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Computer-simulation studies of diskotic liquid crystals
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We have developed a single site anisotropic pair potential suitable for computer-simulation studies of
systems composed of disklike molecules. The general dependence of the potential on the intermolecular
separation is taken to be the shifted 12-6 Lennard-Jones form. The range and strength parameters in the
potential depend on the orientations of the molecules and that of the intermolecular vector, as introduced by
Corner; we propose that the form of this dependence may be representedSHyrastion expansion. A hard
oblate spherocylinder with a shape anisotropyHL)/L of 3, whereD is the diameter of the cylinder with
lengthL, is considered to be a more realistic model for disklike molecules. The expansion coefficients for the
range parameter were determined by mapping the expansion onto a set of center of mass separations at the
closest approach of a pair of such disks. Each term in the expansion of the strength parameter can be associated
with a specific type of interaction: isotropic, anisotrofematic favoring, columnar favoring, smectic favor-
ing), and quadrupolatilt favoring). This allows fine tuning of each coefficient in the expansion of the strength
parameter to reflect the relative strength of a specific type of interaction. To facilitate comparison with studies
of the more successful Gay-Ber(®B) potential model, we have determined the expansion coefficients for the
strength parameter by mapping the expansion onto that of the GB model. To explore the value of the model
potential for studies of diskotic liquid crystals, we have carried out a detailed Monte Carlo simulation at a
packing fraction Nv/V) of 0.55. The system was found to exhibit isotropic, diskotic-nematig)( diskotic-
columnar Dj,,,D1o,Dna), and crystal phases. The effect of temperature, density, and the form of the attractive
contribution to the potential on the phase stability and the nature of the transitions between the diskotic
mesophases is investigated. Such phase behavior contrasts with those for a system of hard oblate spherocyl-
inders and for cut hard spheres with the same shape anisotropy which only form isotropic and crystalline
phases and the GB model, which has difficulty in forming columnar phases. Spherical harmonics can be
evaluated efficiently by computers. This makes our model potential computationally cheaper.
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[. INTRODUCTION mesophases formed from such molecules depends on the
delicate balance between the short-range repulsion, the long-
Liquid crystals formed from disk-shaped molecules wererange attraction, and the flexibility of the chains attached to
first reported in 19771]. Since then these phases have beerthe disk. In addition, it is known that attractive forces are
studied extensively2—8]. However, theoretical studies of able to stabilize phases not observed with hard particle mod-
systems composed of disklike molecules are fairly limitedels alone. Systems composed of rodlike molecules interact-
[6—7]. The discovery of diskotic mesophases has initiatedng with both short-range repulsion and long-range attraction
simulation of such systems. A fluid of hard oblate spherocylhave been studied often by computer simulation, whereas
inders has been studied to serve as a reference system irstidies for disklike molecules are rather scarce. Potential
perturbation theory of a fluid composed of disk-shaped molimodels for simulating diskotic systems which account for
ecules[9,10]. Models based on thin hard platel¢fsl] and  both the short-range repulsion and long-range attraction have
oblate ellipsoids[12—14 appear to form only diskotic- been proposed. In these models the long-range part has been
nematic and isotropic phases. A cut hard sphere has beéhodeled using the attractive part of the Gay-Be(@®8) po-
proposed as a model for disklike mesogéhs]. The simu- tential suitably parametrized to reflect oblate ellipsoid sym-
lation of the system composed of cut hard spheres showedraetry. The short-range repulsive part has been modeled as a
rich polymorphism(diskotic-columnar, diskotic-nematic, cu- sphere/16] and as an oblate ellipso[d7]. The model based
batic, and isotropic phasesThese results show that repul- on a spherical core is reported to form isotropic, diskotic-
sive forces alone are able to explain liquid crystalline behavhematic, columnarlike, and crystal phases on cooling. The
ior for systems of disklike molecules although the model based on an oblate ellipsoid is reported to exhibit
thermotropic nature of the transitions for real systems idsotropic, diskotic-nematic and, depending, on the density
clearly missing from the model. rectangular D,,) or hexagonal columnarD(, phases.
The molecules which form diskotic mesophases argdlat However, the disks in the neighboring columns are reported
benzene ring, or a system of condensed nirggrounded to show strong correlations. Such translationally correlated
more or less symmetrically by alkyl chains. The nature of thestructures may be considered as layerlike. The longitudinal
pair distribution functiorg,(rj) determined in the columnar
phase for the spherical model shows oscillations with a peak
*Permanent address: Department of Chemistry, Addis Ababa Unispacing comparable to the molecular dimensions typical of
versity, P.O. Box 1176, Addis Ababa, Ethiopia. smectic phases. This contrasts with that found for the colum-
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nar phase formed from ellipsoids, which shows a periodicitydescribe the model potential and its parametrization. The
of half the molecular thickness in the longitudinal pair dis- computational details of the Monte Carlo simulation is de-
tribution function. We argue that, from the pair distribution scribed in Sec. Ill. In Sec. IV we present the results and our
functionsg(r*), g,(ri¥), andg, (r}) alone, it is difficult to discussion of them. Conclusions are given in Sec. V.
establish conclusively if the translationally ordered phase is a

columnar, a smectic, a crystal precursor or a crystal phase. In Il. PAIR POTENTIAL

general it is difficult to crystallize such systems by cooling.

This makes it difficult to establish the equilibrium structure ~ The shifted form of the Lennard-Jones 12-6 poterig2]

of the translationally ordered phase at low temperatures. has proved successful in computer-simulation studies of an-

The formation of columnar phases by hard oblate ellip-isotropic molecular interactionsl6,17,21,23 and is given
soids of revolution are ruled out based on scaling argument&s
[18,19. However, the suitably parametrized GB potential is
expected to form a columnar order. A face-to-face configu-
ration of parallel disklike molecules is more stable than a  U(Uy,Uy,r)=4¢€(Uy,U,,T)
side-by-side configuration. Such potentials favor the forma-
tion of a columnar phase. However, excluded volume effects oo
appear to favor the diskotic-nematic phase over the columnar (
phase. This result has implication on whether an oblate el-
lipsoid with a suitably parametrized GB potential could form
various types of columnar phases. The result reported in ReWherea is a distance scaling parameter. The unit veciirs
[17] indicates that it is difficult for models based on an oblateand U, define the molecular orientations, andiefines the
ellipsoid to form a columnar phase of the typgy. The intermolecular vector orientation. o(l,,0,,F)  and
thick middle region of the ellipsoid together with its rela- €(U;,U,,T) are the potential range and strength parameters,
tively tapered edge appear to make the formation of columrespectively. The distange= o(U,,0,,7) is the separation at
nar phases difficult, and are more in favor of the diskotic-which the repulsive and attractive components of the poten-
nematic phase. This effect is enhanced as the shagi@l exactly balance, and(U,,U,,r) is the potential well
anisotropy decreases. Similar behavior has been observed @epth for given molecular and intermolecular vector orienta-
the different but related system of prolate ellipsoids, with thetions. The challenge in developing a suitable potential for
length-to-breadth ratio set equal to 3 and allowed to interactomputer simulation studies of disklike molecules lies in de-
with GB potential for two of the parametets=2, v=1 and  termining the molecular and intermolecular vector orienta-
u=1, v=2, in the density of interest. The attractive part of tions dependence of the two main parameters in the Lennard-
the potential together with the ellipsoidal shape appears tdones potential: the range parametf(ml,uz,r) and the
favor the nematic phase over the smeétiphase/20,21]. strength paramete#(U,,U,,r). Ther, U;, and U, depen-

