory
<d,), this € expansion aboud=d,c= 11 gives no informa-  resylts start to disagree apprecialiiy., belowd=7), the

tion about the simultaneous role that the self-avoidance anfliory result is probably the more accurate. Nonetheless, the
elastic nonlinearity play in the physical tubul®=2, d  extremelyclose agreement between these two very different
=3<d, (D=2)], where they areéboth important. We find  approaches in these high embedding dimensions increases
that, as the embedding dimensidnis lowered belowd, our faith in both of them.

<dy=11[d, (D=2)>7], the nonlinear elasticity becomes |n fact, as we describe in detail in Sec. VI B, for tBe
relevant, destabilizing the fixed point studied in H&f, and  —2_gimensional membrane,, is determined by the condi-
leading to the breakdown of the=(1+2v)/3 relation(with  ion that »(d)— 2 as d—d; . Using the Flory resul{Eq.

the amount of breakdown described by a new anomaloua_zm, this givesd, = £=6.5; while using the BG result
elasticity exponenty,). Hence physical tubulesD(=2, d EEq' (1.28] givesd, = 11— 2/(3c)=5.92.

=3) are described by a new infrared stable fixed point, that a|| of the exponents jump discontinuousigis a function

is nonperturbative inre=11—d, which incorporates the si- d) atd, ; Fig. 9 shows such a plot, schematically, for
multaneous effects of self-avoidance and nonlinear anoma,;(d) and 7,(d).

lous elasticity. This new fixed point characterizes ithe For a physical tubule, Flory theory, E(L.27) implies
<d, regime (appropriate to a physical tubylevith shape
scaling exponents ve(D=2d=3)=3, (1.30
v= g, (1.22  in contrast to the BG result Eq1.28, which impliesv (D
=2,d=3)=0.517. What is the correct value ofin d=3?
1 As discussed above, our experience with polymers suggests
V>d—1’ (1.23  that Flory theory is more reliablgl6] than thee expansion

when both are pushed well below the upper critical dimen-
sion. One might be concerned that this ceases to be true for
tubules, due to the discontinuous behavior of all of the ex-
(1+2v), (1.29 ,
3= 7, ponents at, , but we will present arguments later that sug-
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gest that this is not the case, and that Flory theory is probabl;qdlc, with d,; defined by»(d,;)=1]. However, as with any
quite accurate in the physical cased# 3. approximate method, especially with uncontrolled approxi-

It is widely [17,18, though not universally19,20, be-  mations such as the Gaussian method, there is little credibil-
lieved that self-avoidance destroys the crumpled phase. Whay in the actualvaluesof the exponents. Furthermore, the
is definitely known is that the crumpled phase has only beeiGaussian variational approximation is very closely related to
seen in simulations of phantom membranes and in more rex large expansion in d/about the embedding dimensich
cent simulations by Baumgartn¢f9] of a self-avoiding — o limit [23]. It is therefore intrinsically untrustworthy and
plaguette membrane model. It is therefore reasonable to agl hocfor small values ofd at which one is assessing the
whether our tubule phase will suffer the same fate. We thinkstability of the tubule(or crumpled phase, which very deli-
not, for the following reasons. cately and sensitively depends on the precise value af

(1) It is clear that self-avoidance, though a relevant persmalld.
turbation(in physical embedding dimensiah<d,.=11) has In the remainder of this paper we present the details of
far less effect on the tubule than the crumpled phase, sincgyr calculations. In Sec. Il we introduce the Landau-
points on the membrane widely separated inyhairection  Ginzburg-Wilson free energy for our generalized model of
never bump into each other in the tubule phase, but do in thgnisotropic polymerized membranes. In Sec. Il we will first
crumpled phase. solve this model in mean field theory. From this solution we

(2) Theanalyticargument that self-avoidance destroys thegbtain the phase diagram for anisotropic polymerized mem-
crumpled phase is based on the Gaussian variati@®®)  pranes, and identify and characterize the new tubule phase as
approximation21,22, which predicts that the radius of gy- well as the previously studied crumpled and flat phases. In
ration exponenty™L 4/d, which implies thatv=1 for  Sec. IV we show that the scaling properties of the flat and
d=4, and hence that the membrane is exter(ded flaj for ~ crumpled phases are unaffected by the anisotropy. In Secs. V
those dimensiongwhich, of course, include the physical and VI we then consider the effects of both thermal fluctua-
case ofd=3). We find that the same Gaussian variationaltions and self-avoidance on the tubule phase. We treat this
approximation leads to the same conclusion for the tubul@roblem using Flory theory, renormalization group, and

phase. Our result fob=2 is Gaussian variational methods. We calculate the upper critical
embedding and intrinsic dimensions for both effects, and

tubule_ ! (1.31) thereby show that both are relevant for the physical case of

GV " 3d-5’ ' two-dimensional membranes embedded in three dimensions.

We also show that, although therenis anomalous elasticity
and impIieSVg‘f}“'ezl for d<4, and hence an instability of for the bend modulus along the tubule nead=d =11
the self-avoiding tubule to an extendéce. fla) membrane (due to aforementioned “tubule gauge” symmetnsuch

in physical dimensions. anomaly must set in for embedding dimensidrsd, , with
We are not, however, overly concerned by this result, ford, >Z. When this happens, the fixed poifperturbative
a number of reasons. around d=11) [3] which describes a self-avoidin@hend

(@ The Gaussian variational approximation is known toe|astically noranomalous tubule, becomes unstable, and a
be far from trustworthy. For example, it prediats-2/d for  new fixed point controls the tubule phase. We derive new
linear polymers, which not only is less accurate 8Fd  exactrelations, Eqs.(6.62 and (6.63, betweenv and z,
between 1 and 4 than the Flory resutt 3/(d+2), but also  which involve anomalous elasticity exponemt (or 7,, re-
incorrectly predicts that the lower critical dimensidp be-  |ated to i) and are appropriate for a physidalith anhar-
low which linear polymers are always extendeddis=2,  monic elasticity tubule, described by this new fixed point.
whereas, in fact, it is known exactly thdt=1, aresultthat We then wuse the Flory [1] and extrapolated
is also predicted exactly by the Flory theory. Thus, thee=11-d-expansion3] results forv in this relation to de-
Gaussian variational approximationvsry unreliable in pre-  terminez and all other tubule shape exponents in terms of
dicting the lower critical dimension of a crumpled object. two constants that, unfortunately, we were not able to com-

(b) There is a good reason to believe it is equally unreli-pute accurately. In Sec. V we also derive the scaling results
able for our problem as well. If we compare the Flory pre-Eqs.(1.1) and(1.2) for Rg andh,s, and for the anomalous
diction for » with the e-expansion calculation of Ref3]  elastic theory as well.

(which is asymptotically exact id—11), in, e.g.d=8, we In Sec. VIl we use the renormalization group to analyze
find they differ less than 1/3 of 1%w,=0.332[3], vroy  the crumpled-to-tubule transition. We then construct a scal-
=1 [1]; while the Gaussian variational resulso"®=%  ing theory of the crumpled-to-tubule and tubule-to-flat tran-

=0.3684 is nearly 40 times as far aff as the Flory result. sitions, and compute within Flory theory the critical expo-

This strongly suggests that both Flory theory and ¢hex-  nents for these transitions. In Sec. VIII we summarize,

pansion are more reliable than the Gaussian variational agonclude, and make some suggestions for further analytic,
proximation, and both of them predietsubstantially<1 in ~ numerical, and experimental work.

d=3: ye=23[1] andv.=0.517[3].

(c) Finally, on more general grounds, while the Gaussian Il. MODEL
variational method can be quite useful, only some of its re- ] ) . o
sults can be trusted. Certainly it is likely that ttrendsof, Our model for anisotropic membranes is a generalization

e.g., exponents with dimensionality and D, are captured Of the isotropic model considered in R¢24]. As there, we
correctly by this theory. The very existence of the crumpledcharacterize the configuration of the membrane by giving the
phase relies on the precise valuewdfl) [it disappears ifd positionr(x), in thed-dimensional embedding space, of the
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point in the membrane labeled byDxdimensional internal u/ >0, (2.2
coordinatex. In the physical case&l=3 andD =2, of course.
Throughout the remainder of this paper, we will distinguish
between D-dimensional “intrinsic”  vectors and
d-dimensional “extrinsic” vectors by using boldface type and
for the former, and vector arrows over the latter.

We now construct the Landau-Ginzburg-Wilson free en- v y>—Uup | Uy, (2.9
ergy F for this system, by expanding to leading order in

powers of F(x) and its gradients with respect to internal
spacex, keeping only those terms consistent with the sym-
metries of the problem. These symmetries are global trans-

lation invariancer (x)—r(x) +r,, and global rotational in- The final,b, term in Eq.(2.1) represents the self-avoidance
Variance((x)ﬂﬁ -r(x), wherer, andM are a constarti.e., Qf the mem_branes; i.e., its steric or excludeq vqum_e interac-
x independentvector and a constant rotation matrix, respec-tion. Equation(2.1) reduces to the model for isotropic mem-
tively. Global translational invariance requires tifabe ex- ~ branes considered in Ref24] when t, =t,, «,, =«y,
panded only in powers afradientswith respect tox. We  «,,=0, u,=4(v+u), u,,=u,y=4u, and v, , =v,,

will furthermore take the membrane to be isotropic in the=47 .

D—1 membrane directionghereafter denoted by,) or-

thogonal to one special directi¢gwhich we cally). Since the IIl. MEAN FIELD THEORY

physical case i® =2, this specialization is innocuous.

The most general model consistent with all of these sym- We begin our analysis of this model by obtaining its mean
metries, neglecting irrelevant terms, is field phase diagram, at first neglecting the self-avoidance in-
teraction. Later, we will consider both the effects of fluctua-
tions and self-avoidance.

Uyy>0, 2.3

where

u ,=v,, +u,, /(D-1). (2.5

Fr(x)]= %j dP72x, dy| &, (521)2+ Ky (J7T)? In mean field theory, we seek a configuratiogx) that
minimizes the free energy Eq2.1) (without the self-
+Klyaif).gif—{—tl(afyF)Zq—ty(ayF)z avoidrimce termm The curvature epergie&i(ﬁff)z and
;<y((9§r)2 are clearly minimized when(x) is linear inx. We
u - -, U - - 4 i
+ %(aﬁr-&gr)% %’(@,r-ayr)z will therefore seek minima of of the form
r(X)=(£, % ,¢yy,0,0,....0. (3.0

> > v > >
+uiy((9,ﬁr-o’!yr)2+%(aﬁrﬁjr)z R .
Obviously, uniform rotationg (x)—M -r(x), of any such

V2 5.7)2 minimum, with M a constant rotation matrix, will also be
o1y (F,1)(dyr) minima. A continuous degenerate set of minima is thereby
obtained, as usual for a system with a broken continuous
b - ~ symmetry. Uniform translations of the entire membrane are
| 40 Dy,7 5(d) iyt Yl Y.
* zf d Xf d=x ar 0 =r(x)], 21 also allowed, of course.

Inserting Eq.(3.1) into Eq. (2.1), and for now neglecting
the self-avoidance term, we obtain the mean-field free energy

where thex’s, t's, u’s, andv’s are elastic constants. The first for anisotropic membranes

three terms irF (the x term9g represent the anisotropic bend-
ing energy of the membrane. The elastic constantandt _1,D-1 2 2.1, 244
ar% the ?rg/ost strongly temperature-dependent pj)narameyters in F= 2t LihG+L(O-Dii+zu (D=1,

the model, changing sign from large, positive values at high +1 uyygsﬂjly(D_ 12 gi]' (3.2
temperatures to negative values at low temperatures. Their

positivity at high temperatures reflects the membrane’s enwhereL, andL, are the linear dimensions of the flattened
tropic preference for crumpling. To see this, note that thispembrane in the. andy directions, respectively.

Cl’umpled state is one in which all the partiCleS in the mem- This mean field theory is precise|y that studied |Ong ago
brane attempt to cram themselves into the same pfoiin by Fisher and co-workerf25] for a completely different
this state, the gradients with respect to the internal spgce ~ (Magneti¢ problem. Minimizing the free energy ovér and
anda,r seek to minimize themselves, which is clearly favor- ¢y yields two possmlez phase d|agram2 topologies, depending
able whert, ,t,>0. However, when either of these becomes®" Whethetu,  uyy>vT, orui, uyy<uviy,. o
negative, it becomes favorable for the membrane to flatten FOrui.Uy,>vT,, we obtain the phase diagram in Fig. 1.
(i.e., extendlin the associated direction, as we shall show inBoth £, and ¢, vanish fort, ,t,>0. This is the crumpled

a moment. Thel andv quartic terms are higher order elastic phase: the entire membrane,em mean field theory, collapses
constants needed to stabilize the membrane when one or battto the origin,{, =,=0 i.e.,r(x)=0 for all x.

of the first order elastic constants ,t, become negative. In the regime between the positive-axis (i.e., the locus
Stability requires that t,=0 and t,>0) and the t,<0 part of the t,
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the special isotropic subspace of the full parameter space of
ty the model defined by Ec(.Z.l) specified byt, =t,, «, |
=Ky, k. y=0, uy=4(w+u), u ,=u,y=4u, and v,
=viy=4’1;. The values of the quartic couplings then satisfy

uf uy,>v?, (for u,p>0), and hence the topology of the
phase diagram is Fig. 1. The boundaries of the flat phase for
those isotropic values of the quartic couplings becdpe
=t,[1+u/v/(D—-1)] and t,=(1+u/v)t,, respectively.

For u and v both positive (as required by stability the
slopes of these lines are less than and greater than 1, respec-
tively; the isotropic locus,=t, therefore lies between the
two (i.e., in the flat phage and hence, that modebesun-
dergo a direct flat to crumpled transition.

Membranes withany intrinsic broken orientational sym-
metry (e.g., in-plane tilt ordef9], which is quite common
[12]), will generically havet,#t, . Furthermore, they will
not generically have both andt, vanish at the same tem-
perature. A generic locus through the phase diagram in Fig. 1
will be like locus P ;, and will necessarily have one of the

FIG. 4. Phase diagram for tethered membranes showing ouubule phases intervening between the flat and crumpled
tubule phase, for the range of elastic parameters when the intermghases. Our tubule phase is not only generically possible, but
diate flat phase disappears. A first-order phase transition separatgstually unavoidable, in membranes with any type or amount
y- and L -tubule phases. of intrinsic anisotropy

CRUMPLED
C.l. C _0

1= TUBULE
C’J.> 0,¢ y= 0

Y-TUBULE
Cl= 0, ¢ y> 0

=(uy/v, )t line, lies our newy-tubule phase, characterized
by £, =0 and{,= |t,|/uy,,>0: the membrane is extended
in they direction but crumpled in alD—1 L directions.

