
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Computer-simulation studies of diskotic liquid crystals
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Department of Chemistry, University of Southampton, Southampton SO17 1BJ, England

~Received 12 May 1997!

We have developed a single site anisotropic pair potential suitable for computer-simulation studies of
systems composed of disklike molecules. The general dependence of the potential on the intermolecular
separation is taken to be the shifted 12-6 Lennard-Jones form. The range and strength parameters in the
potential depend on the orientations of the molecules and that of the intermolecular vector, as introduced by
Corner; we propose that the form of this dependence may be represented by anS-function expansion. A hard
oblate spherocylinder with a shape anisotropy (D1L)/L of 3, whereD is the diameter of the cylinder with
lengthL, is considered to be a more realistic model for disklike molecules. The expansion coefficients for the
range parameter were determined by mapping the expansion onto a set of center of mass separations at the
closest approach of a pair of such disks. Each term in the expansion of the strength parameter can be associated
with a specific type of interaction: isotropic, anisotropic~nematic favoring, columnar favoring, smectic favor-
ing!, and quadrupolar~tilt favoring!. This allows fine tuning of each coefficient in the expansion of the strength
parameter to reflect the relative strength of a specific type of interaction. To facilitate comparison with studies
of the more successful Gay-Berne~GB! potential model, we have determined the expansion coefficients for the
strength parameter by mapping the expansion onto that of the GB model. To explore the value of the model
potential for studies of diskotic liquid crystals, we have carried out a detailed Monte Carlo simulation at a
packing fraction (Nv0/V) of 0.55. The system was found to exhibit isotropic, diskotic-nematic (ND), diskotic-
columnar (Dho8 ,Dho,Dhd), and crystal phases. The effect of temperature, density, and the form of the attractive
contribution to the potential on the phase stability and the nature of the transitions between the diskotic
mesophases is investigated. Such phase behavior contrasts with those for a system of hard oblate spherocyl-
inders and for cut hard spheres with the same shape anisotropy which only form isotropic and crystalline
phases and the GB model, which has difficulty in forming columnar phases. Spherical harmonics can be
evaluated efficiently by computers. This makes our model potential computationally cheaper.
@S1063-651X~98!11102-9#

PACS number~s!: 61.30.Cz, 64.70.Md, 83.70.Jr, 61.25.Em
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I. INTRODUCTION

Liquid crystals formed from disk-shaped molecules we
first reported in 1977@1#. Since then these phases have be
studied extensively@2–8#. However, theoretical studies o
systems composed of disklike molecules are fairly limit
@6–7#. The discovery of diskotic mesophases has initia
simulation of such systems. A fluid of hard oblate spheroc
inders has been studied to serve as a reference system
perturbation theory of a fluid composed of disk-shaped m
ecules@9,10#. Models based on thin hard platelets@11# and
oblate ellipsoids@12–14# appear to form only diskotic-
nematic and isotropic phases. A cut hard sphere has b
proposed as a model for disklike mesogens@15#. The simu-
lation of the system composed of cut hard spheres show
rich polymorphism~diskotic-columnar, diskotic-nematic, cu
batic, and isotropic phases!. These results show that repu
sive forces alone are able to explain liquid crystalline beh
ior for systems of disklike molecules although th
thermotropic nature of the transitions for real systems
clearly missing from the model.

The molecules which form diskotic mesophases are fla~a
benzene ring, or a system of condensed rings! surrounded
more or less symmetrically by alkyl chains. The nature of

*Permanent address: Department of Chemistry, Addis Ababa
versity, P.O. Box 1176, Addis Ababa, Ethiopia.
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mesophases formed from such molecules depends on
delicate balance between the short-range repulsion, the l
range attraction, and the flexibility of the chains attached
the disk. In addition, it is known that attractive forces a
able to stabilize phases not observed with hard particle m
els alone. Systems composed of rodlike molecules inter
ing with both short-range repulsion and long-range attract
have been studied often by computer simulation, wher
studies for disklike molecules are rather scarce. Poten
models for simulating diskotic systems which account
both the short-range repulsion and long-range attraction h
been proposed. In these models the long-range part has
modeled using the attractive part of the Gay-Berne~GB! po-
tential suitably parametrized to reflect oblate ellipsoid sy
metry. The short-range repulsive part has been modeled
sphere@16# and as an oblate ellipsoid@17#. The model based
on a spherical core is reported to form isotropic, diskot
nematic, columnarlike, and crystal phases on cooling. T
model based on an oblate ellipsoid is reported to exh
isotropic, diskotic-nematic and, depending, on the den
rectangular (D ro) or hexagonal columnar (Dho8 ) phases.
However, the disks in the neighboring columns are repor
to show strong correlations. Such translationally correla
structures may be considered as layerlike. The longitud
pair distribution functiongi(r i* ) determined in the columna
phase for the spherical model shows oscillations with a p
spacing comparable to the molecular dimensions typica
smectic phases. This contrasts with that found for the colu
i-
1793 © 1998 The American Physical Society
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1794 57HABTAMU ZEWDIE
nar phase formed from ellipsoids, which shows a periodic
of half the molecular thickness in the longitudinal pair d
tribution function. We argue that, from the pair distributio
functionsg(r * ), gi(r i* ), andg'(r'

* ) alone, it is difficult to
establish conclusively if the translationally ordered phase
columnar, a smectic, a crystal precursor or a crystal phas
general it is difficult to crystallize such systems by coolin
This makes it difficult to establish the equilibrium structu
of the translationally ordered phase at low temperatures.

The formation of columnar phases by hard oblate el
soids of revolution are ruled out based on scaling argum
@18,19#. However, the suitably parametrized GB potential
expected to form a columnar order. A face-to-face confi
ration of parallel disklike molecules is more stable than
side-by-side configuration. Such potentials favor the form
tion of a columnar phase. However, excluded volume effe
appear to favor the diskotic-nematic phase over the colum
phase. This result has implication on whether an oblate
lipsoid with a suitably parametrized GB potential could for
various types of columnar phases. The result reported in
@17# indicates that it is difficult for models based on an obla
ellipsoid to form a columnar phase of the typeDhd. The
thick middle region of the ellipsoid together with its rel
tively tapered edge appear to make the formation of colu
nar phases difficult, and are more in favor of the diskot
nematic phase. This effect is enhanced as the sh
anisotropy decreases. Similar behavior has been observ
the different but related system of prolate ellipsoids, with
length-to-breadth ratio set equal to 3 and allowed to inte
with GB potential for two of the parametersm52, n51 and
m51, n52, in the density of interest. The attractive part
the potential together with the ellipsoidal shape appear
favor the nematic phase over the smectic-A phase@20,21#.