In this paper we have developed a pair potential suitablelence of the strength and range parameters have been de-
for computer-simulation studies of systems composed ofined to take various forms following the pioneering work of
disklike molecules, and so favor the formation of diskotic- Corner[24]. Berne and Pechuk&5] introduced the overlap
columnar phases following that which we developed to studynodel to estimate the range and strength parameters analyti-
rodlike molecules and showed to exhibit a rich polymor-cally as the ones which define the overlap integral of two
phism[21]. The pair potential is assumed to have the shiftecellipsoidal Gaussians. However, the most studied model is
Lennard-Jones 12-6 forfi22]. The range and strength func- the modified overlap potential proposed by Gay and Berne
tions in the potential are expanded in a complete orthogondR?2] for studies of systems composed of prolate ellipsoids.
basis set ofs functions. A hard oblate spherocylinder is con- The GB potential model was parametrized and used for com-
sidered to be a more realistic model for disklike moleculesputer simulation studies of systems composed of oblate el-
The expansion coefficients for the range parameter were efipsoids representing diskoti¢47], and appears to favor the
timated by mapping the expansion onto a set of center oformation of highly interdigitated columnar phases. Conse-
mass separations at closest approach of a pair of such diskguently the formation of the diskotic-nematic phase appears
The potential strength parameter is also expanded in the b& be favored over the diskotic-columnar phase. An oblate
sis set ofS functions. Each term in the expansion of the spherocylinder is argued to be probably a more realistic
strength parameter reflects a specific type of interaction agodel to study the structure and thermodynamic properties
isotropic, anisotropi¢nematic favoring, columnar favoring, of systems composed of disklike molecules. We, therefore
smectic favoring and quadrupolaftilt favoring), thus al- chose an oblate spherocylinder with diameter to thickness
lowing us to fine tune each coefficient to reflect the relativeratio (D +L)/L equal to 3 to represent the shape of a disko-
strength of a specific type of interaction. In this work we gen. An oblate spherocylinder of widib+L and thickness
have determined the expansion coefficients for the strength can be described as a ring-doughnut shape of cylinder
parameter by mapping the expansion onto the GB strengtéiameterL and middle-loop diametdd, where a cylindrical
parameter for disklike molecules. This has enabled us teut of diameterD along the middle of the loop is replaced
make a direct comparison with studies made on similar atwith a solid cylinder of diameteD and lengthL. We used
tractive but different repulsive interactions. We have per-the S-function expansion formalism to define the molecular
formed a detailed Monte Carlo simulation study of the dif-and intermolecular vector orientations dependence of the
ferent phases formed for the chosen model potential. range as well as the strength functidi2d]. The first sixS

The plan of the paper is as follows. In Sec. Il we will functions[26] used for expansion are presented in Table I.
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TABLE |. The first six S functions[26]. Herel,, U,

andr are unit vectors defining the orientations of the mol- 4
ecules and the intermolecular vector, respectively. All ori- y* (a)
entations are defined in an arbitrary laboratory frame and 2
we use the following definitionsfy="0,-0,, fy=0-T,
and f2: 02' F
0_
Sooo= 1, Spoo= (33— 1)/2/5, Spz= (33— 1)/2y5,
Spo0= (35— 1)/2\/5, Sppp= (231315313 2]
+9f,f,f0)/\70
Spa=(1+2 f2—5f2—5f2—20f of ,f,+ 35f2f2)/4/70 “
4 2 0 2 4 4
A. Range function
The range functiorr(U, ,U,,r) for a pair of identical cy- 4
lindrically symmetric particles is expanded in the basis set of N b
S functions as y2 - _ (b)
o (Uy,Up,F) = 00[ 00005000+ O cea( Sr02t So22) T T220520
0 .
+ 022055220 02245224l 2
where o is a distances scaling parameter angg, occo, 2
0200, T, aNnd o,y are the five expansion coefficients.
Configurations of a pair of particles which were considered 4

to be important to reproduce the shape of the particles and 4 2 0 2 —
give a good estimate of the expansion coefficients were iden-
tified. For each configuration the minimum distance of ap-
proach between a pair of molecules was determinedgsay
The more general least squares objective funcﬂ@nwas
defined as

FIG. 1. Comparison of the scaled range parameter
o* (= (ly,0,,7) o) = VX*2+y*Z, and the shape of the excluded
volume for the three models: hard oblate spherocylirisielid line),
our model via Eq(2) (triangles, and GB via Eq(4) (dashed ling
N (a) Parallel configurationse,= @,=0, 8= B,=B,=90°, ande is
Xi:zl Wi o — o0y, 0, 1) 12, 3) \;aggodl. Eabr:dlleirsp\e;ggg:éj.lar configurationss; = ap,= B8,=0°, 6=,

wherew; is a weighting function for théth configuration, A X [(fi+f)? (=% ]
U(uliu2!r):0-0 _E y

and N is the number of configurations identified. We have 1+ xfo 1—xfo

considered up to 33 configurations to reproduce the shape of (4)
interest. The expansion coefficients were determined as those

which minimizedy?2. It is important to judge the quality of Wherey=(x*~1)/(x*+1) is determined by the shape an-
the fit, particularly for the range function, by the magnitudeisotropy of the ellipsoid, defined asc=o/0.. The pa-

of the error function as well as visual inspection of the re-rameterso, and o reflect the diameter and breadth of the
sulting geometry. The quality of the fit judged simply by the €llipsoidal particleso, and o are defined as the separations
magnitude of the error function can be quite misleading, agt which the attractive and repulsive terms in the potential
an acceptable error function could result in a completely uncancel when the particles are in the edge-to-edge and face-
desirable geometry. In this exercise the absolute error in the

width and thickness of the spherocylinder was 0.001. The TABLE Il. Expansion coefficients for the potential range and
overall comparison is given in Fig. 1. The coefficients deter-Strength parameters. An oblate spherocylinder with shape anisot-
mined by this procedure are summarized in Table Il. The©PY (D+L)/L=3 was taken as a reference to determine the ex-
negative sign of the three coefficientSey, 00, and ooy, pansion coefﬁments_for range parameter via E). The cogffl- _
shows that the end-to-end and perpendicular orientations ents for the po_tentlal well depth parameter were detgrmlned via
molecules are important in determining the range paramete - (5) by ma‘fp'ng onto the GB strength parameter witile;=