IV. FLUCTUATIONS AND SELF-AVOIDANCE
IN THE FLAT AND CRUMPLED PHASES

The_L -tubule phase is the analogous phase withytlaad In this section, we show that both the flat and the
L directions reversed;,=0 and{, = |t,|/u; , >0 (obvi-  crumpled phases of anisotropic membranes are identical in

ously a symmetrical reversal for the physical caseDof their scaling properties, at sufficiently long length scales, to
=2), and lies between the, <0 segment of the ling, the eponymous phases of isotropic membranes. Consider
=(v,y/u})t, and the positivet, axis. Finally, the flat first the flat phase. We can include fluctuations about the
phase, characterized by both mean field solution by considering small deviations from the
solution in Eq.(3.1),
£=[(t luyy=Itylo )/ (Ul uyy =0t )12 > 0, A )
3.3 r(x)=[ X +u,(X),{yy+uy(x),h(x)]. 4.7)

Zy=[(tylu,  —[t Jo, /(U] uy—v%)]*2 >0, Inserting this into our initial free energy, E.1), with t,
(34 andt, both in the range in which the flat phase is stable, we
) _ obtain the uniaxial elastic energy of R¢26]. As shown in
I|es between the t, <O segment of the line that reference, fluctuation effects in turn renormalize the an-
y=(uyy/v,y)t, and the t,<O segment of the line jsotropic elastic energy into thisotropic membrane elastic
(vly/uLL)tL energy considered by Ref&5,7,8. In the flat phase, and at
For uuuyy<viy, the flat phase disappears, and is re-sufficiently long scales, the anisotropic membranes therefore
placed by a direct first order transition from tubule toy behave exactly like isotropic membranes. This in particular
tubule along the locus,= (v, /uj )t, (see Fig. 4 The implies that the flat phase of anisotropic membranes is stable
boundaries between the tubule and the crumpled phases regainst thermal fluctuations. As in isotropic membranes, this

main the positive, andt, axes, as fouiLuyy>vfy case. is due to the fact that these very thermal fluctuations drive
Note that a direct crumpling transitigne., a direct tran- the bend modulug to infinity at long wavelength§5,7,8].
sition between the crumpled and flat phasssvery nonge- Specifically,x becomes wave vector dependent, &td)

neric in this picture: only experimental loci that pass fromdiverges likeq™ 7« asq—0. In the flat phase the standard
t,,t, >0 through the origir(locus P, in Fig. 1) can experi- Lame coefficientsu and\ [27] are also infinitely renormal-
ence such a transition. This transition is, in fact, tetracriticaized and become wave vector dependent, vanishing in the
in this picture. g—0 limit as u(q) ~X(q) ~qg"; the values ofy, and 5, in

This does not, however, imply that direct crumpling tran-the flat phase differ from those in the tubule phase, as does
sitions are nongeneric. Many membranes will be perfecththeir physical interpretation. The flat phase is furthermore
isotropic, by virtue of being formed under conditions of un- novel in that it is characterized by a universalgativePois-
broken rotational symmetrye.g., randomly polymerized son ratio[7,28], which, for D=2, is defined as the long
membranes As discussed earlier, this set of membraneswavelength limitq—0 of o=\(q)/[2u(q)+A(q)]. The
which is undoubtedly of finite measure, necessarily lies oriransverse undulations in the flat phase, i.e., the membrane
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roughnessh,,s, scales with the internal size of the mem- That the crumpled phase of anisotropic membranes is
brane ad,,«~L¢, with {=(4—D— 7,)/2, exactly. Further- identical to that of isotropic membranes is even easier to see.
more, an underlying rotational invariance imposes an exacfVhen botht, andt, are positive, all of the other local terms
Ward identity betweeny, and 7,, n,+27,=4—D, leav- in Eq.(2.), i.e, thex, u, andv terms, are irrelevant at long
ing only a single nontrivial independent exponent characterwavelengthgsince they all involve more derivatives than the
izing the properties of the flat phase of even anisotropid terms. Once these irrelevant terms are neglected, a simple
membranes. The best estimate fgrin the physical case of change of variableg, =x’t, /t, makes the remaining en-

a two-dimensional membraneDE2), embedded in a ergy isotropic. Thus the entire crumpled phase is identical in
d=3-dimensional space comes from the self-consistenits scaling properties to that of isotropic membranes. In par-
screening approximatio(SCSA of Le Doussal and Radzi- ticular, the membrane in this phase has a radius of gyration
hovsky[28], who found 7, = 4/(1+ \/1_5)~0.82. The expo- Rg(L) which scales with membrane linear dimenslotfike

nent relations above then predief,=0.36 and/=0.59. L", with »=(D+2)/(d+2) in Flory theory, and very simi-
These exponents, together with the negative Poisson rati@r values predicted by-expansion techniqug8$0-32.
predictions of Le Doussal and Radzihovsky of — 1 [28]

have been recently spectacularly verified to high precision in V. FLUCTUATIONS IN PHANTOM TUBULES

very large scale simulationdargest to date by Falcioni . . . . )
etgl [ZE% darg e by In this section, we ignore self-avoidandge., treat

“phantom” membraneg and consider the effects of fluctua-
tions on phantom tubules. We will show that these fluctua-
tions do not destroy the tubule phase, or change the topology

The root-mean-square (rms) thermal fluctuation
((N(X)—2)%=(|8n(x)|?) of the local membrane normal

n(x) about its mean valuéhere taken to be) is of the phase diagram. The detailed properties of the tubule
phase are, however, modified by the fluctuations.
(| 8n(x)|2)=(|Vh(x)|?), Let us consider thg-tubule phasdi.e., the tubule phase

with the tubule axis along the axis). To treat fluctuations,

:f d®q g?(|R(q)|?), we perturb around the mean field solutigytx) = ¢,(y,0) by
writing

D D N N
ocf d qsz da F(X)=[ 4,y +u(x),h(x)], (5.
«(q)q q% 7«

where ﬁ(x) is ad—1-component vector orthogonal to the
tubule’s axis, which we take to be oriented along yhaxis.

) ) 1 ) The average extension factdy is near but not exactly equal
where we imposed an infrared cuteff-L~~, on the integral {0 its mean field value, because fluctuations will change fit.
over wave vectord, being the smaller of the intrinsic linear Rather, we will choosé, so that all linear terms iﬁ(x) and
dimensiond. , L, of the flattened membrane. These fluctua—u(x) in the resultant elastic free energy for these variables

tlolns are f'E'te aﬁ“._’oo' \(/jv_h_en .2_ ’7|'<_ D<0. _Ir}_tr:je phy5|- are exactly canceled, in the long wavelength limit, by their
cal caseD=2, this condition is always satisfied SINGE.  f,ctyation renormalizations. This criterion guarantees that

>0. Th membran rientational fl ions remains .
0 us membrane orientational fluctuations re ahggx) andu(x) represent fluctuations around the true ground

bounded, and the flat phase is stable against thermal ﬂuctustate ofF. Precisely analogous choices have been used in the
tions, for the physical cade =2. Indeed, the SCSA predicts study of bulk smectic elasticity [15], and the flat-phase

hat th i he | itical di - - . )
tsic?;E)ierier[r]zaé]n bounded down to the lower critical dimen elasticity of isotropic membrands. 7. g

Inserting the decomposition E¢p.1) into the free energy,
g. (2.1), neglecting irrelevant terms, and, for the moment
Jgnoring the self-avoidance interaction, gives, after some al-
gebra, the elastic free ener@y,;=F it Fe, WhereF i is
simply the mean-field free energy for the tubule phase,

277D, (4.2

Note that this stability of the flat phase depends crucially,
L ) E

on the anomalous elasticity, i.e., the divergencec(d) as
g—0. In the absence of this effect, which would correspon
to ,=0, the integral over wave vector in EG.2) would
diverge logarithmically forD =2, describing divergent ori-
entational fluctuations leading to an instability of the flat F =11 D1 rt 241y 74 5.2
phase at any nonzero temperature. Hence the flat phase owes L A e ©2
its stability to the anomalous elast|cn(_y.e., the fact that andFe|[u(x),ﬁ(x)] is the fluctuating elastic free energy part
7,>>0). In contrast, as we shall show in a moment, the tu-
bule phase is marginallgtableagainst thermal fluctuations, ) .- T )
even in the absence of anomalous elastic effects. Such effects Fe= Ef d” " x dy{y[ayu+ 3 (dyh)“+ 3 (dyu)“]
are, nonetheless, actually present for self-avoiding tubules,

but they are not essential to the stability of the phase. + K(aiﬁ)z+t(géﬁ)2+ g, (a5u)?
Because of this persistent long-ranged orientational order
(i.e., because the membrane is)flatidely intrinsically sepa- +gy[ayu+ 1 (ayﬁ)2+ z (ayu)2]2}, (5.3

rated parts of the membranéise., pointsx and x’, with

|9x—xr|*|arge do not bump into ea.LCh othé.r.e., neyer have where k=ky, tjtﬁvlyﬁ, 9y= Uyy_§§/2' gLEH__uLygiy
r(x)=r(x")]; hence the self-avoidance interaction in Eq.andy=t,+u,(j are constant coefficients. Note first that the
(2.1) is irrelevant in the flat phase. coefficienty of the linear terms irF, is also the coefficient
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of the (¢9yﬁ)2 term. This is a consequence of the rotation N, dD_qu_dqy 1

invariance of the original free energy, E&.1), which leads (Ih(x)|%) “f T (2m)P tqZ + xq’’
> o

to the existence of the Goldstone modgh. The combina- o - Y

tion E(u,ﬁ)zaqur%(ayﬁ)2+%(ayu22 is the only combina- ; d®~1q,
tion of firsty derivatives ofu andh that is invariant under o>t g2
global rotations of the tubule. It is analogous to the non-

linear strain tensor of conventional elasticity thef2y]. On where we have introduced an infrared cutbjf|>L_1 in
1 €L
these general symmetry grounds, therefore, the free ENerg¥e last integral. This expression clearly reveals that for

can only depend oryu anddyh through powers oE(u,h),  “phantom” tubules, the upper critical dimensi@h,. for this
and this property must be preserved upon renormalizationyroplem, below which transverse positional fluctuations di-
This has two important consequences: the first is that, Sinc‘?/erge isD .= &; this in principle(but see discussion of domi-
as discussed earlier, the coefficient of this linear term will be,ant zero modes in Sec. ViBillows a quantitatively trust-
chosen to vanish upon renormalization via a judicious choicq\,orthy e=D,.— 2=} expansion for the physical membrane

o« LPP, (5.9

of the stretching factof,, the coefficient of ()yﬁ)z will of D=2. This should be contrasted with the resD|j.=4
likewise vanish[33]. This means that thg direction be- for the analogous critical dimension in the flat ph&&g].
comes a “soft” direction for fluctuations df in the tubule The lower critical dimensio,. below which the tubule

phase. We can trace this softness back to the spontaneous$ynecessarily crumpled in this problem is also lowered by
broken rotational symmetry of the tubule state. It is preciselythe anisotropy. Considering the fluctuations of the membrane
analogous to the softness of height fluctuations in the flahormalsVh in the harmonic approximation, one sees imme-
phase of isotropic membranes, manifested by the absence @fately that the largest of these is the fluctuation in yhe
(9¢h)?,(8,h)? terms in the elastic free energy of the flat direction,

phase, analogous to E(.3) (wheny is tuned to 0).

The second important consequence is that the ratios of the (] 5ny(x)|2>= (|ayﬁ(x)|2>,
coefficients of the quadraticf9§u)2 and the anharmonic . )
ayu(dyh)? and @,h)* terms inFg must always beexactly N J d”"*q,dg, gy
4:4:1,since they must appear together as a result of expand- o>t (2m)P tqf + qu,'

ing [a,u+ % (9,h)2+ (dyu)?]2. We will show in a few mo- .-

ments that, for this special value of these ratios, the long xf d” "q, o |3/2-D (5.9
wavelength anomalous elastic behavior of the “phantom” a>Lt gl = ' '
tubule phase can be calculatexactly

Recognizing that vanishes after renormalization, we can \hich clearly only diverges in the infrared, — limit for

now calculate the propagatafise., the harmonic approxima- p<p,.=2 (but again, see the discussions of dominant zero
tion to the Fourier transformed correlation functipby set-  mgdes in Sec. VI B

ting y=0 in Eq.(5.3. We thereby obtain In the argot of the membrane field, the elasticity of phan-
B L tom tubules is anomalous. In contrast to the flat phase, how-
(hi(a)h;(—a))=kgT&;;Gx(a), (54 aver, for phantom tubules, the exponents characterizing the
B anomalous elasticity can be calculatexactly To see this,
(u(u(—0a))=ksgTGy(q), (55 \we first note that thel fluctuations go like 2 in all direc-
where tions and hence are negligib{e the relevant wave vector
regime|qL|~q§) relative to theh fluctuations which scale
Gp Y(a)=tq? + «ay, (5.6)  like 1/9* in this regime. This justifies neglecting tB¢a,u)?
piece of the invarian€(u,h) operator. This also emerges
G, (@=0g,97 +gya;, (5.7 from a full renormalization group treatmefi83], which

shows that this term is strongly irrelevant. Once it is ne-
and 5; is a Kronecker delta when both indicesndj #y,  glected, the elastic free energy is quadratiainand these
and is zero if either or j =vy. phonon modes can therefore be integrated exactly out of the

Inspection of the propagato;, and G, reveals that the partition function

h fluctuations are much larger than thefluctuations for
|qL|~q)2,, and that it is precisely this regime of wave vectors
that dominates the fluctuations. Thus, in power counting to
determine the relevance or irrelevance of various operators,
we must count each power fif, | astwo powers ofg, . Itis  Once this is done, the only remaining anharmonic term in the
this power Counting that leads to the identification of theeffective elastic free energy f(b?r is, in Fourier space,
terms explicitly displayed in Eq(5.3) as the most relevant
ones. . . . .
Calculating the root-mean-squared real space positional  Fanlh]= %fk . [h(ky)-h(kz)][h(ks)-h(ka)]
fluctuations(|h(x)|2) in the harmonic approximation by in- 1res
tegrating the propagators over all wave vectors, we find X ky1KyoKy3kyaVi(Q), (5.1

zzf DUDh e AFelun], (5.10
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whereq=k; +k, andk; + k,+ ks +k,=0. The effective ver-
tex V,(q) above reduces to

9,9.9°
2 2
9y92+9, 2

Vh(a)= (5.12

which is irrelevant near the Gaussian fixed poibtt see
Sec. VI B), as can be seen by the simplrisotropicpower
counting described above.

The exact cancellation of the relevant termsFig,[h]
above is a direct consequence of #het:1 ratios of the
coefficients of the qur;1dratic&§u)2 and the anharmonic

ayu(dyh)? and @,h)* terms inF that were discussed ear-
lier. Given this cancellatiori,:an,{ﬁ] is now clearly less rel-
evant than the anharmonic verticggi(d,h)? and @,h)* in

ke TOo(a)P2(P
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the original free energy(before we integrated out the
phononsu). This is because the factory(a)=q?/(g,a;
+9,q?) vanishes likeg; in the relevant limitlq,[~q7,

— 0 [the other factors in Eq5.11) are precisely the Fourier
transform of @yﬁ)“, of cours@. This lowers the upper criti-
cal dimension for anomalous elasticity the hfield to Dy
=3, Thus, in the physical cag@=2, there is nho anomalous
elasticity inh ; that is, the elastic constantsand « in Eq.
(5.6) are finite and nonzero ag,—0.

However, as asserted earlier, thél elasticity Eq.(5.3),
before uis integrated outis anomalous, becausg is driven
to zero asg,—0. Indeed, a self-consistent one-loop pertur-
bative calculation of,(q), obtained by evaluating the Feyn-
man graph in Fig. 5, gives

y_qy)deilpLdpy/(Zﬂ')D

gy(q)=g§’—f

[tp? + k(P pylltlp, —a, |2+ «(|p—al)(py—ay)*]’

(5.13

Whereg§’ is the “bare” or unrenormalized value @, .

Our earlier argument shows thafp) can be replaced by
a constant in Eq(5.13 asp—0, since theh elasticity is not
anomalous. The self-consistent equatibri3 can be solved
by the ansatz

gy(a) =0ay"Se(ay/q?). (5.14

Simple power counting34] then shows that we must choose ¢

N

(5.19

n,=5—-2D. (5.19

It is straightforward to verify that these results holdat

orders in perturbation theory; that is, at every order, the lead

ing dependence oq of the contribution tog, scales like
/ .

a;"Sy(ay /9, with 7,=5-2D.