In this paper we have developed a pair potential suita
for computer-simulation studies of systems composed
disklike molecules, and so favor the formation of diskot
columnar phases following that which we developed to stu
rodlike molecules and showed to exhibit a rich polymo
phism@21#. The pair potential is assumed to have the shif
Lennard-Jones 12-6 form@22#. The range and strength func
tions in the potential are expanded in a complete orthogo
basis set ofS functions. A hard oblate spherocylinder is co
sidered to be a more realistic model for disklike molecul
The expansion coefficients for the range parameter were
timated by mapping the expansion onto a set of cente
mass separations at closest approach of a pair of such d
The potential strength parameter is also expanded in the
sis set ofS functions. Each term in the expansion of th
strength parameter reflects a specific type of interaction
isotropic, anisotropic~nematic favoring, columnar favoring
smectic favoring!, and quadrupolar~tilt favoring!, thus al-
lowing us to fine tune each coefficient to reflect the relat
strength of a specific type of interaction. In this work w
have determined the expansion coefficients for the stren
parameter by mapping the expansion onto the GB stren
parameter for disklike molecules. This has enabled us
make a direct comparison with studies made on similar
tractive but different repulsive interactions. We have p
formed a detailed Monte Carlo simulation study of the d
ferent phases formed for the chosen model potential.

The plan of the paper is as follows. In Sec. II we w
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describe the model potential and its parametrization. T
computational details of the Monte Carlo simulation is d
scribed in Sec. III. In Sec. IV we present the results and
discussion of them. Conclusions are given in Sec. V.

II. PAIR POTENTIAL

The shifted form of the Lennard-Jones 12-6 potential@22#
has proved successful in computer-simulation studies of
isotropic molecular interactions@16,17,21,23#, and is given
as

U~ û1 ,û2 ,r !54e~ û1 ,û2 , r̂ ! F S s0

r 2s~ û1 ,û2 , r̂ !1s0
D 12

2S s0

r 2s~ û1 ,û2 , r̂ !1s0
D 6G , ~1!

wheres0 is a distance scaling parameter. The unit vectorsû1
and û2 define the molecular orientations, andr̂ defines the
intermolecular vector orientation. s(û1 ,û2 , r̂ ) and
e(û1 ,û2 , r̂ ) are the potential range and strength paramet
respectively. The distancer 5s(û1 ,û2 , r̂ ) is the separation a
which the repulsive and attractive components of the pot
tial exactly balance, ande(û1 ,û2 , r̂ ) is the potential well
depth for given molecular and intermolecular vector orien
tions. The challenge in developing a suitable potential
computer simulation studies of disklike molecules lies in d
termining the molecular and intermolecular vector orien
tions dependence of the two main parameters in the Lenn
Jones potential: the range parameters(û1 ,û2 , r̂ ) and the
strength parametere(û1 ,û2 , r̂ ). The r̂ , û1 , and û2 depen-
dence of the strength and range parameters have been
fined to take various forms following the pioneering work
Corner@24#. Berne and Pechukas@25# introduced the overlap
model to estimate the range and strength parameters an
cally as the ones which define the overlap integral of t
ellipsoidal Gaussians. However, the most studied mode
the modified overlap potential proposed by Gay and Be
@22# for studies of systems composed of prolate ellipsoi
The GB potential model was parametrized and used for c
puter simulation studies of systems composed of oblate
lipsoids representing diskotics@17#, and appears to favor th
formation of highly interdigitated columnar phases. Con
quently the formation of the diskotic-nematic phase appe
to be favored over the diskotic-columnar phase. An obl
spherocylinder is argued to be probably a more reali
model to study the structure and thermodynamic proper
of systems composed of disklike molecules. We, theref
chose an oblate spherocylinder with diameter to thickn
ratio (D1L)/L equal to 3 to represent the shape of a disk
gen. An oblate spherocylinder of widthD1L and thickness
L can be described as a ring-doughnut shape of cylin
diameterL and middle-loop diameterD, where a cylindrical
cut of diameterD along the middle of the loop is replace
with a solid cylinder of diameterD and lengthL. We used
the S-function expansion formalism to define the molecu
and intermolecular vector orientations dependence of
range as well as the strength functions@21#. The first sixS
functions@26# used for expansion are presented in Table
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A. Range function

The range functions(û1 ,û2 , r̂ ) for a pair of identical cy-
lindrically symmetric particles is expanded in the basis se
S functions as

s~ û1 ,û2 , r̂ !5s0@s000S0001scc2~S2021S022!1s220S220

1s222S2221s224S224#, ~2!

wheres0 is a distances scaling parameter ands000, scc2 ,
s220, s222, and s224 are the five expansion coefficient
Configurations of a pair of particles which were conside
to be important to reproduce the shape of the particles
give a good estimate of the expansion coefficients were id
tified. For each configuration the minimum distance of a
proach between a pair of molecules was determined, says i .
The more general least squares objective functionxs

2 was
defined as

xs
25(

i 51

N

wi@s i2s~ û1 ,û2 , r̂ !#2, ~3!

wherewi is a weighting function for thei th configuration,
and N is the number of configurations identified. We ha
considered up to 33 configurations to reproduce the shap
interest. The expansion coefficients were determined as t
which minimizedxs

2. It is important to judge the quality o
the fit, particularly for the range function, by the magnitu
of the error function as well as visual inspection of the
sulting geometry. The quality of the fit judged simply by th
magnitude of the error function can be quite misleading,
an acceptable error function could result in a completely
desirable geometry. In this exercise the absolute error in
width and thickness of the spherocylinder was 0.001. T
overall comparison is given in Fig. 1. The coefficients det
mined by this procedure are summarized in Table II. T
negative sign of the three coefficientsscc2 , s220, ands222
shows that the end-to-end and perpendicular orientation
molecules are important in determining the range parame
The coefficient ofS224 for the range parameter shows a lar
positive value indicating that the shape anisotropy beha
like a quadrupolar effect.