The coefficient 0fS,,, for the range parameter shows a large s 2"47t/0e=3, and(h) =2, v=1 and(ll) u=1, v=2.

positive value indicating that the shape anisotropy behaves

like a quadrupolar effect. 77000 Tec2 7220 222 224
In Fig. 1 we present comparisons of the range parameter, 2.34 -1.52 —0.64 —0.69 1.97

o* = x*?+y*2, and the shape of the excluded volufitee

region bounded by the points satisfying the conditioh €000 €ec2 €220 €222 €224

= x*?+y*2_ o* for the hard oblate spherocylinders was | 2.24 3.58 3.16 4.29 1.30

determined numerically; for our model it was obtained viay 3.12 5.85 7.50 9.06 0.06

Eqg. (2) and for the GB model from
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to-face configurations, respectively. In Figalwe show a The two exponentg and v in the well depth function of
comparison of the range parameter, and the shape of tlthe GB potential take different sets of values without affect-
excluded volume for parallel configurations of a pair of mol- ing the relative well depth for the face-to-face) and edge-
ecules wherev,; = a,=0, = 8,=3,=90°, ande is varied.  to-edge €.) configurations. Table Ill giveg(U,,U,,r) for
The excluded volume for these configurations reflect thdour configurations using the two common sets of the param-
shape of the molecules involved in the interaction: this is aretersu andv (set l: =2, v=1; and set Il;ju=1, v=2). For
oblate spherocylinder for our modétiangleg and hard ob- u<w, the potential wells for all the configurations are
late spherocylindefsolid line), and an oblate ellipsoid for deeper than those fou>wv. This gives a wider range of
the GB mode X(dashed ling Figure Ib) shows a compari- stability for the translationally ordered phagesystal, smec-
son of the range parameter and the shape of the excludeid, and columnar For u> v, the potential wells for all the
volume for perpendicular configurations whewe,=a,  configurations are relatively shallower than those fior v.
=pB,=0°, =B,=90°, and¢ is varied. Our modeltri-  This gives a narrower range of stability for the translationally
angles and oblate spherocylind¢solid line) gave a rounded ordered phases and a wider range of stability for the orien-
corner square excluded volume, as expected, while the GBitionally order phases such as the diskotic-nematic phases.
model gave a circular excluded volur@ashed ling In both In this study we have determined the expansion coeffi-
cases the range function for oblate spherocylinders represerdients of the strength parametgli,,U,,r) for the two sets
ing disklike molecules is well represented by tBéunction  of the exponents. For each set, configurations which were
expansion. considered to be important to reproduce the well depth func-
tion were identified. The well depth for a given configuration
B. Strength function was determined from the GB model with the appropriate
parameters, say . The more general least squares objective

For a pair of identical cylindrically symmetric particles, function 2 was defined as

the S-function expansion for the potential strength function,
€(Uy,0,,1), is given as N

e(Uyq,Uy,T) = €of €000Sn00T €ccal Sa02t So22) + €2205220 Xi:-z il —e(ly, 07,712 ™

i<
+ €2255500F €2245704l, ) o
where e(uq,U,,r) is given by Eq.(5), N is the number of
wheree is the well depth corresponding to tReconfigura-  configurations identified, and; is a weighting function for
tion, wherefy,=f,;=f,=0; it is used to scale the energy. In theith configuration adjusted to give the best fit. The expan-
general the expansion coefficients in E5).can be chosen to sion coefficients in Eq(5) were determined as those which
reflect a specific interaction of interest,, determines the minimized X? over 33 configurations. The well depth func-
relative strength of the orientationally averaged interactiontion is a completely different function from the range func-
€220 1S the main nematic stabilizing coefficiert;, andez,;  tion. The configurations of importance are different for the
stabilize layered and columnar ordering for disk shaped parwo functions. Consequently a different set of weighting
ticles; ande,y4 is the quadrupolar coefficient which is impor- functions was needed to fit the strength parameter. The well
tant if tilted phase is desired. depths for the four main configurations, end to eeyl &énd
To facilitate comparison of our results with studies of aface to face { ) with parallel configurations, edge to edge
GB potential model for the disklike molecules with similar with perpendicular configuratiorxf, and face to edgeT),
attractive part but different molecular geometries, we haveyre fitted with an absolute error of 0.003. The overall com-
determined the expansion coefficients for the strength funCparison is given in Fig. 2. The expansion coefficients are
tion by mapping the expansion onto that of the GB potentialsummarized in Table Il. Positive values ef., and e,,
The GB potential strength paramete(u,,u,,r) has the favor face-to-face configurations which stabilize a columnar
form phase. Positive values @f,,, the quadrupolar coefficient,
o . o and e,, favor a parallel configuration of molecules stabiliz-
€(Ug,Up,T)=€oe"(Ug,Up) € (Uy,Up,T), (6) ing the diskotic-nematic phase. Comparison of the two sets
R b1/ of coefficients show that set Il should show a stronger co-
wheree(uy,Up) =1[1- x“f5]"< and lumnar order stabilizing effect and a weaker diskotic-nematic
Tt f? (e f)2 stabilizing effect. This suggests a v_vider_ columnf_;lr range of
€' (Oy,0,,7)=1— X (fa+12)" (f1—To) _ stability, and a narrower range of diskotic-nematic ste_lblhty.
e 2 | 1+x'fy  1-—x'fo Parameter set | is predicted to show a wide range of diskotic-
nematic range of stability. This expansion of the strength
The parametey’ = (x' V") —1)/(k' V") + 1), together with  parameter can be parametrized to simulate molecules which
the shape anisotropy paramejer («>—1)/(x?+1), deter-  would “prefer” to orient themselves at an angle with respect
mine the anisotropy in the attractive forces, wheté  to the column to form tilted phases.
=e€./€;, k=0¢loe, and the subscripte and f refer to In Fig. 2(a) we show a comparison of the well depth for
edge-to-edge and face-to-face configurations, respectivelgonfigurations wherex;=a,=B1=8,=¢=0°, and @ is
The GB strength parameter was parametrized to enable tharied, where the configuration changes from face to face to
likelihood of a columnar phase formation wihi =% andx  edge to edge. The solid line represents predictions of the GB
=3, which is the inverse of that used for most studies ofmodel, and the dashed line shows predictions of our model
prolate GB particles. obtained via Eq(5). Figure 2Zb) shows the case for configu-
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tuate between the initial tetragonal shape and a cubic shape
would prevent formation of structures stabilized by the box
shape, and would allow the system to determine its equilib-
rium box shape. A detailed study was made on a system of
512 particles with a packing fractioiNg4/V) equal to 0.55,
wherev,=(ITL3/8)[2(D/L)2+II(D/L)] is the volume of a
molecule which is defined as the volume of an oblate sphero-
cylinder with shape anisotropyp(+L)/L equal to 3V is the
volume of the sample box and= o¢(=0y).