It is straightforward to verify tall orders in perturbation
theory that there is no such renormalizationgof. This is
because of the anisotropic scaling~q§, which implies
that all vertices proportional to powers pérpendiculargra-
dients ofh, i.e., powers ofVLﬁ areirrelevant Since only
such vertices can renormalizg |V, u|?, there are nael-
evantrenormalization ofg, . As a result,g, remains finite
and nonzero, or, in a word, nonanomalous|gs-0.

Using the facts thag,(q) is independent ofy, as|q,|
=q, —0 for fixedq,, and, likewise, to be independentmf
asq,—0 for fixedq, , we can obtain the limits of the scal-
ing function Sy(x):

const, X— 0

(5.17

X~ ", Xx—0 .

Sg(X)OC{

For phantommembranes witlD =2, 5,=1 andz=3, so we
i

ay.  q>qL
gy<q)o<[ A (5.18
Vo, ay<va,.

We will now use this result to compute the mean-squared

real space fluctuationg[u(L,,y)—u(0,y)]1?)=(Au?) of

u(x). These can be obtained via the equipartition theorem
and by summing all of the Fourier modes, yielding

dg,dg, 1-e€%b

_ - 2 .
QL>LLquy>Ly1 (277) gy(q)q§+glqu_

(Au?)=

Let us assume, and verify posteriori that the integral in

this_expression is dominated by wave vectors wip
<4/q,. Then, using Eq(5.18, we see that

dg,dg, 1-e%tt

QL>L11' 0|y>'-)7l (ZW)D C\/iQﬁQﬂﬁ ,
(5.20

(A7)~

wherec is a constant. Inspection of this integral reveals that
FIG. 5. Feynman graph equation for the self-consistent evaluait is dominated byqg's for which the two terms in the de-
tion of g,(q). nominator balance; this meawg~q¥“<\fq,, the last ex-
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treme inequality holding agj| — 0. This verifies our earlier a h?msE<|ﬁ(XJ_! Ly)— ﬁ(xL,0)|2>, (5.26
posteriori assumption thaqy<\/i in the dominant wave
vector regime. whereL , spans the intrinsid¢. space of the membrane. Be-
Now, changing variables in the integrg =Q, /L, , q,  causeRg is by definition the rms distance between two
EQy/Lf"‘, we find points at the samy, it is roughly the radius of a typical cross
section of the tubule perpendicular to the tubule axis. Like-
(Au?)=Ls(Ly /LY, (5.2)  wise,h,ns measures fluctuations between points widely sepa-
ratedalong the tubule axis; hence, it gives the polymerlike
where transverse “wandering” of the tubule. See Fig. 2 for an il-
iQ lustration ofRg andh,s.
Su(X)Ef dQ,dQy 1-e™: The reason we distinguish between these two quantities is
Q. >1, Q>x ! (2m)° C\/Q_J_Q321+9LQJ2_ ' that they scale in different ways with the membrane dimen-

(5.2 sionsL, andLy, in contrast to one’s naive expectations.
This happens because there are large contributions to both
We note that the scaling form for thephonon correlations quantities from “zero modes,” by which we mean Fourier
is differentthan that of the height fielti, as summarized in, modes with either, or q,=0. Those withq, =0 corre-
e.g., Egs(1.1) and(1.2), and discussed in more detail below. spond to polymerlike undulations of the entire tubule. Rec-
The limits of S,(x) scaling function can be obtained just 0gnizing the existence of both types of modes, we Fourier
as we did forSy(x); we find, including “zero modes'(see  decomposéi(x) as follows:

below),
const, X—o ﬁ(x)z;Z hg(q)e'd*+ LZ Roy(qy) €'Y
SYEOES N (5.23 VLD, e
x~1  x—0.
1 . .
For roughly square membranek,~L, =L, so, asL +\/ﬁ; hoy (g, )€t X, (5.27)
1 L

—, Ly/LY*—e, and the first limit of Eq.(5.23 is the

appropriate one. This gives where B, Oy, and QL denote “bulk modes”(i.e., modes

(Auz)och“. (5.24 with neitherq, norq,=0), and “zero modes’(i.e., modes
with eitherq, or q,=0), respectively. Note that we have
The authors of Ref[2] measured a quantity that should chosen different normalizations for the thre_e types of r_nodes.
scale like(Au?) in their simulations of a square anisotropic FOr Phantom membranes, we proceed by inserting this Fou-
membrane. They did this via their vividly named “salami” rier decomposition into the harmonik;dependent piece of
method: measuring the moment of inertia tensor of &he elastic free enerdy, (which is justified, since, as shown
“salami” slice, a set ofN points that all had the same inter- above, the elasticity fdn for a phantom tubulés not anoma-
nal y coordinate(for a y-tubule phasg It is straightforward lous), obtaining
to show that th% smallest eigenvalue of this tensor should
scale likeN{(u(x)“), since, as we shall see in a moment, the - _ -
mean-squa<red diéplacements in the other directions are mucfio™ %% (tqi + Kq§)|h8(q)|2+ %LE 1q2 Kq§|h0y(qﬂ|2
larger than those in thg direction. Therefore, from Eg. Y
(5.24 we predict that the smallest eigenvalue of this salami .
slice moment of inertia tensor scales likd.Y%. BFT actu- +3 LY% tq? Mo, (). (5.28
ally fit this eigenvalue tdNInL, which might appear to dis-
agree with our prediction, until one recognizes thatlfcs  Note the explicit presence of the factorsldt ~* andL, for
between 32 and 10@vhere most of the data of Ref2] are  the 0 modes. Applying equipartition to E¢.28, we can

taken, L**=(e/4)InL to an accuracy of better than 1%. obtain the mean-squared fluctuations of the Fourier modes:
Thus, their fit is certainly consistent with our predictions. To

test our full scaling predictions, Eq&.21) and(5.23 more . . ksT(d—D)
strenuously, one could simulate membranes with aspect ra- (Ihe(@)|9)= W’ (5.29
tios quite different from 1. In particular, we predict based on + y
Eqg. (6.2)) that increasind., at fixed L, from an initially
square configuration wouldot increase this smallest eigen- " 2y _ kgT(d—D)
. . . . <|h0y(Qy)| > D-1 4 ° (53@

value; nor would decreasing, decrease it, until an aspect LT “«ay
ratio L,~L¥* is reached, beyond which this eigenvalue
would increase likd,*. R ,._ksT(d—D)

We now turn to the computation, for the phantom tubule, ([ho, (q)]%)= W (5.3
of the tubule radius of gyratioRg and roughnesh,s, de- Yo
fined by Using these expressions inside E¢s.25 and (5.26), and

5 . . 5 being careful about converting sums grinto integrals, we
RGE<|h(LL 'Y)_ h(ol iy)| >l (525) 0bta|n
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R2=2(d-D) kBTJ d®~1g, 1 RgoLy . (5.4
2 sl

S _(1_eiQL'LL)
Ly Ju Y2m)P?t t(ﬁ

The simulations of BFT2] measuredR; for phantom
dD‘lqldqy (1—el%-ty) tubules by calculating the largest moment of inertia for a set
+kBTf 11 ) 2 | (5.32 of membrane points that all had the same value of the intrin-
Lyt (2m) tqi+ «qy sic coordinatey. While we have used here a slightly different
definition, Eq.(5.25, the square root of this moment of in-
ertia should scale like olRg . And, indeed, BFT found that
it did scale like a power ol, as in Eq.(5.41), with v
=0.24+0.02, in excellent quantitative agreement with our
predictions ofv=1%, Eq. (5.39 evaluated irD=2. It would
be of great interest to test our full anisotropic scaling predic-
tion of Eq. (5.37) by varying the aspect ratio of the mem-
brane in such simulations. For instance, one could fixand
increase., ; we predict that one should obsemvechange in
Rg . The same should hold if ordecreased |. at fixedL , :

where the subscripts; * and L, ! denote infrared cutoffs
la,[>L;* andgy>L,*, with L, =[L,|.

We observe here th&g in Eq. (5.32 does not receive
any contribution from they, =0 “zero mode” (i.e., in ad-
dition to the bulk modeR receives a contribution only
from theq,=0 zero modg

ScalingL, out of both integrals foRg by the change of
variablesQ, =q, L, and Qyqu\/:, we obtain

3-D
R2= Cl%jLLE/ZmR( i) , (533  Re should remain unchanged untij~ L, at which point
y N the tubule should begin to get thinnére., Rg should de-
creasg
where Equations(5.36 and (5.40 also correctly recover the

4o 1— gl limit of L,=constanL?—o, where theq,=0 “zero
C,=2(d—D)k Tf q (1-e ) (5.34 modes” dominate, the tubule simply becomes a phantom,
! P liemPt tg? coiled up,D — 1-dimensional polymeric network of side,
embedded id—1 dimensions, with the radius of gyration

is a constant oD(1), and Rg(L,)~L%"P)2 "In the physical dimensionsd(=2 and
- _— d=23) in patrticular this gives a coiled up ideal polymer of
d” g, dg, (1-€9"1) lengthL, with Rg~LY2, as expected.

lr(x)=2(d~ D)kBTLxl emP  tg?+ quyl ’ We now turn our attention to the calculation of the tubule

(5.35 roughnesd,,s. As we will see, here thg, =0 zero mode
will play an essential role and will dominate the transverse
with L, the unit vector alond., . Defining the scaling func- undulations for “very long” tubules, whiclitbecause of an-
tion isotropic scaling in particular includes tubules made from
square membranes. Using the definitionhgfs, Eq. (5.26),

(of we have
Sr(¥)=\ 5 T1r(X), (5.36

we see thaRg can be rewritten in the scaling form h2 =2(d—D f Y 1—e'dyly
G rms ( ) LE,]_ L;l(zﬂ_) K(qy)qs( )
Rg(L, ,L,)=LYSg(L,/L?), (5.37 '
y 1 y'=1 " TJ dD_qudqy (1_elquy)] (5 42)
with, for phantom membranes, B . . .
p Lttt 2mP tqf-i—qu
~5-2D
v (5.39 Here we observe thdit,,,s in Eq. (5.42 does not receive any
contribution from theq,=0 zero mode(i.e., in addition to
1 the bulk mode h,,s receives a contribution only from the
zZ=5. (5.39

g, =0 zero modg This is to be contrasted with the behavior

We will see later that the scaling form E¢5.37) continues  Of Rg that we noted following Eq(5.32, and is responsible
to apply when self-avoidance is included, but with differentfor the differences in scaling properties B and hypys,
values ofv andz, and a different scaling functioB(x). For ~ hoted above.

phantom membranes, from our explicit expression for the Now, for perverse and twisted reasons of our own, we

scaling functionSg, we see that it has the limiting forms: ~ choose to scalé,, rather thanL, , out of the integrals in
this expression, via the change of variab@g=q,L,,Q,

1/{yx  for x—0 =q, L2, which leads to
Sx(%) 540
const for x—oo,
: A P 2 C2L§ 5-2D Ly
In particular, the limiting form agx— oo implies that for the hims=| 5=1tLy “Ihl /=] | (5.43
physically relevant case of a square membrane-L,~L LY Vb

—oo, for which L, >L? , bulk modes dominate, and we ob-
tain where



1844

dQy (1-€'Y)

C,=2(d—D)kgT
2 ( )B 127T KQC

(5.49

is yet another constant @(1), and

d°7'Q,dQ, (1-€'%)
|h(x)52(d—D)kBTL21 (277;0 thf+KQ4'
’ y

(5.45

Defining the scaling function

Sh(X)=VCox2P D+ 1(x), (5.46

we see thah,,s can be rewritten in the scaling form

Nmd(L L vLy):Lf/Sh(Ly/LJZ_)- (5.47)
with, for phantom membranes,
~5-2D c4
(=—— (5.48
z=13. (5.49

Again, this scaling law Eq(5.47) continues to apply when
self-avoidance is included, but with different valuesZaind
Z.

Equations(5.37) and (5.47) give information about the

tubule roughness for arbitrarily large size andL,, and

arbitrary aspect ratio. For the physically relevant case of a

square membrank, ~L,~L—o, for which L,>L%, we
obtain,

| {+(D-1)i2z
S A (5.50
ms” T -1z :
1
o {H(D-D)(1-2)22, (5.51)

Equations(5.48 and(5.49 then give, for aDb=2 phan-
tom tubule,{=1% andz=1,

L3/2
y
rms™ T q/20 (5.52
LL
and therefore predict, for a square membrane,
hrms~L. (5.53

This prediction for square phantom membranes was also
spectacularly quantitatively confirmed in simulations by BFT

[2]. Their ingenious procedure for determinihg, is rather
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R, according to EQ.(5.52, h,,s will show immediate
growth (reduction) when one increasetecreasesL, at
fixed L, .

Because, unlike the flat phase, no Uf&) correction
arises, the D =2) phantom tubule is just marginalstable
but with wild transverse undulations which scale linearly
with its length. As we will see in Sec. VI, these wild fluc-
tuations will be suppressed when the effects of self-
avoidance are included.

The above discussion also reveals that our earlier conclu-
sions about the lower critical dimensi@n, for the existence
of the tubule are strongly dependent on howandL, go to
infinity relative to each other; i.e., on the membrane aspect
ratio. The earlier conclusion that,.= 3 only strictly applies
when the bulk modes dominate the physics, which is the case
for a very squat membrane, withijZ , in which casd.
<L, . For the physically more relevant case of a square
phantommembrane, from the discussion above, we find that
D=2, where the™ superscript means that there are no
logarithmic corrections dD =2 and therefore strictly speak-
ing theD =2 tubuleis marginally stable.

Equations(5.37) and (5.47) also correctly recover the
limit of L% = constant Ly—, where the tubule simply be-
comes a polymer of thickne$&;(L ) given in Eq.(5.25 of
length L, embedded ind—1 dimensions. As already dis-
cussed in Sec. | for a more general case of a self-avoiding
tubule, these equations then correctly recover this polymer
limit, giving

hrms%LP(Ly/LP)slza (5.59
with anL, -dependent persistent length
Lp(L, )LDt (5.55

which agrees with E¢1.10 of Sec. | forD=2, when one
remembers that, for the phantom membrangss 0. So, as
expected for a phantom tubule, lif, does not grow fast
enough(e.g., remains constanivhile L,—, the tubule be-
haves as a linear polymer and crumples along its axis and the
distinction between the crumpled and tubule phases disap-
pears. To summarize, the radius of gyratieg and the tu-
bule roughnes$, s scale differently with membrane size
for a square membrane because the former is dominated by
bulk modes, while the latter is dominated §y=0 modes.

VI. SELF-AVOIDANCE IN THE TUBULE PHASE

We now look at the effects of self-avoidance on the tubule

involved, and the interested reader is referred to their papdthase, and begin by calculating the upper critical embedding
for a clear and complete discussion of it. The bottom line dimensiond, below which the self-avoidance becomes rel-

however, is that they foundl,,s~L", (our vy is ¢ in their

evant in the tubule phase. A model of a self-avoiding mem-

notation with y=0.895+0.06, in excellent agreement with Prane in the tubule phase is described by a free energy func-

our predictiony=1 from Eq.(5.53 above. As withRg, it
would be interesting to test the full scaling law E§.47) by

tional which is a combination of the elastic free enefgy
from Eq. (5.3 and the self-avoiding interactidfg, from Eq.

simulating nonsquare membranes, and testing for the indd2.1 specialized to the tubule extended in thedirection

pendent scaling oh,,s with Ly, andL,. Note that, unlike

using Eq.(5.1) for r(x),
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b In the next three subsections we analyze the properties of
FSA=§J dy dy'd®~*x, d® x| a self-avoiding tubule described by this nonlinear elastic free
energy, using Flory theoryl], the renormalization group,
x 59 D[h(x,,y) —h(x],y)] and the Gaussian variational methidd.
XL Lyy+u(x,y)— &y —u(x;,y)]. (6.2 A. Flory theory

. . . . . The effects of self-avoidance in the tubule phase can be
If the in-plane fluctuations scale sublinearly witly (which estimated by generalizing standard Flory arguments from

we will seli-consistently verifya posteriorithat they d.()” at polymer physic§14] to the extended tubule geometry. The
long length scales one can ignore the phonons inside thﬁ)tal self-avoidance energy scales as
self-avoiding interaction above. This can be confirmed more

formally by an explicit renormalization group analy$&3]. EsaxVp?, (6.9

We then obtain a self-avoiding interaction that is localin

with corrections that are irrelevant in the renormalizationwhere

group sense and therefore subdominant at long length scales.