In Fig. 1 we present comparisons of the range parame
s* 5Ax* 21y* 2, and the shape of the excluded volume~the
region bounded by the points satisfying the conditions*
5Ax* 21y* 2. s* for the hard oblate spherocylinders w
determined numerically; for our model it was obtained v
Eq. ~2! and for the GB model from

TABLE I. The first six S functions@26#. Here û1 , û2 ,
and r̂ are unit vectors defining the orientations of the mol-
ecules and the intermolecular vector, respectively. All ori-
entations are defined in an arbitrary laboratory frame and
we use the following definitions:f 05û1•û2 , f 15û1• r̂ ,
and f 25û2• r̂ .

S00051, S2025(3 f 1
221)/2A5, S0225(3 f 2

221)/2A5,
S2205(3 f 0

221)/2A5, S2225(223 f 1
223 f 2

223 f 0
2

19 f 1f 2f 0)/A70
S2245(112 f 0

225 f 1
225 f 2

2220f 0f 1f 2135f 1
2f 2

2)/4A70
f

d
d
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e
e
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e
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r,

s~ û1 ,û2 , r̂ !5s0 F12
x

2 S ~ f 11 f 2!2

11x f 0
1

~ f 12 f 2!2

12x f 0
D G21/2

,

~4!

wherex5(k221)/(k211) is determined by the shape a
isotropy of the ellipsoid,k, defined ask5s f /se . The pa-
rametersse and s f reflect the diameter and breadth of th
ellipsoidal particles.se ands f are defined as the separatio
at which the attractive and repulsive terms in the poten
cancel when the particles are in the edge-to-edge and f

FIG. 1. Comparison of the scaled range parame
s* ([s(û1 ,û2 , r̂ )/s0)5Ax* 21y* 2, and the shape of the exclude
volume for the three models: hard oblate spherocylinder~solid line!,
our model via Eq.~2! ~triangles!, and GB via Eq.~4! ~dashed line!.
~a! Parallel configurations:a15a250, u5b15b2590°, andw is
varied. ~b! Perpendicular configurations:a15a25b250°, u5b1

590°, andw is varied.

TABLE II. Expansion coefficients for the potential range an
strength parameters. An oblate spherocylinder with shape an
ropy (D1L)/L53 was taken as a reference to determine the
pansion coefficients for range parameter via Eq.~2!. The coeffi-
cients for the potential well depth parameter were determined
Eq. ~5! by mapping onto the GB strength parameter withee /e f5
1
5 ands f /se5

1
3 , and~I! m52, n51 and~II ! m51, n52.

s000 scc2 s220 s222 s224

2.34 21.52 20.64 20.69 1.97

e000 ecc2 e220 e222 e224

I 2.24 3.58 3.16 4.29 1.30
II 3.12 5.85 7.50 9.06 0.06
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1796 57HABTAMU ZEWDIE
to-face configurations, respectively. In Fig. 1~a! we show a
comparison of the range parameter, and the shape of
excluded volume for parallel configurations of a pair of m
ecules wherea15a250, u5b15b2590°, andw is varied.
The excluded volume for these configurations reflect
shape of the molecules involved in the interaction: this is
oblate spherocylinder for our model~triangles! and hard ob-
late spherocylinder~solid line!, and an oblate ellipsoid fo
the GB mode 1~dashed line!. Figure 1~b! shows a compari-
son of the range parameter and the shape of the exclu
volume for perpendicular configurations wherea15a2
5b250°, u5b1590°, andw is varied. Our model~tri-
angles! and oblate spherocylinder~solid line! gave a rounded
corner square excluded volume, as expected, while the
model gave a circular excluded volume~dashed line!. In both
cases the range function for oblate spherocylinders repres
ing disklike molecules is well represented by theS-function
expansion.

B. Strength function

For a pair of identical cylindrically symmetric particle
the S-function expansion for the potential strength functio
e(û1 ,û2 , r̂ ), is given as

e~ û1 ,û2 , r̂ !5e0@e000S0001ecc2~S2021S022!1e220S220

1e222S2221e224S224#, ~5!

wheree0 is the well depth corresponding to thex configura-
tion, wheref 05 f 15 f 250; it is used to scale the energy. I
general the expansion coefficients in Eq.~5! can be chosen to
reflect a specific interaction of interest:e000 determines the
relative strength of the orientationally averaged interacti
e220 is the main nematic stabilizing coefficient;ecc2 ande222
stabilize layered and columnar ordering for disk shaped p
ticles; ande224 is the quadrupolar coefficient which is impo
tant if tilted phase is desired.

To facilitate comparison of our results with studies of
GB potential model for the disklike molecules with simil
attractive part but different molecular geometries, we ha
determined the expansion coefficients for the strength fu
tion by mapping the expansion onto that of the GB potent
The GB potential strength parametere(û1 ,û2 , r̂ ) has the
form

e~ û1 ,û2 , r̂ r !5e0en~ û1 ,û2!e8m~ û1 ,û2 , r̂ !, ~6!

wheree(û1 ,û2)51/@12x2f 0
2#1/2 and

e8~ û1 ,û2 , r̂ !512
x8

2 F ~ f 11 f 2!2

11x8 f 0
1

~ f 12 f 2!2

12x8 f 0
G .