The simulation was started by arranging the particles on a
fcc lattice where thex andy directions are stretched by a
factor of o./0; reflecting the shape anisotropy of the par-
ticles. The lattice was chosen to have 4, 4, and 8 unit cells
along thex, y, and z directions to match the number of
lattice sites with the number of particles. This choice gave
the tetragonal box an almost cubic shape with a reasonable
number of particles along the three directions to ensure that
the box dimensions were larger than the potential cutoff dis-
tance in all three orthogonal directions. The initial dimen-
sions of the box were determined by the dimensions of the
starting fcc lattice and the volume of the system. The instan-
taneous dimensions of the box were used to reduce the cor-
responding components of coordinates of the particles. This
0 20 40 60 80 restricted each component of a particle in a reduced coordi-

Bo(degree) nate to vary between zero and unity. This reduction of par-
ticle components of the coordinate with the corresponding
box length enabled us to perform Monte Carlo moves sepa-
rately on the tetragonal box shape and the position of par-
line), and GB via Eq.(6) (solid ine). (a) a;=ay=By= By= ticles. A change in the tetragonal box shape was achieved by
=0°, and@ varied. (b) a,= a,=$=0°, B;=9=0°, andB, var- changing t_he dlmenfslons pf the box kee_plng its volume con-
ied. stant. During the simulation the box dimensions were al-

lowed to fluctuate within a maximum ofa) from the initial
rations wheren; = ap,= ¢=0°, 8,=6=90°, andg, is var-  dimension to allow the system to fluctuate about a cubic box
ied. In both of these special cases the well depth is welfhape.
represented. In this simulation we have performed the three Monte
Carlo moves separately—change of box shape, change of
Ill. DETAILS OF THE SIMULATION translational positio_n, and change of orienta_ti_onal_position of
the molecules—to increase the rate of equilibration and the

To explore the value of the model potential we have pro-efficiency of the sampling. The maximum allowed changes,
posed for the studies of diskotic-liquid crystals, we carriedsay A,, A;, andA,, corresponding to changes in dimen-
out detailed simulation. A Monte Carlo algorithm with peri- sions of the box, the translational coordinate components,
odic boundary conditions was used, which allowed the boxand the orientations about a randomly chosen axis, respec-
shape to fluctuate between the initial tetragonal shape andtively, were adjusted every macrocycle so that the accep-
cubic shape while keeping the box volume and its temperatance ratio was in the range 0.4—-0.6. A macrocycle was typi-
ture constanf27]. This algorithm has the advantage of fa- cally 2000 cycles, and a cycle typically consisted of 512
cilitating the equilibration process by allowing the system toattempted orientational moves followed by 512 attempted
come out of quasiequilibrium states. Allowing changes in thetranslational moves and one or two attempted box dimension
shape of the sample box allows changes in the phases thanges. Trial orientational moves were generated following
occur more easily. Restricting the shape of the box to flucthe Barker-Watts technique, in which a particle was rotated

by a random amount about a laboratory axis selected at ran-

TABLE lll. A comparison of the well depths of the GB model dom [28]. Translational moves were generated by sequen-
for two sets of exponents. The anlsotroples in the shape and attraga|ly choosing a particle and displacing it Byé, in reduced
tive force are chosen to be(=o/e) =3 and«x'(See/e) =510 ypits along a randomly chosen axis, whefeis a random
reflect oblate ellipsoidal symmetryl) n=2, v=1. () =17  {ymper betweer- 0.5 and 0.5. The coordinates of the inter-
=2. acting particles were then converted to scaled units to calcu-
late the change in configurational energy. A change in box
dimension was attempted by randomly choosing a laboratory

FIG. 2. Comparison of the scaled strength parametér
=¢(04,0,,r)/ ey, obtained from our model via Eq5) (dashed

Face to face Edge to edge T shaped Cross shaped

/<o e/ o i &eo axis; a random number betweer0.5 and 0.5 was then gen-
I 25/3 5/3 (15-55)/2 1 erated, sayé,. A multiplying factor was calculated as
1l 125/9 25/9 5/3 1 exp@pé,) for the box dimension along the randomly chosen

axis, and the corresponding ones for the other two, to leave




1798 HABTAMU ZEWDIE 57

the tetragonal box volume constant. The old and new sets aeduced box dimensions aloxgandy axes. The degree of
box dimensions were used to convert the reduced coordierder within a layer is monitored via the radial distribution
nates of particles to the corresponding sets of scaled coordiunction perpendicular to the directay, (r*), defined as
nates. The change in configurational energy as a result of thjg5,30

attempted change in the box shape was then calculated. The

attempted change in box shape, as well as translational and . . x

rotational moves, were accepted following the standard Me- 9,(ri)= W Z 2. S(ri—riju) ), (11
tropolis algorithm[29,30. ! :

The last 'configuration'of each production stage was “S_‘?G!/here|ﬁ~ri’j |<I*/2,1* =2 is a slice thickness about the par-
as the starting co_nflguratl_on for _the next temperature. EqUIII:[icle considered, anq’j i:(|ri*j 12— |n. ri*j L12)Y2 For all the
prauon was monitored via the internal energy and orlentayiqribution functionss is a Dirac delta function replaced by
tional order parameters subaveraged over a macrocycl

; - Ehity in a small range of separation taken to be 0.01 in re-
Typically 20 macrocyles were generated .to equmb_rate theduced units, and a histogram was compiled of all pair sepa-
system. The structural and thermodynamic properties Werg tions faIIin’g within each such range
fﬁlcglated fr(t)m a mlrr]umum of ¢©106t c(;)nflguhratlonts. Ne_?r The hexagonal arrangement of columns of molecules and

e temperatures where we expected a phase transition [9. 0.\ jjes within a layer was monitored by calculating the
occur, we performed longer runs. To reduce the comput

tional time a spherical cutoff of ¢, with a Verlet neighbor “bond order parameter defined as
list [31] was employed; this list was extended up tooh5 1 1

and updated every 20 cycles. The statistical errors in the final Vo= ’ <N E T > Wy exp(6i 0k|)>
values of properties were estimated from 20 successive sub- I Mo (k)

averages of the properties each calculated over a macrocycle . . ,
configurations. wheren}, is the number of pairs of nearest neighbors of the