The appropriate free energy that describes a self-avoiding VocRde’lLy (6.5

tubule is then given by
is the volume in the embedding space occupied by the tu-

. bule, andp=M/V is the embedding space density of the
F= %f d®~Ix, dy{y[dyu+ 3 (dyh)%+3 (yu)?] tubule. Using the fact that the tubule malgk scales like
LP7'L,, we see that
+ k(202 +1(a,h)2+g, (F,u)?

L,L20e-b
+gy[dyu+ 3 (a,)2+3 (9,u)%1%} Ega> RET (6.6)
+vf dy d®~1x, d°~ 2] 8 HLh(x,,y) —h(x],y)], Using the radius of gyratioRg<L"? , and considering, as

required by the anisotropic scaling, a membrane with

(6.2 xL?, we find that ESAocL?/SA around the phantom fixed

wherev =b/2{, . point, with

It is important for simulators to note that, although the Aga=1+4(D—1)—2(d—1)v. (6.7)
self-avoiding interaction is effectively local intrinsic coor-
dinatey, this doesiot mean that the effects of self-avoidance  self-avoidance is relevant wheny,>0, which, from the
can be included in simulations that have each particle on thgphove equation, happens for von=(5—2D)/4 [as per Eq.
membrane avoid only those labeled by the samteénsic y (5,387 when the embedding dimension
coordinate. Such a simulation, rather, models the very differ-

ent (unphysical self-avoiding interaction sp 6D—1
d<duc—5_2D. (6.9
wrong__ D—-1 D-1,,/ _ 4
Fsa Uf dy d™ 5, 7 Afu(x,,y) ~ulxy)] For D=2-dimensional membranesi>~=11. Thus, self-
-1 . avoidance is strongly relevant for the tubule phasdin3,
X Hh(x,y) —h(x,y)], (6.3 in contrast to the flat phase.

We can estimate the effect of the self-avoidance interac-
which accounts for interaction only of particles that have thetions onRg(L,) in Flory theory, by balancing the estimate
same intrinsic coordinatg andthe same extrinsic coordi- Eq. (6.6) for the self-avoidance energy with a similar esti-
nate. For large membranes, this unphysical interaction isnate for the elastic energy:
smaller than the true self-avoiding interaction in E§2) by
a factor that scales like the inverse of the rms fluctuations of Rg)? D-1
u, (u?) "2 as can be seen trivially from the scaling of e Eelasiic=t L, LT Ly (6.9
function of u in Eq. (6.3). Since these fluctuations of di-
verge ad. | — like Uyns~ Lf“, with £,>0 (e.g.,{,= 3, for EquatingEasiicWith Eg,, We obtain a Flory estimate for the
d=11 andD = 2), thewrongself-avoiding interaction in Eq. radius of gyratiorRg :

(6.3 drasticallyunderestimateshe true self-avoiding inter-

action by a factor that diverges in the thermodynamic limit. Rg(L, )L™
PP . f f . G\-1 '

Although it is tempting to do so in simulations, one must be +

careful not to implement the unphysical self-avoiding inter-

action in Eq.(6.3). Since it might be difficult to implement which should be contrasted with the Flory estimaterff

the approximatébut asymptotically exagtself-avoiding in- =(D+2)/(d+2) for the crumpledphase. The similarity of

teraction of Eq(6.2) in simulations, it is easiest to simulate the expressions is not surprising, since for the tubule phase

the unapproximated interaction in E@.1). they dimension decouples in both the intrinsic and the em-

D+1

=d+—1, (61@

Vg
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bedding spaces and is not affected by the self-avoidance. For (ii) Anisotropically rescale lengthsx(,y) and fields

the physical cas®=2, d=3, Eq.(6.10 gives [h(x),u(x)], so as to restore the ultraviolet cutoff Ao
Rgoc L34, (6.11) x, =e'x!, (6.143

a result that is known to bexactfor the radius of gyration of y=e?y’, (6.14b

aD=1 polymer embedded id=2-dimensiongd35]. Since

the cross section of the =2 tubule, crudely speaking, traces h(x)=e"'h’(x), (6.149

out a crumpled polymer embedded in two dimensitsee

Fig. 2), it is intriguing to conjecture thav=12 is also the u(x)=e@ 2’ (x"), (6.140

exactresult for the scaling of the thickness of the tubule. _
Unfortunately, we have no arguments supporting this appeawhere we have chosen the conveni¢otit not necessajy

ing conjecture. rescaling of the phonon field so as to preserve the form of
For a square memb_ranby~ L, , it is straightforward to the rotation-invariant operatdp,u + %(ayﬁ)2]2,
argue, as we did previously, that tg=0 zero modes do (iii) Define the effective length-scale-dependent coupling

not contribute toRg, andL, is the relevant cutoff. Hence constants so as to bring the resulting long wavelength effec-
Eq. (6.10 gives the correct radius of gyration. More gener-tive free energy into the same form as £6.13.
ally, we expect As discussed above, we will choose the arbitrary rescaling
exponentsy andz so as to keep the renormalizeql) and
t(l) equal to 1. This choice of and z can be shown by
standard renormalization group arguments to betlaad z
that appear in the scaling function E¢$.1) and(1.2), as we
whereSx(x) is the scaling function given in Eq1.5 andz ~ Will demonstrate later in this subsection.
is the anisotropy exponent given in EG3). The result of the three steps of the above renormalization
group transformatiorii.e., mode integration, rescaling, and
coupling redefinitioh can be summarized in differential re-
cursion relations for the flowing coupling constants:

In this subsection, we present a renormalization group
analysis of the physicalelf-avoidingmembrane, which will

v Ly
Ra(L, L)L) Syl 2|, (6.12

L

B. Renormalization group and scaling relations

also require a simultaneous treatment of the nonlinear elas- az[z’“LZJ“ D—-3-Ti(u)]t, (6.19
ticity that was already present in a phantom membrane, as
discussed in Sec. V. dx

The correct model, which incorporates the effects of both a- [2v—3z+D—1+f,(9y,9,)]«, (6.16

the self-avoiding interaction and the anharmonic elasticity, is
defined by the free energy, E¢.2),

dg
) ) d—|y=[4v—32+D—l—fg(gy)]gy, (6.17)
F= 3| @i dyle( 1P+ g, (0
L a2 di—m —7+D-3] (6.189
+gy[‘9yu+§(ayh) ] } dl 4 91 .
+v | dy P 2x,d° Ix' 59 Dh(x,,y)—h(x )], d
”J y & X dT o T (Ly) ~hix )] = 2D 24 72— (d-Dv—f,(0)]o, (619

dl

(6.13
_ where the varioud functions represent the graphicale.,
where we have seg=0 and dropped the subdominant pho- pertyrbative corrections. Since the self-avoiding interaction

non anharmonicity. . > e
It is convenient for the purposes of this section to choosé)nly involvesh, and the parameters in tiepropagator (

. = and k) are going to be held fixed at 1, the graphical correc-
the units of Igng'gh such that= r=1 throughout, and c.hoose ions coming from self-avoiding interaction alone depend
the renormalization group rescalings to keep them fixed at nly on the strength of the self-avoiding interaction. There-
even after the diagrammatic corrections are taken into 3%re. toall orders inv. and leading order irg, , f (v') and
count (i.e., beyond the tree leyelWe follow the standard f (v,) are only functioﬁs ob andf (g, .g,) a%t’jf t(g ) are
renormalization group proceduf86]: v KAy 9L 9\ Iy

) ) . only functions ofg, andg, .
(i) Integrate out fluctuations of the Fourier modeg)) It is important to note thag, suffers no graphical correc-

andh(q) of the fieldsu(x) andh(x) with wave vectors in  ions je.. Eq.6.18 is exact This is enforced by an exact
the high wave vector shelhe™'<q, <A, —»<g,<c, symmetry

where the ultraviolet cutoff\ is of order an inverse micro-

scopic length, andl is a parameter known as the “renormal- u(x,,y)—u(x, ,y)+x(x,), (6.20
ization group time.” This integration can, of course only be

accomplished perturbatively in the nonlinear couplinggnd ~ wherex(x, ) is an arbitrary function ok, , under which the
gy - nonlinearities inF are invariant.
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We further note that there is an additional tubulebrane; i.e.,v=0. In this casef(v)=0, and to keept(l)
“gauge”-like symmetry forg,=0, fixed we see from the recursion relation E§.15 for t(l)
that we must choose

h(x,,y)—=h(x_,y)+ ¢(y), (6.21) 2yt 74D —3=0. 6.25
under which the only remaining nonlinearity, the self-
avoiding interaction, being local iy, is invariant. This “tu-
bule gauge” symmetry demands thdi(g,=04g,)=0,
which implies that ifg, =0, there is no divergent renormal-
ization of k, exactly i.e., the self-avoiding interactiomone
cannot renormalize. This norrenormalization ofx by the 2y—37z+D—-1=0. (6.26)
self-avoiding interaction, in a truncatédnphysical mem-
brane model withg,=0, has been recently verified to all Solving Eqgs.(6.25 and(6.26) for z and v yields the phan-
orders in a perturbative renormalization group calculatiorfom membrane results= 3, v=(5—-2D)/4, as obtained in
[3]. Egs.(5.38 and(5.39.

To see that the andz obtained as fixed point solutions of ~ To extract the upper-critical embedding dimensidjf
Eqgs.(6.15-(6.19 have the same physical significance as thefor self-avoidance from the renormalization group recursion
v and z defined in the scaling expressions E¢s.1) and relations, we construct from them a flow equation for a di-
(1.2) for the radius of gyratiorRg and tubule wigglyness mensionless coupling constant
hims, We use the renormalization group transformation to

Assuming for the moment that,(gy,9,)—0 asl—c,
which, as we shall see in a moment, it does for phantom
membranes fob > 2, we see from the recursion relation Eq.
(6.16 for «(I) that we must choose

relate these quantities in the unrenormalized system to those v =vt3", (6.27)

in the renormalized one. This gives, for instance, for the . o )

radius of gyration wherea andb will be chosen to eliminate the arbitrary re-

scaling exponents andz from the recursion relation fow .
Ro(L,, Ly;t(0),x(0), ...) This requirement leads to the choices

=(|R(L,,y)—h(0, aY)|2>1/2|Ly,t(0),;<(0), . a=(3d-5)/8 , (6.28
=e’(|n(e”'L, ,y)—h(0, ,Y)|2>1/2|e—2'|_y A (1), ... b=(d+1)/8 , 6.29
—e"Re(e'L, e 2Lyt k(l), ...), (622  Whichimply

wheret(l),«(l), ... stand for all flowing coupling constants d_v: [6D—1—(5-2D)d]/4—f,

whose evolution witH is determined by the recursion rela- di

tions Egs. (6.159-(6.19. Choosingl=I1,=InL, this be- d+1 3d—5 \_

comes Tf"_ Tft v, (6.30

Ro(Li,Lyitie, o )=LIRG[LLy/LT it(L).ellyo), - - -] Of course, an identical flow equation is obtained #¢t) if
(6.23 one instead requires thatl) and «(l) are fixed, i.e., inde-
pendent ofl, thereby determining’ and z and using them
inside Eq.(6.19.
It is easy to see that the sign of the terms in the square
bracket determines the relevance of the self-avoiding inter-
action, which becomes relevant when

This relation holds foany choice of the(after all, arbitrary
rescaling exponents andz. However,if we make the spe-
cial choice such that Eq$6.15—(6.19 lead to fixed points
[see Eqs(6.36—(6.39], t(l,), «(I,), ... in Eq.(6.23 go
to constantsindependent of, (and hencd.,), asL, and

hencel, , go to infinity. Thus, in this limit, we obtain, from 6D—1—(5-2D)d>0, (6.31)
Eq. (6.23,
i.e., for d<d$?=(6D—1)/(5—2D), consistent with the
Ro(Ly,Ly;tik, .. )=LYRa(L,Ly/LT ity iy .. .), analysis of the Flory theory, E@6.7).
(6.29 Likewise, the renormalization group flow equations con-
tain information about the upper-criticaltrinsic dimension
wheret, ,x, , ... are the fixed point values of coupling for the anomalous elasticitf) ., below which tubule elas-

constants. This result clearly agrees with the scaling formsicity becomes anomalous. This can be s@amlogously to

for Rg, Eqg.(1.1) (with analogous derivation fdn,,,) if we  the discussion of the relevance of self-avoidance coupling

defineSg(X)=Rg(1,X;t, K, ,g;‘ %), by using Egs(6.15—(6.17) to construct the renormalization
The recursion relations, Eq&.15—(6.19, reproduce all  group flow equation for the dimensionless coupling constant

of our phantom membrane results, as well as the upper criti-

cal embedding dimensiodﬁcA for self-avoidance predicted ~ Oy

by Flory theory, Eq.(6.7), and the upper criticalintrinsic gy_t3/4K5/4’

dimension D=3 for anomalous elasticity for phantom

membranes. To see this, consider first the phantom menthosen such that its flow

(6.32
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point, in the presence of both the nonlinear elasticity and the

% = g— D—fy— Zf"+ ;ft Ey (6.33  self-avoiding interaction, we can keég =1 andg, andv
fixed at fixed point values, by requiring

is independent of the arbitrary rescaling exponengnd v. 2v+2+D—3—f(v*)=0, (6.36
Again the same recursion relation can be obtained by instead
using the values of and v required to keep(l) and (1) 2v—32+D—1+f (g% ,g*)=0, (6.37)
fixed inside the flow equation fag, (1), Eq.(6.17. Itis then YL
obvious that anharmonic elasticity becomes relevantCfor 4v—37+D—1—f,(g*)=0 (6.38
<D,.=3, where anomalous elasticity of the tubule is in- eEya
duced. As we will see below, in a phantom tubule or a tubule 2(D—1)+z—w(d—1)—f, (v*)=0. (6.39

embedded ird>d*, this anomalous elasticity manifests it-

self only in phonon () fluctuations, i.e., softengy, but | |ight of the above discussion, the anharmonic vertexafor
doesnot renormalize the bending rigidity. In physicaltu- i, this renormalization group picture becomes relevant when
bules, however, which are self-avoiding and are embedded I8, (1) renormalizes to infinity, while it isirrelevant
d=3<d, ~6.5, the elasticity is_ fuIIy_ anomalou_s, both with \yhen g, (1) flows to zero. Thus, the relevance 6, is
respect to the phonon fluctuations(i.e., gy vanishes as|  gecided by the sign of the renormalization group flow eigen-
—0) and the heighth undulations(i.e., « diverges asq value ofg, (1) in Eq. (6.18,
—0).

To analyze the renormalization of in a self-avoiding Ng =4v—z+D-3, (6.40
membrane further, it is convenient to integrate out the pho-
non fieldu as we did in Sec. V for the phantom tubule, which is exactlydetermined by the values of andz, since
obtaining g, suffers no graphical renormalization.