The parameterx85(k8(1/m)21)/(k8(1/m)11), together with
the shape anisotropy parameterx5(k221)/(k211), deter-
mine the anisotropy in the attractive forces, wherek8
5ee /e f , k5s f /se , and the subscriptse and f refer to
edge-to-edge and face-to-face configurations, respectiv
The GB strength parameter was parametrized to enable
likelihood of a columnar phase formation withk85 1

5 andk
5 1

3 , which is the inverse of that used for most studies
prolate GB particles.
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The two exponentsm andn in the well depth function of
the GB potential take different sets of values without affe
ing the relative well depth for the face-to-face (e f) and edge-
to-edge (ee) configurations. Table III givese(û1 ,û2 , r̂ ) for
four configurations using the two common sets of the para
etersm andn ~set I:m52, n51; and set II:m51, n52!. For
m<n, the potential wells for all the configurations a
deeper than those form.n. This gives a wider range o
stability for the translationally ordered phases~crystal, smec-
tic, and columnar!. For m.n, the potential wells for all the
configurations are relatively shallower than those form,n.
This gives a narrower range of stability for the translationa
ordered phases and a wider range of stability for the ori
tationally order phases such as the diskotic-nematic pha

In this study we have determined the expansion coe
cients of the strength parametere(û1 ,û2 , r̂ ) for the two sets
of the exponents. For each set, configurations which w
considered to be important to reproduce the well depth fu
tion were identified. The well depth for a given configuratio
was determined from the GB model with the appropria
parameters, saye i . The more general least squares object
function xe

2 was defined as

xe
25(

i 51

N

wi@e i2e~ û1 ,û2 , r̂ !#2, ~7!

wheree(û1 ,û2 , r̂ ) is given by Eq.~5!, N is the number of
configurations identified, andwi is a weighting function for
the i th configuration adjusted to give the best fit. The expa
sion coefficients in Eq.~5! were determined as those whic
minimized xe

2 over 33 configurations. The well depth func
tion is a completely different function from the range fun
tion. The configurations of importance are different for t
two functions. Consequently a different set of weighti
functions was needed to fit the strength parameter. The
depths for the four main configurations, end to end (e) and
face to face (f ) with parallel configurations, edge to edg
with perpendicular configuration (x), and face to edge (T),
are fitted with an absolute error of 0.003. The overall co
parison is given in Fig. 2. The expansion coefficients
summarized in Table II. Positive values ofecc2 and e222
favor face-to-face configurations which stabilize a column
phase. Positive values ofe224, the quadrupolar coefficient
ande220 favor a parallel configuration of molecules stabili
ing the diskotic-nematic phase. Comparison of the two s
of coefficients show that set II should show a stronger
lumnar order stabilizing effect and a weaker diskotic-nema
stabilizing effect. This suggests a wider columnar range
stability, and a narrower range of diskotic-nematic stabili
Parameter set I is predicted to show a wide range of disko
nematic range of stability. This expansion of the stren
parameter can be parametrized to simulate molecules w
would ‘‘prefer’’ to orient themselves at an angle with respe
to the column to form tilted phases.

In Fig. 2~a! we show a comparison of the well depth fo
configurations wherea15a25b15b25f50°, and u is
varied, where the configuration changes from face to fac
edge to edge. The solid line represents predictions of the
model, and the dashed line shows predictions of our mo
obtained via Eq.~5!. Figure 2~b! shows the case for configu
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57 1797COMPUTER-SIMULATION STUDIES OF DISKOTIC . . .
rations wherea15a25f50°, b15u590°, andb2 is var-
ied. In both of these special cases the well depth is w
represented.

III. DETAILS OF THE SIMULATION

To explore the value of the model potential we have p
posed for the studies of diskotic-liquid crystals, we carr
out detailed simulation. A Monte Carlo algorithm with per
odic boundary conditions was used, which allowed the b
shape to fluctuate between the initial tetragonal shape a
cubic shape while keeping the box volume and its tempe
ture constant@27#. This algorithm has the advantage of f
cilitating the equilibration process by allowing the system
come out of quasiequilibrium states. Allowing changes in
shape of the sample box allows changes in the phase
occur more easily. Restricting the shape of the box to fl

FIG. 2. Comparison of the scaled strength parametere*
5e(û1 ,û2 , r̂ )/e0 , obtained from our model via Eq.~5! ~dashed
line!, and GB via Eq.~6! ~solid line!. ~a! a15a25b15b25f
50°, andu varied.~b! a15a25f50°, b15u50°, andb2 var-
ied.

TABLE III. A comparison of the well depths of the GB mode
for two sets of exponents. The anisotropies in the shape and a
tive force are chosen to bek([s f /se)5

1
3 andk8([ee /e f)5

1
5 to

reflect oblate ellipsoidal symmetry.~I! m52, n51. ~II ! m51, n
52.

Face to face
e f /e0

Edge to edge
ee /e0

T shaped
et /e0

Cross shaped
ex /e0

I 25/3 5/3 (1525A5)/2 1
II 125/9 25/9 5/3 1
ll

-
d

x
a

a-

e
to
-

tuate between the initial tetragonal shape and a cubic sh
would prevent formation of structures stabilized by the b
shape, and would allow the system to determine its equi
rium box shape. A detailed study was made on a system
512 particles with a packing fraction (Nv0 /V) equal to 0.55,
wherev05(PL3/8)@2(D/L)21P(D/L)# is the volume of a
molecule which is defined as the volume of an oblate sphe
cylinder with shape anisotropy (D1L)/L equal to 3,V is the
volume of the sample box andL5s f([s0).

The simulation was started by arranging the particles o
fcc lattice where thex and y directions are stretched by
factor of se /s f reflecting the shape anisotropy of the pa
ticles. The lattice was chosen to have 4, 4, and 8 unit c
along thex, y, and z directions to match the number o
lattice sites with the number of particles. This choice ga
the tetragonal box an almost cubic shape with a reason
number of particles along the three directions to ensure
the box dimensions were larger than the potential cutoff d
tance in all three orthogonal directions. The initial dime
sions of the box were determined by the dimensions of
starting fcc lattice and the volume of the system. The inst
taneous dimensions of the box were used to reduce the
responding components of coordinates of the particles. T
restricted each component of a particle in a reduced coo
nate to vary between zero and unity. This reduction of p
ticle components of the coordinate with the correspond
box length enabled us to perform Monte Carlo moves se
rately on the tetragonal box shape and the position of p
ticles. A change in the tetragonal box shape was achieve
changing the dimensions of the box keeping its volume c
stant. During the simulation the box dimensions were
lowed to fluctuate within a maximum of 2s0 from the initial
dimension to allow the system to fluctuate about a cubic b
shape.