The detection of different kinds of orientational and trans-ith molecule,(kl) implies a sum over all possible pairs of
lational orders in a computer simulation requires the deterh€ighbors, andf,, is the angle between the unit vectors
mination of the appropriate radial distribution functions and@/ong the projections of the intermolecular vectors between
order parameters. In order to study the translational order ifoleculej and its neighbork and! onto a plane perpen-
the system, we calculated the orientationally averaged radiglicular to the directorwy=1 if rj, and rjj lie within a
distribution function,g(r*), which gives the probability of cylinder of diameter 3.5 and thickness 2 centered at particle
finding a molecule at a distaneé& from the one at the ori- |, and zero otherwise. This range was chosen such that only
gin, relative to the probability expected for a completely ran-molecules in the first coordination shell contribute to the
dom distribution at the same density. It is conveniently desum. W¢ takes unity for a phase with a perfect hexagonal

fined for evaluation by computer simulation [d5,30 bond order, zero for the isotropic phase, and an intermediate
value for a phase with intermediate bond order.

o 1 - Calculations of two of the radial distribution functions
g(r )_W zl ,Z'l o(r¥—=ri ), ®) g,(r¥) and g, (r*) and the bond order parameter require
knowledge of the director orientatiam In computer simu-
wherer* =r/oy. g(r*) enables us to characterize at leastlation the director is not knowm priori, and it fluctuates
the crystalline and translationally disordered phases. Howduring the evolution of the system. In general the second-
ever, this alone is insufficient to distinguish between the dif+ank orientational order parameter and the direction of the
ferent kinds of mesophase ordering. Hence other functiondirector for a given configuration can be calculated from a
that probe the translational ordering of the molecules in ori-second-rank tensor defined [dsl,32
entationally ordered phases must be introduced. In particular
we have calculated the distribution function parallel to the
directorg(r;) which is sensitive to the arrangement of mol-
ecules in layers and the distribution functigg(r) which is _
sensitive to the regular stacking of molecules in columnswhereu.,, anda=X, y, z is the direction cosine of the unit
These structural properties are defined H#s30] vector describing the orientation of théh molecule with
L respect to an arbitrary space-fixed frame. In the phases where
o A % the configurations show considerable orientational order, the
9i(rj)= I*1*Np <§|: JZ’. S(ry —n- rij)> 9 fluctuation of the director orientation during a cycle is insig-
g nificant. Considering this we were able to reduce the compu-
and tational time by sampling th® tensor only once at the end
of a cycle and accumulating it for 30—50 configurations. The
i * - averaged) tensor was then diagonalized once at the end of
9elre) = a[(D+L)/2L]°Np <Z lzl Aijo(re=ui-r) ), every 30-50 cycles. Its largest positive eigenvalue was then
(10) accumulated and at the end of the run averaged to give the
second-rank order paramet&,. Whenever a director ori-
where A;; is equal to unity if |0;-rif|[*+[(D+L)/2L]*>  entation was needed to calculate the other structural proper-
>|ri 2, and zero otherwise; these are convenient for evaluties the eigenvectors of the last averaggdensor were de-
ation by computer simulation.; and I§ are the average termined and the one associated with the largest eigenvalue

, (12

1 o
Qup=py 2 (3ol 8ep)/2, (13
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_ 1.0
FIG. 3. The scaled internal enerdy* (=(U/N¢p)) (O) and 6

heat capacityCy,(=Cy/Nk) (A) as a function of the scaled tem- 0.8-
peratureT* (=kT/ey) for model | obtained from the heating run.
The internal energy results obtained from the cooling run starting

0.6
from the isotropic phase are indicated @). Lines are drawn
through the points as a guide to the eye. 0.4
was identified with the director. Once the director orientation 0.2-
is located, a variety of structural properties can be calculated

for a given configuration. The frequency of eigenvector de- 0.0 y . r r
termination depends on the frequency of sampling of struc- 0 2 4 6 810 12

tural properties which depend on the orientation of the direc-
tor. FIG. 4. Plots of order parameters as a function of scaled tem-

perature for model |. The points are connected by lines to serve as
a guide to the eyda) Second rank orientational order parameRgr
IV. SIMULATION RESULTS AND DISCUSSION (O, heating;®, cooling. (b) Bond order parameté¥ ¢ (A, heating;

. . @, cooling.
We have simulated two parametrizations of the model po- 9

tential. The two sets of the expansion coefficients for thety peaks suggest the existence of four regions of stable
strength parameter are given in Table II. For convenience Wghases with transition temperatur$ of 0.45, 6.75, and
shall call the model potential with the first set of coefficientsg.00. The melting transition appears rather unusual, as it oc-
model I, and that with the second set model Il. A detailedcyrs with a reduction in entropfthat is, AS/Nk is —1.58,
simulation study was carried out at a packing fraction ofwhich suggests that the fcc structure is not the equilibrium
0.55. We shalll first present and discuss the simulation resultgystal structure. The melting transition was studied for two
for model I, and then those for model II. Whenever possiblegther packing fractions of 0.45 and 0.66. In all three cases
we shall give a comparison of the results for the two modelsihe fcc melted into a hexagonal columnar phase. At absolute
and also compare those with the results obtained for the GBero the equilibrium crystal structure BAA-stacked hcp
model of oblate ellipsoids. layers. It is easier for the system to go to the equilibrium hcp
__Figure 3 shows the variation of the scaled internal energ¥tructure on cooling from the high temperature columnar
U*(=(U/Nep)) and heat capacit@y (=Cy/NKk) as a func- phase, than from the fcc structure which is mechanically
tion of the scaled temperatule (=kT/¢p) for model I. The  stable at low temperatures. The two heat capacity peaks
error bars estimated fod* from 20 block averages were around the scaled temperatures of 6.75 and 9.00 are associ
found to be less than the experimental points. The internaited with weak first order transitions. For these the transi-
energy for the heating run is represented by open squareipnal entropiesAS/Nk are estimated to be 0.11 and 0.15,
and that for the cooling run by filled circles. The internal respectively. Based on the behavior of real diskotic liquid
energies for the heating and cooling runs show a differencerystals, it seems reasonable to identify the four phases as
at low temperatures. This shows that the low temperaturerystal, diskotic columnar, diskotic nematic, and isotropic,
equilibrium crystal structure is not fcc. At absolute zero theappearing in succession with increasing temperature. Heat
equilibrium crystal structure is hexagonally close packedcapacity peaks alone are not sufficient to identify positions of
(hcp layers stacked in aAAA structure. The fcc structure phase transitions. In the following we shall present the struc-
appears to be mechanically stable and thermodynamicalliural properties and snapshots of configurations representing
unstable. A fcc structure was chosen as the starting crystéie various phases, to demonstrate the sequence of phase
structure to enable us to easily identify the diskotic-columnaitransitions exhibited by our model potential.

phase as the equilibrium structure when it is self-organized In Fig. 4@ we present the temperature dependence of the
on melting of the crystal. The heat capacity shown in Fig. 3second-rank orientational order parameRgr Open squares
was determined by numerically differentiating the internalrepresent the heating run, and filled circles the cooling run.
energy obtained from the heating run fitted to a smoothingn agreement with the predictions based on the heat capacity
cubic spline function. The positions of the three heat capacpeaks, four stable regions can be identified from this plot. In
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the crystal phase the orientational order parameter shows ¢
strong temperature dependence; it changes smoothly from
the crystal phase to the columnar phase. Both phases ar
highly orientationally ordered. Over the entire region of the

columnar phaseR, shows a relatively weak temperature de- ¥
pendence; it shows a discontinuous reduction across the co [
lumnar to diskotic-nematic transition and a strong tempera- T4
ture dependence in the diskotic-nematic phase. It remains
small but finite in the isotropic phase. Such behavior usually
arises due to the method of determining the order parametel
and the small number of particles studied. Indeed, in the
isotropic phasé, is predicted to show a size dependence of
the order of 1{/N [11]. The error bars estimated fé, from

20 block averages were found to be less than the experimen
tal points.