As we have discussed in previous sections, for a phantom
tubule »=(5-2D)/4 and z=3. For d<d3*=(6D—1)/

_1 D-1 20\ 2 L2 - e
F ZJ ™, dyLre(yh) " (7, 0) T+ Fanf ]+ Fsalh] (5—2D) (=11 for D=2), these values are modified by the

(6.34  self-avoiding interaction, but only by orde=d—dZ%, i.e.,
whereF 4., is the nonlocal interaction, E¢5.11), mediated v=(5—2D)/4+O(e), (6.41)
by integrated out phonons, with a kernel
5 z=1/2+0(e). (6.42
0 9y9.9;
Vi(Q) = 0,0:+9,0%" (6.39 Hence aD=2-dimensional tubule, embedded éhdimen-
> sions close talj;'=11,\q =—1/2 andg, (1) flows accord-
andFg, is the self-avoiding interaction. ing to
The long wavelength properties of the tubule phase will
very much depend on the behavior of the denominator in the dg, 1
kernelV, at long length scales. tiy(a)q2>g, (a)a’ (as we ar ~| 2709, (6.43

saw for a phantom tubulethen at long scalesv,(q)

~g,0°/q2, which behaves like-g? in the relevant limitof  i.e., g, is irrelevant near d=11 (for e<1), and Vy,(q)

qi~q§. In this case, simple power counting around the~quf/q§~q§’°(€) is irrelevant for a physical

Gaussian fixed point then shows that this elastic nonlinearityp = 2-dimensional tubule, and, hendg, in Eq. (6.16 van-

only becomes relevant f@ <D = 3/2, i.e., is irrelevant for ishes asd—». So k is unrenormalized neait=11, for D

a physicalD = 2-dimensional tubule, as we argued in Sec. V.=2. That is, as we described above, the anharmonic elastic-
On the other hand, if the scaling is such that(q)q> ity is irrelevant to thebendelasticity for embedding dimen-

dominates oveg,(q)q?, thenV,,(g)~g,, i.e. a constant at sion_s_neardﬁf, and in this case the full model of a self-

long length scales. Simple power counting then shows tha@voiding tubule with nonlinear elasticity reduces to the

this coupling is relevant foD<D,=2, and the bending linear elastic truncated model introduced by [Ud and re-

rigidity modulus of aD = 2-dimensional tubulés anomalous ~ cently further analyzed in Ref3].

in this case. In this simpler(but unphysical case, one is justified in
As we saw in our analysis of ghantomtubule, for which ignoring the nonlinear elasticity. One is then able to analyze

one is perturbing around@aussiarfixed point described by ~ (perturbatively ine=d3.—d) the effects of the self-avoiding

q, ~q;<q, (in the long wavelength limjt the anharmonic  interaction alone, by computing the functiorigv) and

nonlinearity is irrelevant foD> 2 and « is not anomalous. f,(v) appearing in Eqs(6.15 and(6.19 [3]. Since, as we

We now need to extend this analysis to a physical tubulediscussed above, the “tubule gauge” symmetry guarantees

i.e., to include the effects of self-avoidance. that in this case the self-avoiding interaction alone cannot
The analysis of the behavior &f,(q) (which determines renormalizex, f,=0. Thus, ford neard;, Eq.(6.37 leads

the relevance of anharmonic elasti¢igt long scales, around to 7,=0 and anexactexponent relationleaving only a

an arbitrary fixed point, is more conveniently done using thesingle independent tubule shape expopent

language of the renormalization group through the recursion

relations Eqs(6.15 and(6.19. At the globally stable fixed z=%(2v+D-1), (6.49
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which is exact for a finiteange d, <d<d32 of embedding

dimensions, and for phantom tubules in any embedding di-

mension. FoiD =2, this result was obtained independently
in Ref. [3].

However, this simple scenario, and, in particular, the scal-

ing relation Eq.(6.44), is guaranteedo break down asl is
reduced. The reason for this is that, ddecreasesy in-

creases, and eventually becomes so large that the eigenvalu
Ag, of g, changes sign and becomes positive. As discussed

earlier, once this happens, the nonlinear vertex, (B@{5),
becomes relevant, and acquires a divergent renormaliza-

tion, i.e.,f#0, and bend tubule elasticity becomes anoma-

lous. We will now show that the critical dimensiaop below
which this happens fob =2 is guaranteedto be > %, and
hence, obviously> 3.

To show this, we use the exponent relation E§44),
which is valid ford>d, , inside the expression for the ei-
genvalue\y , Eq.(6.40, obtaining

Ng, =3(10v+2D-8). (6.45

We then take advantage of a rigorous lower bound’pn

D-1
d-1’

(6.49

imposed by the condition that the monomer density
o LD RE 1oc P17 7(d71) remain finite in the thermody-
namicL, — limit. Using this bound inside Eq6.45, we
obtain

! 10
=>_
3

D-1 b s
- +20-8),

A q

(6.47

9,

from which it follows that)\gli mustbecome positive fod
<d®(D), with

(6.48

(6.49

as asserted above.

In fact, d, (2) is probably quite a bit larger than its
lower bound, as two estimates of it indicate. If, for example
we take the Flory tubule exponent= (D +1)/(d+1) in Eq.
(6.45, we obtain

dF_ESD+1 6.5
*_4_D ’ ( . @
di(2)=%, (6.51)

while if we use thee=11—d expansion result for of Bow-
ick and Guitter, D=2) [3],

(6.52

with
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N>0 [ in=2V, ol =2V
u u z u
V>Ve ] vave 1

3 d=~65 d=11 d

FIG. 6. Schematic illustratior(specialized toD=2) of the
change in relevance af, (I) which occurs ad, . For embedding
dimensions belowd, (which includes the physical case of 3),

g, (l) becomes relevant, leading to anomalous bending elasticity
with K(q)~q; 7« which diverges at long length scales. Other con-
sequences of this qualitative and quantitative change fod, are
discussed in the text.

o= (6.53

we obtain

d; =5.92. (6.59
So, based on the above estimates, we expect thatin a
=2-dimensional tubule, embedded i< d, ~6, the fixed
point of the truncated tubule model introduced by Lisand
studied in Ref[3], is unstableto anharmonic elasticit ;.
This means that diverges at long length scales, and the
scaling relation, Eq(6.44), betweenz and v breaks down.
Thus, for the physical embedding dimensids 3, the tu-
bule bend elasticity is certainly anomalous, in the sense that
x diverges, and probably quite strongly. We summarize the
above discussion in Fig. 6, schematically illustrating how the
renormalization group flow of, , and therefore the anoma-
lous « elasticity, changéatd, ) as a function of embedding
dimensiond.

Onced<d, , the new nontrivial relations Eq$5.37) and

,(6.39 hold, with functionsf,(g,,9,) andfy(g,) evaluated

at the fixed point valuegy andgy .

Using the sort of renormalization groRG) correlation
function matching calculations described earlier, Egs.
(6.22—(6.24), it is straightforward to show that the correla-
tion functions of the tubule, including anomalous elastic ef-
fects, are correctly given by the harmonic results, E§$)
and(5.7), exceptthat the elasticonstants g and x must be
replaced by wave-vector-dependent quantities that vanish
and diverge, respectively, as—0:

gy(a)=0a,"Se(ay/q?), (6.55

x(a)=a, "*S.(ay/dl), (6.56

with
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d. d
d uc *
Self-avoidance
irrelevant

111 N0
T]u>0

n
S

Self-avoidance
relevant

FIG. 8. lllustration of the physical mechanism for the enhance-

2 5 4 D ment of the bending rigidity by the sheag, elasticity. To bend a
polymerized tubule of thickne$?; into an arc of radiu®; requires
2 an Rg /R, fraction of bond stretching and therefore costs elastic

shear energy, which when interpreted as bending energy leads to a
length-scale-dependent renormalization of the bending rigidity
and to the Ward identity, Eq6.67), as described in more detail in

the text.

FIG. 7. Schematic of the tubule “phase” diagram in the embed-
ding d vs intrinsic D dimensions. Self-avoiding interaction be-
comes relevant fod<d33(D)=(6D—1)/(5—2D) (=11 for D
=2). Below thed, (D) curve [for which the lower bound is
d(D)=(4D—1)/(4—D)] the anharmonic elasticity becomes rel-
evant, leading to anomalous elasticity with a divergent bending ri-

gidity.

That is, in contrast to the behavior far>d, , for d<d,

-.there aretwo independent exponents characterizing the tu-

bule phasenot one We furthermore note that these exponent

relations automatically contain the rotational symmetry

_fK(g§ ab), 6.57 \éVard identity. This can be.e'asily seen by eliminatinffom
gs.(6.62 and(6.63), obtaining

zn,=t4(0%). (6.59 279+ n,=3—(D-1)/z. (6.64

Our earlier conclusion that the relevance\4f is deter-  Ultimately, the origin of this relation is the requirement that
mined by the sign of [Eq (6.40] can be reproduced by graphical corrections do not change the form of the rotation-

simply noting tha’gy(q)qy scales I|keq”u ,and in the long ally invariant operatof d,u+(dy h)2].

wavelength limit is therefore subdominant o ~q’” Just as the d|vergence afis controlled byf,(gy .g7),
when the softening ofgy(q)~q;’u is determined by then,
=zfg(g;‘). Becausef 4(0)=0, this physical g(q) remains
zn,>2-2z2, (6.59 nonzero and finite ag—0, only if the running coupling

_ _ o gy(1) in the renormalization group recursion equat{érl?)
which, upon using Eq.(6.38 and the definition of7,  doesgo to zero[because then the graphical pietgg*)

=f4(gy)/z, is identical to the condition that, >0. vanishe$ Examining the flow equation fag, (1), Eq.(6.17,
The scaling functions have the asymptotic forms for gy(1) to vanish, we must have
Sy(Xx—0)—Xx ", (6.60 4v—3z+D—-1<0. (6.65

6.61) However, using the lower bound om Eq. (6.46 in the
' physical case oD=2 andd=3, we find »>3. Hence, as

Combining Eqs(6.57) and(6.58 for 7, and 7, with the RG long asz<1, Eg. (6.65 is not satisfieq, and therefon@y_(q
fixed point conditions, Eq¢6.37) and(6.39, shows that, at —0)—0. thatis,»,>0. We summarize the above discus-

this new globally stable fixed pointwo exact relations hold Sion in Fig. 7. ,
betweenfour independent exponents », .., and 7, [in- We now show that the above general analysis of tubule

stead of a single relation, Eq6.44), between two expo- anomalous elasticity in the presence of self-avoidance, ob-
nents: ’ ’ tained using the renormalization group, can be reproduced

via a heuristic, but beautiful, physical argument similar to
that used by Landau and Lifshif27] to derive shell theory.

S (X—0) X,

z= 3= (2v+D—-1), (6.62 For a tubule of diameteRg, the nonzero sheay; elasticity
K leads to an effectiv®;-dependent bending rigidity modulus
which will be L, andL, dependent if the tubule diameter

7= (4v+D-1). (6.63 depends o, andL,. This can be seen as followsee Fig.

3+ my 8): If we bend the tubule with some radius of curvatiite



57 ELASTICITY, SHAPE FLUCTUATIONS, AND PHAE . .. 1851

exponents

Bl

(a)
-
e =
0 ' (b)

3 d d FIG. 10. Feynman graphs that renormalizg the anharmonic
* 1 1 elasticityg, , and(b) the bending rigidityx.

FIG. 9. Schematic graph of the shape exponerind anoma-
lous bend exponeny, (for D=2). Note the jump discontinuity as
a function of embedding dimensiah occurring atd=d, ~6.

is valid, even in a self-avoiding tubule embedded in these
high dimensions.
We note, finally, that all of the exponents must show a

>Rg, simple geometry tells us that this will induce a strain!4mP discontinuity atd, , as shown in Fig. 9. Therefore,

. . unfortunately, an extrapolation froe= 11— d-expansion in
e~dyu alongthe tubule axis of ordet ~Rg/R., since the o o
y ! truncated model with linear elasticify8] down to the
outer edge of the tubule must be stretched by this factor, an : : . - S . .
. T . hysical dimension ofl=3 (which is belowd, ) gives little
the inner edge compressed by it, in order to accomplish thmformation about the properties of a real tubule. The com
required bend. This strain induces an additional elastic en- prop '

ergy density(i.e., additional to those coming from the bare putations for a physical tUbUI? must be performed_@br
x), namely, those coming from the elastic energy. This <d, , where both the self-avoidance and anharmonic non-

goes like gy(Ly,LL)sz :gy(Ly:LL)(RG(Ly)/Rc)Z- Inter- linearities are relevant and must be handled simultaneously.

preting this additional energy as an effective bending energ'S e discussed above, fdr<d, , the eigenvalué.g >0,

density (L, ,Ly)/Rg, leads to theeffectivebending modu- eading to the flow ofy, (1) to infinity, which in turn leads to
lus k(L. L) Vh(g) =gy . Physically this regime of, — corresponds to

freezing out the phonons, i.e., settingu=0 in the free
ky(Ly L) ~gy(L, ,Ly)Rg(L, ,Ly)2 (6.660  energyF[h,u] in Eq.(6.13. This is consistent with our find-
ing that ford<d, , in the effective free energl}[ﬁ] (with
B phonons integrated outEq. (6.34), the kernelV,=g, . The
gy(Lo,Ly) =L, "Sy(Ly/LT) and Rg(L,,Ly)=LISr(L,/  resulting effective free-energy functional for a physical self-
L?) into the above expression, we obtain a relation betweeavoiding tubule is
the scaling exponents

Inserting the scaling fOI’mSKy(LL,Ly)ZL;KSK(Ly/Li),

2v=2(n,+ ny), (6.67) F= %f leXidy[K(ﬁ)z/ﬁ)z‘H(ﬂﬁﬁ)Z*' 4lgy(ayﬁ)4
which is exactly the exponent relation one obtains by sub-
tracting Eq.(6.37) from Eq.(6.38), and using the Eq$6.57) +UJ dy d®1x, d®1x! 8@ VIR(x,,y)— h(x],y]}.
and(6.58 for 5, and 7,, all of which were obtained using
renormalization group arguments. (6.69

Since the above physical shell argument is very general,
Egs. (6.66 and (6.67) hold independent of the mechanism ) ) )
that generates anomalous elasticity. For the case of the phalnfortunately, no controlled perturbative study is possible
tom membrandfor D>2), Eq. (6.66) reveals thatc is not ~ ford<d,, since one must perturb gy, around a nontrivial,
anomalous because the softening of the shear mogy(gy ~ Strong coupling fixed described by*=0(1) andgy =0.
by thermal fluctuations precisely compensates for the bend=urthermore, as we will show below, ttis fixed point there
ing rigidity produced by the finite diamet&; of the tubule. IS no upper critical dimension fay, , i.e., anharmonic non-
Equation(6.67) then correctly predicts for thphantomtu-  linearities are always relevant fat=3<d, , for any D.
bule that»,=2v/z, which is consistent with the phantom This strongly contrasts with the Gaussian fixed pdie-
tubule resultsy,=5-2D, v=(5—2D)/4, andz=3. Fur- scribing phantom membranest which the anharmonic non-

thermore, because the anharmonic elastivfgyq) is irrel-  linearity is only relevant foD <D= 3. _
evant ford>d, , In what follows, we will illustrate how one might actually

attempt to calculate the exponentsz, »,, and »,, for d
n=2vlz (6.68 <d, , and enumerate th@many) technical difficulties that
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prevent us from doing so, and conclude with a cautionary list 20—3z+1+ CK9§2=0, (6.75
of several unsuccessful uncontrolled approximations that we
have tried. _ 4v—3z+1-Cyg} =0, (6.7
In principle, all we need to do is calculate thie
(i=t,v,0,x) functions in the recursion relation®.15— _ 1) * _
(6.19, which represent the perturbativégraphical”) cor- 2+2=p(d=1)=Cpo™ =0, ©.79
rections to the associated coupling constants. Once thegghere the constant§, and C, (computed in the truncated
f-functions are known they give four equatidigs.(6.36— tubule model nead=dS for D=2) are given by3]
(6.39] that uniquely determine the four unknown tubule ue
shape exponents, z, v*, and g;‘ , as well as the flow of 1
g, (1), and therefore completely characterize the long wave- CFW, (6.78
length properties of self-avoiding anharmonic tubules.
Our goal then. is to calculat&(v), f,(v), fK(gy), and 0.068
fg(gy)'. The funqt|onsfg(g¥) andf,(g,) are Qeterm|ned by - 6.79
the diagrammatic corrections @, and «, with the corre- v o
sponding Feynman diagrams displayed in Fig. 10. The re-
sults, to leading order ig, , are These equations can be uniquely solvedifoz, gy , andv ™.
In terms ofC, andCy, in D=2 andd=3, we obtain, forv
f(9y)=C,9;, (6.70  andz
f4(9y)=Cqly. 6.70) _ 1
o(9y g9y = ac. (6.80
whereC, andC, ared- and D-dependent constants, whose
calculation proves to be the sticking point, as we will de- 1 1 Cyq
scribe below. z=3* 6C, + 6C, "’ (6.8