In this simulation we have performed the three Mon
Carlo moves separately—change of box shape, chang
translational position, and change of orientational position
the molecules—to increase the rate of equilibration and
efficiency of the sampling. The maximum allowed chang
say Db , D t , and D r , corresponding to changes in dime
sions of the box, the translational coordinate compone
and the orientations about a randomly chosen axis, res
tively, were adjusted every macrocycle so that the acc
tance ratio was in the range 0.4–0.6. A macrocycle was ty
cally 2000 cycles, and a cycle typically consisted of 5
attempted orientational moves followed by 512 attemp
translational moves and one or two attempted box dimens
changes. Trial orientational moves were generated follow
the Barker-Watts technique, in which a particle was rota
by a random amount about a laboratory axis selected at
dom @28#. Translational moves were generated by sequ
tially choosing a particle and displacing it byD tj t in reduced
units along a randomly chosen axis, wherej t is a random
number between20.5 and 0.5. The coordinates of the inte
acting particles were then converted to scaled units to ca
late the change in configurational energy. A change in b
dimension was attempted by randomly choosing a labora
axis; a random number between20.5 and 0.5 was then gen
erated, sayjb . A multiplying factor was calculated a
exp(Dbjb) for the box dimension along the randomly chos
axis, and the corresponding ones for the other two, to le

ac-
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the tetragonal box volume constant. The old and new set
box dimensions were used to convert the reduced coo
nates of particles to the corresponding sets of scaled coo
nates. The change in configurational energy as a result o
attempted change in the box shape was then calculated.
attempted change in box shape, as well as translational
rotational moves, were accepted following the standard M
tropolis algorithm@29,30#.

The last configuration of each production stage was u
as the starting configuration for the next temperature. Equ
bration was monitored via the internal energy and orien
tional order parameters subaveraged over a macrocy
Typically 20 macrocyles were generated to equilibrate
system. The structural and thermodynamic properties w
calculated from a minimum of 403106 configurations. Near
the temperatures where we expected a phase transitio
occur, we performed longer runs. To reduce the comp
tional time a spherical cutoff of 4s0 with a Verlet neighbor
list @31# was employed; this list was extended up to 4.5s0
and updated every 20 cycles. The statistical errors in the fi
values of properties were estimated from 20 successive
averages of the properties each calculated over a macroc
configurations.

The detection of different kinds of orientational and tran
lational orders in a computer simulation requires the de
mination of the appropriate radial distribution functions a
order parameters. In order to study the translational orde
the system, we calculated the orientationally averaged ra
distribution function,g(r * ), which gives the probability of
finding a molecule at a distancer * from the one at the ori-
gin, relative to the probability expected for a completely ra
dom distribution at the same density. It is conveniently d
fined for evaluation by computer simulation as@15,30#

g~r * !5
1

4pNrr * 2 K (
i

(
j Þ i

d~r * 2r i j* !L , ~8!

where r * 5r /s0 . g(r * ) enables us to characterize at lea
the crystalline and translationally disordered phases. H
ever, this alone is insufficient to distinguish between the d
ferent kinds of mesophase ordering. Hence other functi
that probe the translational ordering of the molecules in
entationally ordered phases must be introduced. In partic
we have calculated the distribution function parallel to t
directorgi(r i* ) which is sensitive to the arrangement of mo
ecules in layers and the distribution functiongc(r c* ) which is
sensitive to the regular stacking of molecules in colum
These structural properties are defined as@15,30#

gi~r i* !5
1

l x* l y* Nr K (
i

(
j Þ i

d~r i* 2n̂•r i j* !L ~9!

and

gC~r C* !5
4

p@~D1L !/2L#2Nr K (
i

(
j Þ i

D i j d~r C* 2ûi•r !L ,

~10!

where D i j is equal to unity if uûi•r i j* u21@(D1L)/2L#2

.ur i j* u2, and zero otherwise; these are convenient for eva
ation by computer simulation.l x* and l y* are the average
of
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reduced box dimensions alongx and y axes. The degree o
order within a layer is monitored via the radial distributio
function perpendicular to the directorg'(r'

* ), defined as
@15,30#

g'~r'
* !5

1

2p l t* Nrr * K (
i

(
j Þ i

d~r'
* 2r i j ,'* !L , ~11!

whereun̂•r i j* u, l t* /2, l t* 52 is a slice thickness about the pa
ticle considered, andr i j ,'* 5(ur i j* u22un•r i j ,'* u2)1/2. For all the
distribution functionsd is a Dirac delta function replaced b
unity in a small range of separation taken to be 0.01 in
duced units, and a histogram was compiled of all pair se
rations falling within each such range.

The hexagonal arrangement of columns of molecules
molecules within a layer was monitored by calculating t
bond order parameter defined as

C65U K 1

N (
j

1

nb
j (̂

kl&
wkl exp~6iukl!L U, ~12!

wherenb
j is the number of pairs of nearest neighbors of t

j th molecule,^kl& implies a sum over all possible pairs o
neighbors, andukl is the angle between the unit vecto
along the projections of the intermolecular vectors betwe
molecule j and its neighborsk and l onto a plane perpen
dicular to the director.wkl51 if r jk* and r j l* lie within a
cylinder of diameter 3.5 and thickness 2 centered at part
j , and zero otherwise. This range was chosen such that
molecules in the first coordination shell contribute to t
sum. C6 takes unity for a phase with a perfect hexagon
bond order, zero for the isotropic phase, and an intermed
value for a phase with intermediate bond order.

Calculations of two of the radial distribution function
gi(r i* ) and g'(r'

* ) and the bond order parameter requ
knowledge of the director orientationn̂. In computer simu-
lation the director is not knowna priori, and it fluctuates
during the evolution of the system. In general the seco
rank orientational order parameter and the direction of
director for a given configuration can be calculated from
second-rank tensor defined as@11,32#

Qab5
1

N ( ~3ua
i ub

i 2dab!/2, ~13!

whereua
i , anda5x, y, z is the direction cosine of the uni

vector describing the orientation of thei th molecule with
respect to an arbitrary space-fixed frame. In the phases w
the configurations show considerable orientational order,
fluctuation of the director orientation during a cycle is insi
nificant. Considering this we were able to reduce the com
tational time by sampling theQ tensor only once at the en
of a cycle and accumulating it for 30–50 configurations. T
averagedQ tensor was then diagonalized once at the end
every 30–50 cycles. Its largest positive eigenvalue was t
accumulated and at the end of the run averaged to give
second-rank order parameter,P̄2 . Whenever a director ori-
entation was needed to calculate the other structural pro
ties the eigenvectors of the last averagedQ tensor were de-
termined and the one associated with the largest eigenv
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was identified with the director. Once the director orientat
is located, a variety of structural properties can be calcula
for a given configuration. The frequency of eigenvector d
termination depends on the frequency of sampling of str
tural properties which depend on the orientation of the dir
tor.