In Fig. 4(b) we present the temperature dependence of the
bond order parameteb . The triangles are for the heating
run and filled circles are for the cooling run. The bond order
parameter for the heating and cooling runs show a large dif-
ference at low temperatures. The heating run was startec
from the fcc structure. For a perfectly ordered fcc structure
Vg is 0.33. On melting of the fcc structure, the system self-
organized into hexagonally packed columns which have a FIG. 5. Snapshots of final configurations for model | taken from
large value for the bond order parameter. For a perfectlyye production stages at five reduced temperatures as viewed at an
ordered hexagonally packed columhg takes its maximum  angle with respect to the director. For the sake of clarity the dimen-
value of unity. On cooling the diskotic-columnar phase tosjons of the particles are scaled down by 2q%.0.40 (fcc). (b)

low temperatures the system goes into its equilibrium struce.5 (D). (c) 6.0 (Dpg). (d) 8.0 (Np). (€) 10.00(isotropid.
ture of AAA-stacked hcp layers, which gives a high value for

We. The plot of the bond order parameter as a function of,y e \hich is typical of a fcc structure. These pictures alone

temperature S.hOWS the four regions a_nd the I_ocatlon of th‘Elre not sufficient to characterize the structure of the phase. In
transitions quite clearly and are _consistent with those preFig. 7(a) we give the pair distribution functiong(r*) and

dicted based on the plots 6f; andP,. In the fcc phase¥q g, (r*) calculated via Eqs(8) and (11), respectively. The
shows a strong temperature dependence. At the fcc-columnar

phase transition the bond order parameter increases drasti-

cally from about 0.25 to 0.8, indicating the melting of the fcc
phase and the formation of a hexagonally arranged phase §
Over the entire region of the diskotic-columnar phase the
bond order parameter shows a weak temperature depen
dence. ¥ shows a discontinuity across the columnar to a
diskotic-nematic transition. It varies from 0.4 to 0.3 in the
diskotic-nematic phase. This reflects the extent of the local |,
short-range translational order in the nematic phase. In the
isotropic phase the bond order parameter vanishes. The erra
bars estimated foW ¢ over 20 block averages were found to
be less than the experimental points.

Visual inspection of typical configurations complements
the predictions based on thermodynamic and structural prop-
erties calculated for the various phases. In Fig. 5 we show £
snapshots of the last configurations taken from the produc-*
tion stages from simulations at five selected temperatures.
These are viewed at an angle from the director chosen to
show some aspects of the structure of the corresponding sys &
tems. The views along the director are shown in Fig. 6. The

@ ()

particles are represented as disklike objects and, for the saki @
of clarity, the dimensions of the particles are reduced by
about 20%. FIG. 6. Snapshots of the final configurations for model | taken

Figures %a) and Ga) show snapshots at a scaled temperafrom the production stage at four scaled temperatures as viewed
ture of 0.4, which is just before the fcc crystal melts. Figurealong the director. For the sake of clarity the dimensions of the
5(a) shows a layer by layer arrangement of particles, and Figparticles are reduced by 20%g) 0.40 (fcc), (b) 0.5 (Dpo). (©)

6(a) shows the rectangular arrangement of particles within &.0 (D). (d) 8.0 (Np).
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FIG. 7. Plots of pair distribution functions for modeld(r*) (dotted ling obtained via Eq(8) andg, (r}) (solid line) obtained via Eq.
(17) for five reduced temperature@) 0.40 (fcc). (b) 0.5 (Dy,). (c) 6.0 (Dyg). (d) 8.0 (Np). (e) 10.00(isotropig.

four main peak positions af(r*) for a perfect fcc structure The stable structure over the wide temperature range of
are at reduced separations of approximately 2, 3.16, 4.24).45 to 6.75 is characterized as a hexagonal columnar phase.
and 6, while the first four peak positions gf (r) corre-  Figure §b) shows a snapshot of a configuration at a tempera-
spond to reduced separations of about 3.16, 4.24, 6, and 6.7A8ure of 0.5. This is just after melting, and the molecules are
The relative peak heights of the first three peaks is 2:1:1. Thetacked in columns which have a parallel arrangement on a
main peak positions in Fig.(&@ match those of the expected |ocal scale. Figure ®) shows a snapshot of the same con-
peak positions for a perfect fcc structure. The plotggf?)  figuration but now viewed parallel to the director. This
andg;(rj), obtained via Eqs(9) and(10), respectively, are shows that the columns are arranged on a two-dimensional
shown in Fig. 8. The main features of these plots are thathexagonal lattice. In Fig.(B) we present the radial distribu-
the peaks fog,(r]) are of uniform height and are uniformly tion functions g(r*) and g, (r¥). The main features of
spaced with an average spacing of about 1.1 scaled unitg(r*) are the principal peaks around 1.1 for the face-to-face
while those forg.(r¥) are also of uniform peak heights but stacking, around 3.3 for the edge-to-edge arrangement, and a
with twice the peak spacings fa@;(r;"). However,g.(r?) doublet between 5 and 7 for a hexagonal arrangement. This
has already started showing small secondary peaks at sorivgerpretation is consistent with the form of (r7): a prin-

of the intermediate positions indicating imperfections in thecipal peak around 3.2 and a doublet between 5 and 7. A
lattice structure. The structure of these four pair distributiondoublet in these pair distribution functions is usually taken as
functions, together with the density distributions along thethe signature of a hexagonal arrangement of molecules.
three arbitrary laboratory axes, which are all found to beHowever, such doublets in these distribution functions are
periodic, characterize this phase as the starting fcc crystal.also consistent with other molecular organizations, for ex-
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FIG. 8. Plots of pair distribution functions for modeld;(r;‘) (dotted ling obtained via Eq(9) andg.(r}) (solid line) obtained via Eq.
(20) for five reduced temperature@) 0.40 (fcc), (b) 0.5 (Dy). (c) 6.0 (Dyg). (d) 8.0 (Np). (e) 10.00(isotropig.

ample hcp crystal and hexatic smed8ghases. In Fig.®)  g.(rz), andg,(rf) shows no structure. The correlation be-
we giveg(ri’) andg.(r%). At a low temperature such as tween positions of molecules within a column appears to
0.5, the system has a weak layered structure with stronglyanish within five molecular thicknesses. The structure of
correlated stacking of molecules in columns. The peaks ifhese four pair distributions are similar to those in the nem-
g)(ri) and g¢(r%) are regularly spaced, with an average atic phase shown in Figs(d and &d), indicating uniform
scaled spacing of 1.1. The peak heightgifry) show an liquidlike mass distribution. The stacking of molecules in
exponential decay as a function of molecular separations dbng hexagonally arranged columns with liquidlike structure
the formAe™"</¢, whereA is 1.55 and the correlation length within columns is defined as B4 phase.