Of course, oncel is belowd, , no matter how close it is
to d,, the fixed point that controls the elastic properties offrom which 7, and n, can also be determined using the
the tubule phase isot perturbative ing, . Thatis, we danot  solution forgy inside Eqs(6.57) and(6.58),
expectg, to be O(d, —d), but, rather,0(1), even ford,

—d<1. Furthermore, of course, sincg ~6, d, —d is not B 3Cq

small in the physical casg#=3 anyway. For both these rea- "T1¥Cc +2C.° (6.82
. . . 9 K

sons, truncating the calculations bf and f at the leading

order ing,, as we did in Eqs(6.70 and (6.71), is an un- 3-3C,

controlled, and far from trustworthy approximation. How- (6.83
ever, we know of no other analytical approach. Furthermore,

as we shall see, even this uncontrolled analytic approach

proves intractable: a reliable calculation of the values of th%ents is to rely on the usual accuracy of the Flory theary

constant<C,. andCq has eludgd us. ) . treating the effects of self-avoidancéstead of the extrapo-
To complete the characterization of the fixed point we CaMtion of functionsf,,(v) andf,(v) down from e-expansion.

Froc;zed |fn two wg%/s. Thg m(l)St dlt[ecE)V\;.ay IIS tf e\li‘fTIL;ate thPAIthough it is usually not stated this way, in the language of
unctionsf(v) andf,(v) simply perturbatively. Luckilyfor renormalization group, Flory theory amounts to assuming

:‘S) th'? \(/jvr;s fece'.‘“{ cti)olne bydBOW'?k alnd_ ?u'(tjt[éﬂ Idn a q that the graphical corrections tand tov are the same, i.e.,
runcated harmonic tu u_e rrs1/§) @reviously introduced an f.(v*)=f,(v*). Using this in Eqs.(6.36 and (6.39, we
studied by uq1]) neard=d;.. Although, for the reasons btain the Flory result fow

that we discussed above, these calculations are not rigorously ’

TT1vCg2C,

Another approach to estimating the tubule shape expo-

applicable to a physical tubule id=3<d, (where anhar- D+1

monic elasticity is certainly importantfor lack of being able VES gL (6.89

to do any better we extrapolateesefunctions, computed

neard=11[3], down tod=3, 3

=3 for d=3, D=2,
fi(v)=Cw, (6.72 (6.89
consistent with our earlier analysis in Sec. VI A. Note that, if

f,(v)=Cyv. (6.73 £ (v)=f,(v) for all v, this result would be exadhdepen-

dentof the jump in the other exponerntsy, , andy, atd, .
Now using Egs(6.70—(6.73 in Egs.(6.36—(6.39, we  That is, it would apply everbelow d, , and v would not
obtain four equations for four unknowns, (v, g;,‘ ,andv*),  jump, or be in any way nonanalytic, df, .
expressed in terms constarilg, Cgy, C;, andC, (special- Now, of course, we know from the explicit leading order
ized here taD=2), calculation in Ref[3] that f,(v) doesnot =f,(v) exactly.
However, wedo know from that calculation that they are
2v+z—1-Cw* =0, (6.79 quite close, at least to leading order, as illustrated by the
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good agreement between Flory theory and the extrapo&atedticity for h, and hence we can calculdteh correlation func-

expansionlf this persists down td=3, and to large, and  tions exactly, we find the analog of E(f.31) is
our experience with polymers suggests that it will, then

may be quite accurately predicted by Flory theagspite

I . . dq,dg, €9 ti9Yq2
the complications associated with the onset of anomalous G(x,y)=f udah’ y (6.89
bend elasticity atl, . (2m?  ai+a;
Using the Flory value fow [Eq. (6.84)] inside Eqs(6.75
and (6.76), together with the diagrammatic correctionsso 1
andg, given in Eqs.(6.70 and(6.71), we obtain two equa- S——— T (6.90
tions (specialized tdD =2) A(7r|x|)Y?
6/(d+1)—3z+1+C,g;?=0, (6.86  which, unlike the analogous correlation function B=3,
Eq. (7.3)), is positive definite. Thus, the anomalous contri-
12/(d+1)—3z+1-Cygy =0, (6.87  bution tox in D=2 will also be positive, as we expect on
physical groundsi.e., the shell theory argument summarized
which, ford=3, give in Eq. (6.66], while the 3—D expansion isqualitatively
wrong in predicting a negative renormalization«ofClearly,
4 Ci C4(Ci+6C, Y2 it cannot be trusted quantitatively either, and is, in fact, to-

z (6.88  tally useless.

(I Direct, uncontrolled RG irb=2. Now, we at least

Now, at least in this uncontrolled approximation of trun- obtain qualitatively correct upward renormalization eof
cated perturbation theory at one loop order, it seems that wowever, here we have a different problem, that appears in
are left with the straightforward task of calculating the con-any perturbative calculation away from an upper critical di-
stantsC, andC,. Alas, things are not so simple, for reasonsmension (and is usually “swept under the rug” even
that are undoubtedly connected with the fact tiatis not ~ thoughD=2 would not,a priori, appearto be far below
perturbatively close tadj., which is the only dimension D=2z itis, in the sense that graphs thaily diverge loga-
about which one can do a genuinely controlled approximafithmically in D=3 divergeextremelystrongly inD=2. In
tion [1,3], and the much more surprising fact that, even Particular, following very closely the manipulations that lead
thoughe,=5—D is only } (for D=2), thise¢, expansion in 0 Eq. (7.395, we find a contribution tac of the form
intrinsic dimension, as we will show, is demonstralsy-
tremely unreliable, giving qualitatively different answers, o0t o @ 3M4x)
such as areduction rather than an increase &f due to 5K=le Y dyf dXx—70p>—, (6.97)
fluctuations. Our unsuccessfidut heroig attempts to calcu- 0 0 X
late C4 andC, were as follows. ) )

(I) Calculate them in a@,=32—D expansion for ahan- wherec; is a well-determined constant that we could calcu-
tommembrane, then use these same cons@nndC, for late, andc, is anarbitrary constant which depends on pre-
the real, self-avoiding membrane. This approach obvioushfisely how the infrared divergence of the above integral is
makes many errors, since, by the time we get down td:ut off with qy . This arbltrary (_:OﬂStant IS the prObIelﬁIhe
d,(3), the correlation functions of the true, self-avoiding integral equation(6.97) had diverged logarithmically, the

o rPrecise value of the constanp would be unimportantit
membrane are already quite different from those of the phan- : e ” X
; would just lead to a finite additive constanBut, since the
tom membrane, due to the effects of self-avoidance. Furthet- - . ; o
. . .~ _integral in Eq.(6.91) diverges so stronglflike (c,/qy,)“] in
more, these effects are particularly pronounced for |ntr|nS|cD_ o g : y
) ) s SA 5 ) o =2, it is extremelysensitive to the precise value 0§,
dimensionsD =3, sinced,c(;) =, as illustrated in Fig. 7. \hich we haveno clueas how to choose. Thus we hawe
Nonetheless, since no other analytical calculation is availapijlity to predicts, at all by this approach. This strong di-
able, we attempted this=5/2—D expansion. However, the yergence indicates that in this ser3e=2 is quite far from
results made no physical sense: we fountgativer,, i.e., D=3, andanykind of perturbative approach, even to simply
adOWnWardrenormal|Zat|On OfK. The deta"ed Ca|Cu|atI0nS Ca'cu'ating one |00p constants ||Kkg and CK, iS doomed_
are virtually identical to those for the renormalizationxoét
the tubule-to-crumpled phase transition, which are described
in Sec. VII. We note here simply that the origin of this nega-
tive contribution tok is a negative region of the real-space  Here we study the effects of self-avoidance within the
correlation function G(x, ,y)=C(x, /y?)¥Y(x, /y?), as tubule phase using the Gaussian variational method, which
given by Eq.(7.31). The integrand®*Y3(x) in thex integral ~ was previously applied to the study of self-avoidance in
of Eq. (7.37) has a negative region which, though narrow, crumpled isotropic membrang21,22 and in polymer$37].
actually overwhelms the positive contribution#q from the It is important to emphasize that both Flory theory and the
much longer, but smaller, tail, as we have verified by directGaussian variational method are uncontrolled approxima-

~376C, 6C

K

C. Gaussian variational theory of self-avoiding tubules

numerical integratiof38]. tions in that there is no way to estimate and reduce the error
This negative region is purely an artifact of calculating in systematically.
a fractional intrinsic dimensionD=3. In D=2 for a phan- We begin with the effective Hamiltonian that describes

tom membrane, where there is no relevant anomalous elathe long wavelength behavior of the tubule fbrd, ,
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- . N 1 . N
H=%f d®x, dy[ k(dgh)2+t(g5h)2+ 29y (ayh)*] K(lxll>=Z(d—_l)<|h<xb0)—h<ob0>|2>v,
+ d del del /5((171) ﬁ , _ﬁ /’ ' _ [1_005“&')&)]
v f y X, X| [h(x.,y)=h(x{,y)] ok (6.97
(6.92

and in Eqg.(6.96 we used the Fourier representation of the
where, in contrast to other sections, we use the notddied ~ d— 1-dimensionals function.
distinguish the long wavelength effective Hamiltoniéhe Putting all this together, for the right-hand side of Eq.
free energyfunctiona) from the actual free energy. Com-  (6.93 we obtain
putation of correlation functions in the presence of the self-

avoiding nonlinearity cannot be done exactly. However, we ~ F wk+tk? g,(d+1) ki \?

can replace the Hamiltoniad, Eq. (6.9%), by a variational (d—l)A/Z_fk G, (k) 1)+ 4(d—1) kav(k)

HamiltonianH,, quadratic in the field&i(x,,y), which al-

lows exact calculations of any correlation function. Follow- 4 51 (=12

ing the standard variational procedure, we then pick the +?J d”" X | e

ot . o NS (2w Yd—-1) K(x,)

best” form of this variational Hamiltonian, where by

“best” we mean that it minimizes an upper bound on the

true free energy [39]: + fkln[Gv(k)]v (6.98
F<F=(H-H,),+F,. (6.93

which, when minimized with respect 8,(k), 5?/66,,(k)
We take our variation ansatz Hamiltonian to be =0, gives an integral equation

dk.d®- 1k A G, (K)= kkl+1tk?
HU:%f y—DLGv(kL,kth(kmky”Z’ (6.94 T
(2m) 2v dele[l—coski-xu]

K(XL)(d+l)/2

(6.99

where G, (k, k,) is the variational kernel to be optimized (47)d-Dr2
over. Note that because of anisotropy intrinsic to the tubule, _ o _
G,(k, k,) is not rotationally invariant as it is for the analo- The only effect of the anharmonic elasticity temy is to
gous analysis of the crumpled phase. generate an upward renormalization of the effective tension
We now compute the right-hand side of H§.93, and  along they axis,
minimize it overG,(k, ,k
e it overG,(k, k), g+ Y) k§

Y7 2(d=1) JkGy (k)

A ) (6.100
<H - Hv>v:§fk[’<k3+tki_Gv(kbky)]<|h(kiaky)|2>v

Since we must choose thenormalizedtension along the
4 %f (9 ﬁ)“) extended tubule axisy] to be exactly zero in order to treat
8 ) vy the free tubule, all of the anharmonic elastic effects disappear
in this Gaussian variational approximation. That is, to model
4 PERIN CRx! (6.95 a tubule with free boundaries correctly, we should have
v X< [h(x,y) =h(xy) D). : started with an elastic Hamiltonian with a bare, negative ten-
sion piece that exactly canceled the thermally generated
whereA=L,L?"" is the “area” of the membrane, and we Ppositive contribution in Eq(6.100.
defined [,=fdy d® 1x,d° x|, and kafdkydelkL/ The simul?aneous integral equations Ed$.97) and
(2m)°. The above averages are easily evaluated witd6.99 determineG, (k) andK(x.). At long length scales
<|ﬁ(kery)|2>v:(d_ 1)/G,(k) and <5>UE<5(d71)[ﬁ(Xl,y) they are solved by(_(xl)~xlv_, where, from Eq(6.97), we
—ﬁ(x’ )), given b see tha1K(xL_=LL) is proportlor_wal to the square of the ra-
1Y) 10w 9 y dius of gyration or the tubule thickness that we are after, and
qi-1 o i hence thev that solves these coupled nonlinear integral
(8),= f q gla-[hxuy)=hegyl ) equations will be the Gaussian variational prediction for the
’ (2)d-1 radius of gyration exponent as well. We substitute this scal-
ing ansatz into Eq6.99 for GU(IZ), and find that, while for

v

_f d"'q — K%, x|} d>d32 the self-avoidance is irrelevant and=(5—2D)/4
- (Zw)d—le o (as found in Sec. VI A for d<d>? these integral equations
can only be solved if thek? term in Eq.(6.99 is exactly
1 iy (= canceled by a part coming from the integral in the last term;
- (2m)9 1\ K(|x, —x|) ' (6.9 the resulting propagator takes the form

where G, (K) = kky+vk(@FHr=Prt (6.101)
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wherev v is an effective self-avoiding interaction param- VIIl. FLUCTUATION EFFECTS
eter. Substituting this form into Eq6.97 for G,(k), and AT CRUMPLED-TO-TUBULE
requiring self-consistency with our original ans#€x,) AND TUBULE-TO-FLAT TRANSITIONS

~x2", gives The transition from the crumpled-to-flat phase in isotropic
01 membranes has been previously studi@d], and is pre-
2y (07 Taydagy[1—cogk, - x,)] dicted to be driven first order by fluctuations for embedding
X« K4+ KA+ DD+l
KKy + UK}

(6.102 dimensionsd<d.=219. As can be seen from Fig. 1, this

direct transition is very special for anisotropic membranes. It
; ; _= is easy to see that any path finely tuned to pass through the
Making Te F:hange of variables), =q, /[x,| and qy tetracritical point will undergo a direct crumpled-to-flat tran-
%Qy/|xi| » with a=[v(d+1)—D+1]/4 reveals that the ;o identical to that of isotropic membranes, discussed in
right-hand side of Eq(6.102 is proportional tox! , with Ref. [24].
Here we focus on the new transitions, crumpled-to-tubule
y=1-D+3a, and tubule-to-flat, which are generic for membranes witiz
7(1-D)+3w(d+1) amount of anisotropy. As we discussed at the end of Sec. IlI,
= 7 (6.103  there are two possible mean field phase diagram topologies
depending on the values of microscopic elastic moduli of the
membrane. However, for the crumpled-to-tubule transition
there is no difference. In this section we first study the
crumpled-to-tubule transition for a phantom membrane using
a detailed renormalization group analyses. We then study