IV. SIMULATION RESULTS AND DISCUSSION

We have simulated two parametrizations of the model
tential. The two sets of the expansion coefficients for
strength parameter are given in Table II. For convenience
shall call the model potential with the first set of coefficien
model I, and that with the second set model II. A detai
simulation study was carried out at a packing fraction
0.55. We shall first present and discuss the simulation res
for model I, and then those for model II. Whenever possi
we shall give a comparison of the results for the two mod
and also compare those with the results obtained for the
model of oblate ellipsoids.

Figure 3 shows the variation of the scaled internal ene
Ū* ([^U/Ne0&) and heat capacityCV* ([CV /Nk) as a func-
tion of the scaled temperatureT* ([kT/e0) for model I. The
error bars estimated forŪ* from 20 block averages wer
found to be less than the experimental points. The inte
energy for the heating run is represented by open squa
and that for the cooling run by filled circles. The intern
energies for the heating and cooling runs show a differe
at low temperatures. This shows that the low tempera
equilibrium crystal structure is not fcc. At absolute zero t
equilibrium crystal structure is hexagonally close pack
~hcp! layers stacked in anAAA structure. The fcc structure
appears to be mechanically stable and thermodynamic
unstable. A fcc structure was chosen as the starting cry
structure to enable us to easily identify the diskotic-colum
phase as the equilibrium structure when it is self-organi
on melting of the crystal. The heat capacity shown in Fig
was determined by numerically differentiating the intern
energy obtained from the heating run fitted to a smooth
cubic spline function. The positions of the three heat cap

FIG. 3. The scaled internal energyŪ* ([^U/Ne0&) ~h! and
heat capacityCV* ([CV /Nk) ~n! as a function of the scaled tem
peratureT* ([kT/e0) for model I obtained from the heating run
The internal energy results obtained from the cooling run star
from the isotropic phase are indicated as~d!. Lines are drawn
through the points as a guide to the eye.
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ity peaks suggest the existence of four regions of sta
phases with transition temperaturesT* of 0.45, 6.75, and
9.00. The melting transition appears rather unusual, as it
curs with a reduction in entropy~that is,DS/Nk is 21.58!,
which suggests that the fcc structure is not the equilibri
crystal structure. The melting transition was studied for t
other packing fractions of 0.45 and 0.66. In all three ca
the fcc melted into a hexagonal columnar phase. At abso
zero the equilibrium crystal structure isAAA-stacked hcp
layers. It is easier for the system to go to the equilibrium h
structure on cooling from the high temperature column
phase, than from the fcc structure which is mechanica
stable at low temperatures. The two heat capacity pe
around the scaled temperatures of 6.75 and 9.00 are as
ated with weak first order transitions. For these the tran
tional entropiesDS/Nk are estimated to be 0.11 and 0.1
respectively. Based on the behavior of real diskotic liqu
crystals, it seems reasonable to identify the four phase
crystal, diskotic columnar, diskotic nematic, and isotrop
appearing in succession with increasing temperature. H
capacity peaks alone are not sufficient to identify positions
phase transitions. In the following we shall present the str
tural properties and snapshots of configurations represen
the various phases, to demonstrate the sequence of p
transitions exhibited by our model potential.

In Fig. 4~a! we present the temperature dependence of
second-rank orientational order parameterP̄2 . Open squares
represent the heating run, and filled circles the cooling r
In agreement with the predictions based on the heat capa
peaks, four stable regions can be identified from this plot

g

FIG. 4. Plots of order parameters as a function of scaled t
perature for model I. The points are connected by lines to serv
a guide to the eye.~a! Second rank orientational order parameterP̄2

~h, heating;d, cooling!. ~b! Bond order parameterC6 ~n, heating;
d, cooling!.
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the crystal phase the orientational order parameter show
strong temperature dependence; it changes smoothly
the crystal phase to the columnar phase. Both phases
highly orientationally ordered. Over the entire region of t
columnar phase,P̄2 shows a relatively weak temperature d
pendence; it shows a discontinuous reduction across the
lumnar to diskotic-nematic transition and a strong tempe
ture dependence in the diskotic-nematic phase. It rem
small but finite in the isotropic phase. Such behavior usu
arises due to the method of determining the order param
and the small number of particles studied. Indeed, in
isotropic phaseP̄2 is predicted to show a size dependence
the order of 1/AN @11#. The error bars estimated forP̄2 from
20 block averages were found to be less than the experim
tal points.

In Fig. 4~b! we present the temperature dependence of
bond order parameterC6 . The triangles are for the heatin
run and filled circles are for the cooling run. The bond ord
parameter for the heating and cooling runs show a large
ference at low temperatures. The heating run was sta
from the fcc structure. For a perfectly ordered fcc struct
C6 is 0.33. On melting of the fcc structure, the system se
organized into hexagonally packed columns which hav
large value for the bond order parameter. For a perfe
ordered hexagonally packed column,C6 takes its maximum
value of unity. On cooling the diskotic-columnar phase
low temperatures the system goes into its equilibrium str
ture ofAAA-stacked hcp layers, which gives a high value
C6 . The plot of the bond order parameter as a function
temperature shows the four regions and the location of
transitions quite clearly and are consistent with those p
dicted based on the plots ofCV* andP̄2 . In the fcc phase,C6

shows a strong temperature dependence. At the fcc-colum
phase transition the bond order parameter increases d
cally from about 0.25 to 0.8, indicating the melting of the f
phase and the formation of a hexagonally arranged ph
Over the entire region of the diskotic-columnar phase
bond order parameter shows a weak temperature de
dence.C6 shows a discontinuity across the columnar to
diskotic-nematic transition. It varies from 0.4 to 0.3 in th
diskotic-nematic phase. This reflects the extent of the lo
short-range translational order in the nematic phase. In
isotropic phase the bond order parameter vanishes. The
bars estimated forC6 over 20 block averages were found
be less than the experimental points.