¢is 3.89. Hexagonally arranged columns of regularly stacked The diskotic-nematic phase is found to be stable over the
disks is a characteristic behavior oDg, phase. In Figs. ®) scaled temperature range of 6.75-9.0. Snapshots of the last
and &c) we show snapshots of configurations at a temperaeonfiguration for the production stage at a scaled temperature
ture of 6.0, just before the columnar phase undergoes transdf 8.0 viewed from an angle to the director is shown in Fig.
tion to the diskotic-nematic phase. The molecules are stackesid). A view parallel to the director is given in Fig(@. The

in parallel columns which are arranged on a two-dimensionasystem appears to have a few molecules stacked in short
hexagonal lattice. The pair distribution functiog&*) and  columns. This is evident from the pair distribution function
g, (r7) are presented in Fig.(@); here the peaks are broad- of g,(r;") shown in Figs. @) and 8d). The four pair distri-
ened, although they show similar features to those at a resution functions in the columnar phas€g{) atT*=6.0 and
duced temperature of 0.5. Significant changes in the molecuhe diskotic-nematic phase &t = 8.0 appear to show similar

lar stacking within a column is reflected ig,(rf) and features. The two phases are clearly distinguished with the
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help of the configurational snapshots shown in Figs) &nd

5(d). The nematic order parameter varies from 0.6 to 0.27.
At T*=9.0 the system undergoes a weak first order phase
transition to an isotropic phase.

In Fig. 5e) we show a snapshot of the last configuration
taken from the production stage®t equal to 10.00. At this
temperature the system is characterized as isotropic. How-
ever, due to finite size effects and also due to the method by
which the order parameter is calculated the system shows a
small finite orientational order parameter. Although the di-
rector associated with the instantaneous order parameter

fluctuates quite significantly, it is still of interest to calculate Y 5 10 1+ 15
g.(r7) andg,(r;). The pair distribution functiong)(rj) o
andg.(rg) are presented in Fig(®, andg,(r) indicates a FIG. 9. The scaled internal enerdy* (=(U/Neg)) () and

uniform mass distribution along the director, wherggg¥)  heat capacitC(=Cy/Nk) (A) as a function of scaled tempera-
* (=
clearly shows two peaks indicating the short-range stackin§'"® 7" (=kT/eo) for model II.

of molecules. This is important evidence that the pair poten- . .
tial favors the formation of a columnar ordeg(r*) and stage afl* = 1.5, which is just after the system melts, and at

g, (r*), presented in Fig. (), show peaks around 1 and 3. T*=13.00 just before the columnar phase undergoes a tran-

Such structures for these distribution functions are unusuag:[('j%r: :t) t:}r:;elst\?vtcr)otpelr?] pehrZ?L?r.el-ri]se Eaatllijt:iiv(gl tr;en dcotjgg?ar-
A similar structure was predicted for dipolar hard oblate el- P 9 y q

lipsoids at sufficiently high dipolar strengfl33]. The first t|vely d!ﬁerent. The d|ffgreqt nature of the.colurrlnar order
peak corresponds to the face-to-face arrangement of tw@® Lndwated by the pair distribution fu_nctl_ogﬁ(rL) and
molecules, and the second peak has contributions from thée(fc) shown in Fig. 12. The pair distribution t*=1.5
edge-to-edge arrangement of two molecules and face-to-fag@lculated parallel to the director indicates a weak layered
arrangement of three molecules. These peaks reflect trdructure. However, the peak spacing is half that expected for
shape anisotropy of the constituent molecules. The pair didayers formed from disks of the dimensions used in this
tribution functiong(r*) obtained from molecular dynamics s[mulatllon.. Moreover, these observatlor)s reveal that the
simulation of hard oblate spherocylindei@], hard oblate disks within one column are staggered with *respect to those
ellipsoids[34], and GB oblate ellipsoid§l7] do not appear in an adjacent one. The peak heightsgg(r;) show an
to show the first peak. exponential decay as a function of molecular separations of
An important distinction between the diskotic-nematicthe form Ae™'<’¢, where A=1.52 andé=5.32. The bond
and isotropic phases is shown in the(r*) plots presented order parameter togethgr with the dogblgts in the peaks for
in Figs. 7d) and 7e). The first peak, which is due to mol- 9i(fj) in the range of distances 5-7 indicates the arrange-
ecules arranged face to face and perpendicular to the direg2ent of columns on a two-dimensional hexagonal lattice.
tor, is absent in the nematic phase. This could be taken akhis hexagonal structure is clearly observed in the snapshot

evidence of the lack of long-range orientational order in theof Fig. 11(b) taken parallel to the column axes. Such phases
isotropic phase which is responsib|e for the strong f|uctuaW|th such characteristic intercolumnar correlations have been

tion of the director. observed for other simulations of oblate ellipso[dd]. In

In order to make a direct comparison with the simulationour system the intercolumnar correlation is found to be stable
of oblate ellipsoids at the same packing fraction of 0.55 an@®nly at the temperature just after the melting of the crystal.
similar strength parameter, we shall next present results ofFhis phase has been identified@§, in order to distinguish
tained by using potential model II. Figure 9 shows the resultst from the uncorrelated hexagonally ordered columnar
for the scaled internal enerdy* (=(U/N¢g)) and heat ca-

pacity C{(=Cy/NKk) determined by numerical differentia- 1.0

tion of the internal energy as a function of the scaled tem- _
peratureT* (=kT/y). The error bars estimated fo¥* over 0.8 R
20 block averages were found to be less than the experimen-

tal points. The two heat capacity peaks at scaled tempera- 0.6

tures of 1.25 and 13.25 suggest the existence of three stable

phases. These phases have been characterized with the help 0.41

of the order parameters shown in Fig. 10. The phase se-

guence is established to be crystal, hexagonal diskotic co- 021 = ¥,

lumnar, and isotropic. The diskotic-nematic phase appears to

be removed by this change of parameter in favor of the 0.00 5 0 P
diskotic-columnar phase. If a diskotic-nematic phase is T

stable for this system, it must be over a very narrow tem-

perature range which is difficult to determine with the cur- _ FIG. 10. Plots of the second rank orientational order parameter
rent wide temperature intervals studied. Figure 11 gives, (O), and the bond order paramet®, (A) as a function of
shapshots of the last configurations from the productiorscaled temperature for model Il.
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production stages at two scaled temperatures as viewed at angle 0 1 2 3 4 5 6 7 8
with respect to the directdfa) and(c)] and along the directdr(b) r*
and (d)] for model Il. For the sake of clarity the dimensions of the
ticl 20%a) 1.5 Dy, Si iew. o .
Eag |?De/s ?ors V::\(Ijv)uc(i;jlg)é (g éa?sideSVit(awho&d)Sf;Ow(gw t(ct)); FIG. 12. Plots of pair distribution functions for model §;(ry)
vi-ew) ho ' ' he ' ' heb (dotted ling andg.(r¥) (solid line) for two reduced temperatures.