To satisfy the self-consistent conditions E§.102, y
must be equal to 2. The resulting simple linear equation for
v has a solutiorffor d<d5A(D)],

7D—7 both the crumpled-to-tubule and tubule-to-flat transitions us-
y=—, (6.104  ing scaling theory, incorporating the effects of both the an-
3d-5 harmonic elasticity and self-avoidance. We postpone the

more technically challenging renormalization group analysis
of the phantom tubule-to-flat transitipa1] and renormaliza-
tion group analysis of crumpled-to-tubule and tubule-to-flat
for d<11, (6.105 transitions for self-avoiding membrang33] for future pub-
3d-5 lications.

which for the physical case @ =2 gives

=

_1
=z for d=11. (6.1089 A. Renormalization group analysis

. of crumpled-to-tubule transition
We observe that(d=4)=1, and thereforéaccording to P

the Gaussian variational approximatiothe tubule is no We start out with the general free energy defined in Eq.
longer crumpled along the direction. This suggests that the (2.1), ignoring for now the self-avoiding interaction. Without
tubule phase is unstable to the flat phase in embedding dioss of generality we will study the transition from the
mensionsd<4 (which unfortunately includes the physical crumpled to they-tubule phase. As discussed above, in mean
case ofd=3). However, as discussed in Sec. |, the Gaussiafield theory, this transition occurs whep—0 from above,
variational method is an uncontrolled approximation. It prob-While t, remains finite and positive. Hence, simple power
ably does give the corredtends of, e.g., exponents with counting on the quadratic part of the free energy leads to
dimensionalityd. However, the variational approach is very anisotropic scaling at the transition W'ﬁl“qy Therefore,
close, in spirit and technically, to the large expansion the only relevant terms quadratic innear the transition are
methods, and therefore it is mtrmswally unabl_e_to obtain thegpe bending rigidity along thg direction[Ky(aZF)z] and the
smalld dependence correctly. It is therefore difficult to place >

any faith in the actual values of exponents, particularly when surface tenilon terms along theand.L directionsty(dy N’

the value ofv at smalld actually determines whether the and t, (d,r)?, respectively. The corresponding noninteract-

tubule phase survives or not. ing propagator at the transition is

We believe that this Gaussian variation theory is incorrect 5
in predicting that_ the tupulia phase does r_10t exist in the pres- (r(@r;(—q)= . ”2 —C(q)s,. (7.1)
ence of self-avoidance id=3, and we reiterate our earlier t,qf +t,qp+ yqy

observation that both Flory theof{] and thee=11—d ex-

pansion [3] predict that the tubule phase survives self- The anisotropic scaling dictated by this noninteracting
avoidance. Since both these latter approaches agree quiteopagator at the transitionty(~=0) leads to significant sim-
closely with each other, and since, furthermore, ¢éfexpan-  plification of the interaction term in the free energy. Keeping
sion is the only controlled approximation, we are far moreonly the dominant nonlinearity, we obtain

inclined to trust them than the uncontrolled Gaussian ap-
proximation, which agrees with neither. The final determina-
tion of whether or not the tubule phase survives self-
avoidance will, of course, rest upon simulations and
experiments, both of which we hope our analytic work +M((9 Foo ;)2} 7.2
stimulates. y

Ky(920) 241, (T57)2+ 1y (9,1)?

FLroo1= | a° i, dy
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The critical properties of the crumpled-to-tubule transition Such an analysig36] will lead to corrections to the
can be obtained by applying scaling theory and the renormakimple rescaling ok, , t, , andt,, due to the nonlinearities
ization group to this free energy exactly as we did earlier in(in this caseu,, as discussed aboverhese corrections can
treating fluctuations in the tubule phase itself. In this casebe absorbed into “anomalous” exponents, 7;, and 86,
“lengths” means intrinsic coordinates=(x, ,y), and the defined by the large renormalization group “timef-¢ o)
“fields” are the extrinsic positions(x). Because of the limits of «y(1), t, (1), andty(l), respectively:

strongscaling anisotropy of the quadratic pieces of the free k() = e @D~ 132420, 20) (7.13
energy, we rescale, andy anisotropically, y y ' '

X, =x] €, (7.3 ti(h)=t e 3rzrmraal, (7.14

el t,(1)=t,eP~172700 20l =¢ eMl

y=y'e’, (7.4 A=y Y .15
The exponenh, defined above is the thermal eigenvalue of
the reduced temperatufsurface tension along the direc-
tion) which is an inverse of the correlation length exponent
along thel direction(see below Requiring thatx, andt,
remain invariant under the renormalization group transfor-

and rescale the “fields” according to
r(x)=eXr’(x’). (7.5

Under this transformation,

Ky(1) = K, (P~ 1737+ 20)! (7.6 mation determines the values the anisotropy exponemtd
y y ’ the field rescaling exponent,
()=t Pl @.7 2-n _10-4D+ 5, (D-3+ )~ 3n
. . . . = 1 X: )
Requiring that both, andt, remain fixed under this rescal- 4=, 8—-27,
ing (zeroth order RG transformatipfixes the “anisotropy” (7.16

exponentz and the “roughness” exponent (which is the

hich in Eog. 7.
analog ofy for the tubule phage which, as quoted above in Eq&.8) and(7.9), reduce toz

=1 and y=(3-D)/2, for ».=n=0, as is valid at zero
z=1, (7.9 order in perturbation theory iy, . N .

Once the values of;, 7, , andy at the critical point are
determined, the renormalization group gives a relation be-
tween correlation functions at or near criticalitgmall t,)

) ) . and at small wave vectorfunctions that are difficult to
Although this choice keeps the quadrafitr) part ofF, Eq.  compute, because direct perturbation theory is divejgent

(7.2, unchanged, itloeschange the quartic piece: the same correlation functions away from criticality and at
large wave vectorgfunctions that can be accurately com-

x=(5-D)/2 . (7.9

Uyy(1) =uyyelP~ 1732040, (7.0 puted using perturbation thedryFor example, the behavior
B (512- D)l of the correlation lengths near the transition can be deduced
=Uyy€ , (710 i this way:
where in the second equality we have used K@) and gi(ty):elgi(tye}\tl)’ (7.17
(7.9 for z and y. We see that, foD <3, Uyy grows upon
rescaling. Physically, this means that its effects become more gy(ty)zez'gy(tye"t'), (7.18

important at longer length scales. At sufficiently long length _ N _ _
scales, it completely invalidates the harmonic elastic theoryvhere in the above we assumed that a critical fixed point
and the naive perturbation theory in the non"nea[jm exists and all other Coupling constants have well-defined val-
around it, even for arbitrarily small coupling,,. Simple ues at the fixed point. Using the above equationstfet'

additional anisotropic rescaling of, =ax] and y=gy’, ~1, we obtain

with 8= (t, /) ?a?, which rescale®, andt, to 1, reveals -

that the effective coupling constant of the nonlinearity is &(ty)~at, =, (7.19
uy,/ky. This, together with Eq(7.11), predicts that the _ '
characteristic length scale]' beyond which thedimension- &y(ty)~at, ™,

lesscoupling constant becomes of order 1 and the harmoni%vherea~ £(1) is the microscopic cutoff, and
elastic theory and perturbation thedground i} break down P '

IS 1 4— s

= = , (7.2
. \ 1(5/2-D) YL N 22— 7—260)—n,(2— n— 56) (7.20
qé(—q (7.12
Uyy Vy=2Zv, . (7.2])
To analyze the new behavior that prevails on el@mer We now compute the anomalous exponents to lowest non-

length scales requires a full-blown renormalization groupzero order ine, wheree=3—D. As usual in thes expansion,
analysis. the order at which a given graphical correction enters the
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expansion at the same order. Thus, we expect our one-loop

values forv, andwv, to be accurate ta-0.02.

Examining Eq.(7.23, we observe that foD<D =3,
(i.e., for e>0) the Gaussian fixed point is unstable, and the
critical properties of the crumpled-to-tubule transition are

(a) characterized by a nontrivial fixed point with a fixed point
valueu, of u given by

€
U=97g- (7.24

Note that, in contrast to the treatment of crumpled-to-flat
transition in isotropic membrang®4]|, where the critical
(b) point was only stable for an unphysically large value of the
embedding dimensiod>219, the critical point characteriz-
ing the crumpled-to-tubule transition found here is stable for
all d.
Equation(7.23 can be easily integrated once the fixed
point valueu, , Eq. (7.24), is inserted foru; comparison

U with the general equatiofv.16) then gives\;,

d+2
(c) N=1-| e (7.25
FIG. 11. Feynman graphs that renormalize the nonlinearity which, upon using Eqs7.20 and(7.21) gives for a physical
uyy, (b) the tensiort,, and(c) the bending rigidityx, . membrane D=2, d=3)
v, ~1.227, (7.26

perturbation theory is equal to the number of loops in the
associated Feynman graph; We siplit thefi%(lxi) into short vy~0.614. (7.27)
and long wave vector partgx)=r_(x)+r-(x) and inte- ~ _ _
grate over the fast fields. (x). Diagrammatically this leads = 1N€ 7.« exponent tdO(e”) is determined by the diagram
to one-loop corrections ta,, andt,. There are no correc- N Fig. 11(c). Evaluating this diagram in real space and then
tions 1o x.. to first order ine. ie ny:O(Ez) Furthermore.  Fourier transforming, we find that this contributes to the free
y gy Inlony K . ’

since the interaction,, always carries a factor af, with ~ €N€"9Y
every field r, the t, tension remains unrenormalized, and , 2= 1
7:=0 to all orders, implyingz=3+0(e?) and x=(3 oF=—16u (d+2)quy|f(Q)| I'(a), (7.28
—D)/2+0(€?).

The first two diagrams in Fig. 11, followed by the rescal- where
ing introduced abovénecessary to restore the original UV

cutoff), lead to the one-loop recursion relations far | e daxG?
= (Ka/\2)uyy /(«343% andt,, respectively, (@)= | d*x, dy €77G*(x), (7.29
Ju with, in turn,
—p =eu—(d+8)u? (7.22 3 o
G(x,y) = d qudqyefh Leryqy .30
1Y)= 27512 2 4 :
(77) qJ_ qy

ot
—L=[1-(d+2)ult,, (7.23
dl where we have rescaled lengths so thgtt, =1.

After a contour integral oveq,, and an angular integral
where e=2-D, and Ky, is the surface of area of a [§da(sin)® 2%, we obtain
3/2-dimensional sphere divided by 2% As usual, in the
above, we also redefineg to be the reduced temperature, G(xl,y)=27’47-r3’4y2(x—é)
measured from its true value at the transit{@mich in mean y
field theory starts out at 0, but is shifted to a negative value
by fluctuationg. Note that, in contrast to the familiar=4  Where we have defined
— D expansion for critical phenomena, for whiek 1 in the
physical casé =3, here we have= %_ in the physical case Y(x)= J%du u1’4J,1,4(xu)e“W7cos{ Jul2+ wl4).
D=2. Hence, our one-loop expansion should be quantita- 0
tively more accurate by a factor ef =4, than the 4 D (7.32

1/4y(xi) 731
y?) '
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Now going back to Eq(7.28 we observe that thg=0 the elastic and self-avoiding interaction nonlinearjtiggs3],
piece of ['(q) contributes to theq2|F(q)|2 part of F, addi-  and limit ourselves here to discussing scaling theory and the

tively renormalizingt, which corresponds to the usual incon- Flory approximation.

sequentialT, (critical tension shift. The orderqy piece of Near the crumple_d—to—tubule transition, for square mem-
T'(q) renormalizesc, . We define branes of internal sizé, we make the following general

scaling ansatz for the extensioRg andRg of the membrane

T'(q)=T(0)— %q§B(qy) (7.33 along and orthogonal to the tubule axis, respectively:

Gy

where Rey=L""fg,(t,L?),

Gy
t7 L, t,>0,L>¢&y
B(ay)= f L dy ¥ yPGR(xy). (7.3 . ! ‘
<lyl<ay o cht’y, L<éy (7.39
Note that the infrared cutoff on the integral ovweiis qy’l. |ty|y9y|_vf~y' ty<0,L>¢&y,

This integral diverges logarithmically ag,—0. We can
identify the coefficient of the logarithm withy,. in the ex-  where subscripts, ¢, and ct refer to tubule, crumpled, and

pressionk(a,)«<d, " tubule-to-crumpled transition, respectively, agigh|t,| '
To extract this Iogarlthmlc dlvergence we make a Changés a correlation Iength for the crumpled-to-tubule transmon
of variables in the integrak, |=xy?, and find ty=(T—T)/Te, Te is the crumpled-to-tubule transition
temperature ant,>0 corresponds to the crumpled phase.
a, “1dy s Note that we have'built iljto the scaling laws the fect that
B(ay)=— PYEZ 3’21“(3/4)f f X X Y3(x) bothR, andRg scale likeL "= in the crumpled phase, with,

the radius of gyration exponent for the crumpled phase
(7.39 (which, as noted earlier, is the same for anisotropic and iso-
where we used the fact that the surface area of &rOPIC membranes Due to the extended nature of the tubule
phase{=1, of course. The anisotropy is manifested in the
crumpled phase only through the different temperature de-
pendences ORg andRy . The former of these vanishes as
—07 (since the radlus of gyration in the tubule phase is
much less than that in the crumpled phase, singev,.),
which implies y$>0, while the latter diverges a—0",
since the tubule ultimately extends in that direction, which

3.dimensional sphere is72/3T' (%), and took into account
the factor of 2 coming from the fact that the original integral
overy extends over botly>0 andy<O0.

Putting all of the above together and evaluating the coef
ficient of the Ingy,) at the fixed point value ogy from Eq.
(7.24), we obtain

C(2)(d+2) , implies Y%, <0. . .
nK:WG , (7.36 Note also that our Eq.7.39, and, in particular, the fe_ct
that Rs# R, evenabove the crumpled-to-tubule transition
where (i.e.,in thecrumpledphase, implies a spontaneous breaking

of rotational invariance even in the crumpled phase. This
o seemingly bizarrébut correct result is actually not all that

C(2)=2%1(3) fo dx X Y3(x). (7.3 unfamiliar: polymers, which are always crumpled, nonethe-
less assume, on average, nonspherical sH&2sas can be

The value ofC(2) has been calculated numerical§0] to ~ S€en, for example, by looking at the ratio of the average
be C(2)~—1.166-0.001. Using this value.e=3, and maximum and minimum eigenvalues of the moment of iner-

d=3 in Eq.(7.36, we find thatz, is very small, tia tensor. Our Eq(7.39 for t,>0 is only a littte more
“ surprising, since it predlcts an aspect reRipg/ Rg that actu-
7.(D=2,d=3)~—0.0015. (7.38 ally divergesasT— T, , and the membrane begins to extend

into a tubule configuration.