Visual inspection of typical configurations complemen
the predictions based on thermodynamic and structural p
erties calculated for the various phases. In Fig. 5 we sh
snapshots of the last configurations taken from the prod
tion stages from simulations at five selected temperatu
These are viewed at an angle from the director chose
show some aspects of the structure of the corresponding
tems. The views along the director are shown in Fig. 6. T
particles are represented as disklike objects and, for the
of clarity, the dimensions of the particles are reduced
about 20%.

Figures 5~a! and 6~a! show snapshots at a scaled tempe
ture of 0.4, which is just before the fcc crystal melts. Figu
5~a! shows a layer by layer arrangement of particles, and
6~a! shows the rectangular arrangement of particles withi
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layer which is typical of a fcc structure. These pictures alo
are not sufficient to characterize the structure of the phase
Fig. 7~a! we give the pair distribution functionsg(r * ) and
g'(r'

* ) calculated via Eqs.~8! and ~11!, respectively. The

FIG. 5. Snapshots of final configurations for model I taken fro
the production stages at five reduced temperatures as viewed
angle with respect to the director. For the sake of clarity the dim
sions of the particles are scaled down by 20%.~a! 0.40 ~fcc!. ~b!
0.5 (Dho). ~c! 6.0 (Dhd). ~d! 8.0 (ND). ~e! 10.00~isotropic!.

FIG. 6. Snapshots of the final configurations for model I tak
from the production stage at four scaled temperatures as vie
along the director. For the sake of clarity the dimensions of
particles are reduced by 20%.~a! 0.40 ~fcc!, ~b! 0.5 (Dho). ~c!
6.0 (Dhd). ~d! 8.0 (ND).
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FIG. 7. Plots of pair distribution functions for model I:g(r * ) ~dotted line! obtained via Eq.~8! andg'(r'
* ) ~solid line! obtained via Eq.

~11! for five reduced temperatures.~a! 0.40 ~fcc!. ~b! 0.5 (Dho). ~c! 6.0 (Dhd). ~d! 8.0 (ND). ~e! 10.00~isotropic!.
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four main peak positions ofg(r * ) for a perfect fcc structure
are at reduced separations of approximately 2, 3.16, 4
and 6, while the first four peak positions ofg'(r'

* ) corre-
spond to reduced separations of about 3.16, 4.24, 6, and 6
The relative peak heights of the first three peaks is 2:1:1.
main peak positions in Fig. 7~a! match those of the expecte
peak positions for a perfect fcc structure. The plots ofgc(r c* )
andgi(r i* ), obtained via Eqs.~9! and~10!, respectively, are
shown in Fig. 8~a!. The main features of these plots are th
the peaks forgi(r i* ) are of uniform height and are uniformly
spaced with an average spacing of about 1.1 scaled u
while those forgc(r c* ) are also of uniform peak heights bu
with twice the peak spacings forgi(r i* ). However,gc(r c* )
has already started showing small secondary peaks at s
of the intermediate positions indicating imperfections in t
lattice structure. The structure of these four pair distributi
functions, together with the density distributions along t
three arbitrary laboratory axes, which are all found to
periodic, characterize this phase as the starting fcc cryst
24,

.78.
he
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e
n
e
e
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The stable structure over the wide temperature rang
0.45 to 6.75 is characterized as a hexagonal columnar ph
Figure 5~b! shows a snapshot of a configuration at a tempe
ture of 0.5. This is just after melting, and the molecules
stacked in columns which have a parallel arrangement o
local scale. Figure 6~b! shows a snapshot of the same co
figuration but now viewed parallel to the director. Th
shows that the columns are arranged on a two-dimensi
hexagonal lattice. In Fig. 7~b! we present the radial distribu
tion functions g(r * ) and g'(r'

* ). The main features o
g(r * ) are the principal peaks around 1.1 for the face-to-f
stacking, around 3.3 for the edge-to-edge arrangement, a
doublet between 5 and 7 for a hexagonal arrangement.
interpretation is consistent with the form ofg'(r'

* ): a prin-
cipal peak around 3.2 and a doublet between 5 and 7
doublet in these pair distribution functions is usually taken
the signature of a hexagonal arrangement of molecu
However, such doublets in these distribution functions
also consistent with other molecular organizations, for
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FIG. 8. Plots of pair distribution functions for model I:gi(r i* ) ~dotted line! obtained via Eq.~9! andgc(r c* ) ~solid line! obtained via Eq.
~10! for five reduced temperatures.~a! 0.40 ~fcc!, ~b! 0.5 (Dho). ~c! 6.0 (Dhd). ~d! 8.0 (ND). ~e! 10.00~isotropic!.
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ample hcp crystal and hexatic smectic-B phases. In Fig. 8~b!
we give gi(r i* ) and gc(r c* ). At a low temperature such a
0.5, the system has a weak layered structure with stron
correlated stacking of molecules in columns. The peaks
gi(r i* ) and gc(r c* ) are regularly spaced, with an avera
scaled spacing of 1.1. The peak heights ingc(r c* ) show an
exponential decay as a function of molecular separation
the formAe2r c /j, whereA is 1.55 and the correlation lengt
j is 3.89. Hexagonally arranged columns of regularly stac
disks is a characteristic behavior of aDho phase. In Figs. 5~c!
and 6~c! we show snapshots of configurations at a tempe
ture of 6.0, just before the columnar phase undergoes tra
tion to the diskotic-nematic phase. The molecules are stac
in parallel columns which are arranged on a two-dimensio
hexagonal lattice. The pair distribution functionsg(r * ) and
g'(r'

* ) are presented in Fig. 7~c!; here the peaks are broad
ened, although they show similar features to those at a
duced temperature of 0.5. Significant changes in the mole
lar stacking within a column is reflected ingi(r i* ) and
ly
in

of

d

-
si-
ed
al

e-
u-

gc(r c* ), andgi(r i* ) shows no structure. The correlation b
tween positions of molecules within a column appears
vanish within five molecular thicknesses. The structure
these four pair distributions are similar to those in the ne
atic phase shown in Figs. 7~d! and 8~d!, indicating uniform
liquidlike mass distribution. The stacking of molecules
long hexagonally arranged columns with liquidlike structu
within columns is defined as aDhd phase.