(@ 1.5 (Dpg)- (b) 13.0 Ong)-
phase. The high temperature columnar phase appears
show a qualitatively different structure. The phase at a tem
perature close to the isotropic transition is expected to have
high degree of disorder. This is evident from the snapshotg;

shown in Figs. 1{c) and 11d). However, an important dis- - yjqy otic-nematic phases. We have successfully demonstrated
tinction appears in the pair distribution functioggri) and  po to characterize the structure of the various diskotic
9c(rz) shown in Fig. 12b). g(rj") does not show any struc- phases using combinations of results obtained from the vari-
ture indicating the absence of any layered structure. Howpys thermodynamic and structural properties. Sanction
ever,gq(rg) exhibits a peak structure which vanishes within expansion approach of the strength parameter allows each
four molecular thickness. These structures of the pair distriterm to be associated with a specific type of interaction: iso-
bution functions together with the results on the bond Ordetropic, anisotropic(nematic favoring, columnar favoring,
parameters and, (r7) characterize the phase Bt =13.00  smectic favoring and quadrupolafresponsible for tilt for-
as theD,4 phase. mation. This enables each coefficient in the expansion of the
strength parameter to be fine tuned to reflect the relative
V. CONCLUSIONS strength of a specific type of interactio®.functions can be

, . evaluated efficiently by computers. This makes our model
The shifted form of Lennard-Jones 12-6 potential hasystential computationally cheaper. This reduction in com-

proved successful in computer-simulation studies of systemﬁuter time could be significant when studying systems with
composed of rodlike and disklike molecules. The range papyrge sample size or systems with molecules made up of
rameter o(Uy,Up,) for disklike molecules is estimated nits joined together to study a variety of geometries.

based on either spheres or oblate ellipsoids in the GB model.

The range parameter estimated in this way appears to favor
formation of the diskotic-nematic phase over the diskotic-

columnar phase. The thick middle region of the ellipsoid The author acknowledges the Royal Society, the Interna-
together with its relatively tapered edge favors interdigitatedional Centre for Theoretical Physics, the British Council,

packing. This makes formation of the diskotic-columnarand the University of Southampton for financial support;

phase difficult, and favors the diskotic-nematic phase. Thisrofessor G. R. Luckhurst and Professor T. J. Sluckin for
effect is enhanced as the shape anisotropy decreases. Wwir hospitality; and Addis Ababa University for the study

have successfully removed this problem by modeling thdeave.

rtgnge parameter based on an oblate spherocylinder, which is
a more realistic model to study disklike molecules. The com-
ter simulation of our model potential clearly showed the
ability of a variety of stable diskotic-columnar and

ACKNOWLEDGMENTS



57

COMPUTER-SIMULATION STUDIES OF DISKOTCT . . .

1805

[1] S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, Prgd-17] A. P. J. Emerson, G. R. Luckhurst, and S. G. Whatling, Mol.

mana9, 471 (1977).

Phys.82, 113(1994.

[2] D. Goldfarb, R. Poupko, Z. Luz, and H. Zimmermann, J.[18] J. L. Lebowitz and J. W. Perram, Mol. Phy&6, 4213(1983.

Chem. Phys79, 4035(1983.

[3] H. P. Hinov, Mol. Cryst. Lig. Cryst136, 221 (1986.

[4] S. Chandrasekhar, isdvances in Liquid Crystal®dited by G.
H. Brown (Academic, New York, 1982 Vol. 5, p. 47.

[5] S. Chandrasekhar, Philos. Trans. R. Soc. London, S&03
93 (1983.

[6] S. Chandrasekhar and G. S. Ranganath, Rep. Prog. BBys.
57 (1990.

[7] S. Chandrasekhar, Lig. Cryst4, 3 (1993.

[8] P. M. Zorkii and E. V. Sakhanova, Russ. J. Phys. Chéfp.
147 (1992.

[9] M. Wojcik and K. E. Gubbins, Mol. Phy$3, 397 (1984.

[10] J. Sedlbauer, S. Lasik, and A. Malijevsky, Phys. Rev%:
3179(1994.

[11] R. Eppenga and D. Frenkel, Mol. Phys2, 1303(1984.

[12] D. Frenkel and B. M. Mulder, Mol. Phy®5, 1171(1985.

[13] B. M. Mulder and D. Frenkel, Mol. Phy®5, 1193(1985.

[14] M. P. Allen, Phys. Rev. Lett65, 2881(1990.

[15] J. A. C. Veerman and D. Frenkel, Phys. Rev.4A, 5632
(1992.

[16] M. D. de Lucha, M. P. Neal, and C. M. Care, Lig. Cry$6,
257 (1994).

[19] D. Frenkel, Mol. Phys60, 1 (1987).

[20] H. B. Zewdie(unpublishegl

[21] H. B. Zewdie, J. Chem. Phy$to be publisheg

[22] J. G. Gay and B. J. Berne, J. Chem. Phg4.3316(1981).

[23] R. Berardi, A. P. J. Emerson, and C. Zannoni, J. Chem. Soc.
Faraday Trans39, 4069(1993.

[24] J. Corner, Proc. R. Soc. London, Serl182 275 (1948.

[25] B. J. Berne and P. Pechukas, J. Chem. PB§s4213(1972.

[26] A. J. Stone, Mol. Phys36, 241 (1987.

[27]1J. A. C. Veerman and D. Frenkel, Phys. Rev.44, 3237
(1990.

[28] J. A. Barker and R. O. Watts, Chem. Phys. L8ft144(1969.

[29] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phy&l, 1087 (1953.

[30] M. P. Allen and D. J. TildesleyComputer Simulation of Lig-
uids (Clarendon, Oxford, 1987

[31] L. Verlet, Phys. Rev165 201(1968.

[32] C. Zannoni, inThe Molecular Physics of Liquid Crystaled-
ited by G. R. Luckhurst and G. W. GrajAcademic, New
York, 1979, Chaps. 3 and 9.

[33] A. Perera and G. N. Patey, J. Chem. PH/5.3045(1989.

[34] J. Talbot, A. Perera, and G. N. Patey, Mol. Phy§, 285
(1990.