As noted earlier in our discussion of the tubule phase The exponents®). defined in above equation obey the
itself, we do not trust this negative value gf, but, rather,  gcaling laws

believe it to be an artifact of the peculiar negative reglme

that appears in the correlation functi@(x, ,y) in D= G Vc—VcGt’y
We expecty, to be positive, but still quite small, at the 7+’y=T, (7.40
phantomtubule-to-crumpled transition. Given the smallness
of 5, and e, and the vanishing ofy;, the exponents com- Gy_ .Gy
. . G Dy Vet
puted here to first order iaare expected to be very accurate. Y= (7.41
7— ¢ "

B. Scaling theory of crumpled-to-tubule

" As always, these scaling laws follow from requiring that the
and tubule-to-flat transitions

generalized scaling form matches on to known results in the
We will now incorporate the effects of self-avoidance onappropriate limits.

these transitions. We have not yet done a full renormaliza- From Flory theory, we can derive the values of the critical

tion group analysis of this problefwhich must includédoth ~ exponents in Eq(7.39, as we have already derived the ex-
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ponentsy; and v. characterizing the tubule and crumpled p2pd—1)| U2d+2)]
phases, simply by being more careful about temperature de- Ly~ ﬁ L] @ DM+ (7.48
pendent factors in that derivation. Again, we start by estimat- ty

ing the total self-avoidance energy, EG.1), in the tubule ' _ ' o '
phase(i.e., t,<0) as Esa~Vp2. Now, however, we very Using this expression fof, inside Eq.(7.42 for R, gives,
carefully write the volumeV in the embedding space occu- for a square membrané. (=L, =L),
pied by the tubule a¥~R% *R,. Writing
Ry~ (p2td~ 1)L +2)g - 1/2(d+1)(d+2)) (D+2)/(d+2)
y 1 y 1 )

R,={,Ly, (7.42 (7.49

as we did earlier in our discussion of mean field theory in theyhich, after comparing with the general form fey, Eq.
absenceof self-avoidance, and using=M/V for the em- (739 gives

bedding space density of the tubule, and again using the fact

that the tubule masM~LP 'L, , we see that D+2 (7.50
Ve= 7 4~ .
L L20-D) ¢ d+2
y=1
ESANU?. (743)
RS d+1
y Po=m o (7.5
+ 2(d+2)’

Using this estimate of the self-avoidance energy in Eq.
(2.1), and estimating the other terms in that expression b
scaling, we obtain the full Flory theory for the tubule phase
with all temperature dependent effects tak@umittedly
crudely) into account:

Bqu. (7.50 being a well-known Flory result for the radius of
‘gyration exponent, for a D-dimensional manifold, embed-
ded ind dimensions[30-32, and y%, new and special to

anisotropic membranes. Furthermore, insertifig, Eq.

R.\2 [ 2(D-1) (7.48 inside Eq.(7.49 for Rg, we obtain
E =[t 24uy L+t (—G) LI 4oL
FLZ hysy D yysy PR L L y gng—l R~ (p(@+3/(d+2)(d+1)] t] (d+5)/[2(d+2)(d+ D)),
7.4
(7.44 x U[2d+2)]| (D+2)/(d+2) , (7.52
Minimizing this overRg, we obtain Y *
p | A1) which, not surprisingly, gives the same expressionifoas
RGQLW(_) , (7.45 in EQ.(7.50, and predicts
+ tLgy
. 1
where, as we found earlies,= (D +1)/(d+ 1), but now we ﬁ:m_ (7.53

have the singular temperature dependenc&kgfnear the

crumpled-to-tubule transition explicit through the presence v, G i )

of the ¢, term. Inserting this expression fd into Eq.  +7 Y+ SUpports our earlier claim that even the crumpled

(7.44), we find phase spontaneously breaks rotational invariance in the em-
’ bedding space. It does so gently by having the identical

) A growth (for square membrang®f Rg and R, with L, but
Er=| tydy+Huyydy exhibiting anisotropy via the prefactors, with the ratio
Ry /Rg diverging as the crumpled-to-tubule transition is ap-
2(d+1) roached.
d-1/d+1)[ Y ~ 2(d-D)/(d+1) || D—1 P _ _ .
+{dm BT )<§_y) i [ S B The tubule phase is characterized fy<0 and a finite

order parametef,>0. Therefore in this phase, the term pro-
(748 portional tot(d~ V@ 1) in £, | Eq.(7.46), clearly becomes
negligible relative to the first two terms whén —oo. There-
fore, we can neglect that term for a sufficiently large mem-

amounts to balancing two of the three termsSig, which brane(i.e., a membrane larger than the critical correlation

two depending on whether one is interested in the crumplelfN9théc). Minimizing the remaining first two terms g,

phase {,>0), the tubule phaset{<0), or the transition therefore givesfyey|ty[, (independent oL ) as in mean

between themt(=0). field theory in the absence of self-avoidance. Inserting this
In the crumpled phasg>0; as a result, the order param- !n5|de Ry, Eq. (7..42),_and comparing with the general scal-

eter {, vanishes in the thermodynamic limit, allowing us to '"9 form for Ry, implies for a square membrane

neglect the quarti¢y term relative to the quadrati&; one.

The exponents defined by E{..39 can now be obtained
by minimizing Eg_in Eq. (7.46 with respect tof,, which

y__
Balancing the remaining two terms vi=1, (7.54
2/(d+1) y_1 7.59
d—1)/(d v ~ 2(d-D)/(d Y-=2- (7.
tygswti 1)/( +l)<§_y) LL 2( D)/(d+1) ’ (74D

Using this in the earlier expression E.45 for Rg, we
we obtain obtain the last line of Eq(7.39, with
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D+1 ,
TSy (7.59
1
G__ _ =
(ST I (7.57

Finally, right at the crumpled-to-tubule transitio),= 0
and we must balance the last two termsEif , Eq. (7.46.
Minimizing Eg_ over {,, at the transition we find

(7.58

which, when inserted into Eq7.42 for R,, implies for a
square membrane that

—(d—=D)/(3+2d
gL @D

RyOCL(D+d+3)/(3+2d) (759)
right at the transition. This leads to
y_D+d+3 6
Ve~ d13 (7.60

for a square membrane. Using E@.58 for ¢, in Eq. (7.49
for Rg gives, right at the transition,

G
RgocL @, (7.60)
with
« 1 [d-D 6
Vet g1 372d)" (762
_2D+3 26
S 2d+3° (763

The scaling relations, Eq$7.40 and(7.41), quoted above,
then give
_ 2(d-D)

= 2d+3 (7.64
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Note that the signs of thﬁ',y, imply that Rg shrinks as
the crumpled-to-tubule transition is approached from above,
and grows as it is approached from below, wiRledoes the
opposite. Note also that the crumpled-to-tubule transition is
quite rounded by finite size effects, even for large mem-
branes, because of the small value of the crossover exponent
¢, which leads to a large correlation lengiy(t,). Taking
an example of & =10 um membrane with lattice constant
a=10 A, we find that the crumpled-to-tubule transition is
rounded at a reduced temperatu;e(L/a)‘¢~O.13, while
our hypothetical simulation of a 2@article net experiences
rounding att,~0.36. Thus the transition may not appear
sharp experimentally or in simulations, even though it is, in
principle, in the thermodynamic limit.

The singular parts of other thermodynamic variables obey
scaling laws similar to that foRgy, Eq. (7.39. For ex-
ample, the singular part of the specific heat per partitje
i.e., a second derivative of the intensive free energy with
respect to temperature, is given by

1 41
CU~—D—2(—tyR2LD_2), (7.66
LD atf\ 27"y

which, using Eq(7.39, leads to the scaling form faC, ,

C,=Lfg(t,L?),

t;a+Lﬂ—a+¢' ty>0, L>§Ct
L L<éq (7.67
[ty " LPd 1,<0, Lo b,
where
d2
900~ el X)) (768

and are reassuringly consistent with our independent calcu-

lations of exponenty$Y , ve, v&Y, and v3Y, given in
Egs. (7.5, (7.53, (7.55, (7.57, (7.50, (7.54), (7.56),

(7.60, and (7.63, above. For the physical case of a two
dimensional membrane embedded in a three-dimensional

space D=2,d=3),

ve=14 (7.653
=1, (7.65h
=% (7.659
=3, (7.650
i =1 (7.65¢
Yi=-% (7.659
yCe=-14, (7.659
Y. =3 (7.65h

$=3 (7.65)

Using the exponents characterizify derived above, we
obtain

B=2vY—2+ ¢, (7.69a
=0, Flory theory,
(7.69H
a,=-29+1, (7.70a
_2d+3 Fi N
= dr 2 ory theory
(7.708
=2, Flory theory, d=3,
(7.700
a_=—-2 +1, (7.71a
=0, Flory theory. (7.71b
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This leads to the unusual feature that outside the criticalWe believe that the identical temperatutte )(and scaling
regime(i.e., forL> &), the singular part of the specific heat (with L) behavior ofR, andR, as the tubule-to-flat transition
above the crumpled-to-tubule transition vanishes in the theris approached from the tubule sif€qgs.(7.743 and(7.749]

modynamic limit like L~ %%~ ~2d=D)/(d+2)_| =25 jn

is an artifact of Flory theory and that in faR{> R, through-

the last expression we have used the Flory estimates of thaut this region, with the rati®, /R, actually diverging as the

exponents, evaluated iB=2 andd=3. Only within the

transition is approached from above. That is, we expect that

critical regime does the singular part of the specific heat pein reality v>v§ and vy <y’ .

particle become nonvanishing Bs-. Similar results were

first found for the direct crumpled-to-flat transition by Pac-

zuski, Kardar, and Nelsof24].

We now turn to the tubule-to-fl4tf) transition. On both
sides ofthis transition,Ry=L,xX0O(1). Therefore only the
other two radii of gyratiorR, andR, exhibit critical behav-
ior, which can be summarized by the scaling law

Rx,z: L Vi(f,zfx,z( t L ¢”) )

2 Lm, t,>0, L>¢&
=y L, L<éy (7.72
|t )7L, 1<0, L gy

wheret, =(T—Ty)/Ty, t, >0 is assumed to correspond to

the tubule phasegy |t, |4t is the correlation length for

this transition, and the exponents obey the scaling relations

V2= (~0.59, (7.733
V=1, (7.739
v— vt
yor=— (7.730
by
Vi
A . (7.739
by

In the above we have taken tRedirection to be the newin
addition toy) extended direction in the flat phaéehich is
why v§=1), and{ is the roughness expondr28] of the flat
phase(quoted for the physical case=2 andd=3), giving
the transverse height fluctuations of #the 2 components of
the displacement perpendicular to the flat membrane.

To calculate these exponents, we can use Flory theory in
the tubule phase, and at the transition, while in the flat phase,
where as discussed above, self-avoidance is irrelevant, we

simply match onto the scaling theof28] of the flat phase.
Doing so, we find that Flory theory predidatientical behav-
ior for R, andR, in the tubule phase and at the transition:

< Z_D-l—3
V= th—m, (7.743
=2 for D=2, d=3, (7.74b
X _ 7 _ l
A S T (7.749

=—1% for D=2, d=3. (7.749

In addition, Flory theory predicts

_2(d-D) 775
7 d+3 '
=1 for D=2, d=3. (7.79

In the flat phasey” follows from simply minimizing the
mean field free energwithout self-avoidance(since self-
avoidance is irrelevant in the flat phasgiving

, (7.77

X

fy_:

N=

while matchinngnglthZ— onto the critical predictiorR,
<L " at the correlation length = &=t |~ Y1 gives

J'Z:g_ytzf
T Py

~—0.73,

(7.78

(7.79

where the first equality is an exact scaling law, while the
second, approximate one uses Flory theory dgrand v,
and the SCSA calculatiof28] of ¢ for the flat phase, all
evaluated in the physical cafe=2 andd=3.

As the tubule-to-flat transition is approached from below
(the flat phase sideR, shrinks asR,~|t,|¥ andR, in-
creases aR,~|t, |~ %125 with vanishing|t, |. Approach-
ing this transition from abové&he tubule phase sid®, and
R, both extend a®, ,~|t, |~ Y43 with vanishingt, to the
L6 scaling at the tubule-to-flat critical point.

The singular part of the specific heat again obeys a scaling
law,

C,=LPugy(t, L),

f
tlélﬁfui%, t, >0, L>&;
LA, L<éy (7.80
|tl|—athﬁtf_atj¢[f’ ty<0; L>§tf’
where, in Flory theory,
ol =2, (7.81a
By=2vy+ ¢dy—2=0.
(7.810

Thus, again, the singular part of the specific heat vanishes
(now like L~*?) in the thermodynamic limit abové.e., on
the tubule sideof the transition, while it i$O(1) and smooth
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as a function of temperature in both the critical regime and irfully ordered flat phase is exciting from both basic physics
the flat phase. and potential applications points of view. Recently, much

attention has focused on utilizing self-assembled microstruc-

tures for encapsulations for various applications, most nota-

VIIl. SUMMARY AND CONCLUSIONS bly controlled and slow drug deliverj10]. The structural
) o stability of polymerized membranes is superior to their liquid

~In summary, we have studied the effects of intrinsic an-pemprane analogs. The theoretical discovery of the tubule
isotropy in polymerized membranes. We found that thisyhase significantly expands the number of possibilities, and
seemingly innocuous generahzatlon_lea(_js to a wealth of new|sq offers the potential tunabilityby, e.g., adjusting the
phenomena, most remarkable of which is thayamount of  gyrength of self-avoidangef the tubule diameter and there-
anisotropy leads to a tubule phase which intervenes betweggre the amount of encapsulation and rate of delivery.
the previously predicted flat and crumpled phases in aniso- The realization of the tubule phase in polymerized mem-
tropic membranessee Fig. 1. We have presented a detailed pranes carries even more significance if the claims that the
theory of the_ anl_sotroplc membrane_ focgsmg on the tubule;u"y crumpled phase in polymerized membranes does not
phase. Considering thermal fluctuations in the tubule phasgyist are in fact correct, since in this case the tubule phase is
we have shown that th@hantom tubule phase exhibits the only disordered phase of a polymerized membrane. With
anomalous elasticity, and calculated the elasticity and sizgye recent focus on self-assembly, it may be possible in the
exponentsexactly as summarized in Eq95.19, (5.16,  near future to freeze in intrinsic anisotropy by polymerizing
(5.38, and(5.48. We then considered the physically more tjited phase of liquid membranes or cross-linking polymers.
relevant case of aelf-avoidingtubule, finding that self-  Fyrther numerical simulations which include self-avoidance
avoiding interaction is important for physical dimensionali- offer another avenue to investigate our predictions. We hope

ties. Establishing relations between the exponent charactejhat our work stimulates further theory, simulations, and ex-
izing the diameter of the tubule and the exponents describingeriments in this area.

anomalous elasticity and transverse undulations, we calcu-
lated the tubule diameter, the size of the undulations, and the
anomalous elasticity within the Flory ard=d .—d- expan-
sion theories. We have also studied self-avoidance within a We both thank The Institute for Theoretical Physics at the
Gaussian variational approximation, which unfortunatelyUCSB and the organizers of the Biomembranes Workshop
but, we believe incorrectly predicts that self-avoiding inter-that was held there, where this work was initiated, for their
action destroys the tubule phagas it does the crumpled hospitality and financial support under NSF Grant No.
phase for d<4. We studied the crumpled-to-tubule transi- PHY94-07194. We acknowledge partial support from the
tion in mean field theory, and with the=4—D expansion. Colorado Center for Chaos and Complexity through the
Finally we developed a scaling theory of the crumpled-to-Summer Workshop on Nucleation and Critical Phenomena in
tubule and tubule-to-flat transitions. Oexact predictions Complex Nonlinear Systems, during which this work was
for the phantom tubules, Eq$5.195, (5.16, (5.38, and completed. Leo Radzihovsky acknowledges financial support
(5.48, have beerguantitativelyverified in the recent simu- from the NSF through Grant No. DMR-9625111, and partial
lations by the authors of Reff2]. support by the A.P. Sloan Foundation. J.T. acknowledges
The possibility of the existence of a tubule phase intermefinancial support by the NSF through Grants Nos. DMR-
diate between the fully disordered crumpled phase an®625111 and DMR-9634596.
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