The diskotic-nematic phase is found to be stable over
scaled temperature range of 6.75–9.0. Snapshots of the
configuration for the production stage at a scaled tempera
of 8.0 viewed from an angle to the director is shown in F
5~d!. A view parallel to the director is given in Fig. 6~d!. The
system appears to have a few molecules stacked in s
columns. This is evident from the pair distribution functio
of gi(r i* ) shown in Figs. 7~d! and 8~d!. The four pair distri-
bution functions in the columnar phase (Dhd) at T* 56.0 and
the diskotic-nematic phase atT* 58.0 appear to show simila
features. The two phases are clearly distinguished with
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help of the configurational snapshots shown in Figs. 5~c! and
5~d!. The nematic order parameter varies from 0.6 to 0.
At T* 59.0 the system undergoes a weak first order ph
transition to an isotropic phase.

In Fig. 5~e! we show a snapshot of the last configurati
taken from the production stage atT* equal to 10.00. At this
temperature the system is characterized as isotropic. H
ever, due to finite size effects and also due to the method
which the order parameter is calculated the system show
small finite orientational order parameter. Although the
rector associated with the instantaneous order param
fluctuates quite significantly, it is still of interest to calcula
g'(r'

* ) and gi(r i* ). The pair distribution functionsgi(r i* )
andgc(r c* ) are presented in Fig. 8~e!, andgi(r i* ) indicates a
uniform mass distribution along the director, whereasgc(r c* )
clearly shows two peaks indicating the short-range stack
of molecules. This is important evidence that the pair pot
tial favors the formation of a columnar order.g(r * ) and
g'(r'

* ), presented in Fig. 7~e!, show peaks around 1 and
Such structures for these distribution functions are unus
A similar structure was predicted for dipolar hard oblate
lipsoids at sufficiently high dipolar strength@33#. The first
peak corresponds to the face-to-face arrangement of
molecules, and the second peak has contributions from
edge-to-edge arrangement of two molecules and face-to-
arrangement of three molecules. These peaks reflect
shape anisotropy of the constituent molecules. The pair
tribution functiong(r * ) obtained from molecular dynamic
simulation of hard oblate spherocylinders@9#, hard oblate
ellipsoids@34#, and GB oblate ellipsoids@17# do not appear
to show the first peak.

An important distinction between the diskotic-nema
and isotropic phases is shown in theg'(r'

* ) plots presented
in Figs. 7~d! and 7~e!. The first peak, which is due to mo
ecules arranged face to face and perpendicular to the d
tor, is absent in the nematic phase. This could be take
evidence of the lack of long-range orientational order in
isotropic phase which is responsible for the strong fluct
tion of the director.

In order to make a direct comparison with the simulati
of oblate ellipsoids at the same packing fraction of 0.55 a
similar strength parameter, we shall next present results
tained by using potential model II. Figure 9 shows the res
for the scaled internal energyŪ* ([^U/Ne0&) and heat ca-
pacity CV* ([CV /Nk) determined by numerical differentia
tion of the internal energy as a function of the scaled te
peratureT* ([kT/e0). The error bars estimated forŪ* over
20 block averages were found to be less than the experim
tal points. The two heat capacity peaks at scaled temp
tures of 1.25 and 13.25 suggest the existence of three s
phases. These phases have been characterized with the
of the order parameters shown in Fig. 10. The phase
quence is established to be crystal, hexagonal diskotic
lumnar, and isotropic. The diskotic-nematic phase appea
be removed by this change of parameter in favor of
diskotic-columnar phase. If a diskotic-nematic phase
stable for this system, it must be over a very narrow te
perature range which is difficult to determine with the cu
rent wide temperature intervals studied. Figure 11 gi
snapshots of the last configurations from the product
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stage atT* 51.5, which is just after the system melts, and
T* 513.00 just before the columnar phase undergoes a t
sition to the isotropic phase. The nature of the colum
order at these two temperatures is qualitatively and quan
tively different. The different nature of the columnar ord
are indicated by the pair distribution functionsgi(r i* ) and
gc(r c* ) shown in Fig. 12. The pair distribution atT* 51.5
calculated parallel to the director indicates a weak laye
structure. However, the peak spacing is half that expected
layers formed from disks of the dimensions used in t
simulation. Moreover, these observations reveal that
disks within one column are staggered with respect to th
in an adjacent one. The peak heights ingc(r c* ) show an
exponential decay as a function of molecular separation
the form Ae2r c /j, where A51.52 andj55.32. The bond
order parameter together with the doublets in the peaks
gi(r i* ) in the range of distances 5–7 indicates the arran
ment of columns on a two-dimensional hexagonal latti
This hexagonal structure is clearly observed in the snap
of Fig. 11~b! taken parallel to the column axes. Such pha
with such characteristic intercolumnar correlations have b
observed for other simulations of oblate ellipsoids@17#. In
our system the intercolumnar correlation is found to be sta
only at the temperature just after the melting of the crys
This phase has been identified asDho8 in order to distinguish
it from the uncorrelated hexagonally ordered column

FIG. 9. The scaled internal energyŪ* ([^U/Ne0&) ~h! and
heat capacityCV* ([CV /Nk) ~n! as a function of scaled tempera
ture T* ([kT/e0) for model II.

FIG. 10. Plots of the second rank orientational order param
P̄2 ~h!, and the bond order parameterC6 ~n! as a function of
scaled temperature for model II.
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phase. The high temperature columnar phase appea
show a qualitatively different structure. The phase at a te
perature close to the isotropic transition is expected to ha
high degree of disorder. This is evident from the snapsh
shown in Figs. 11~c! and 11~d!. However, an important dis
tinction appears in the pair distribution functionsgi(r i* ) and
gc(r c* ) shown in Fig. 12~b!. gi(r i* ) does not show any struc
ture indicating the absence of any layered structure. H
ever,gc(r c* ) exhibits a peak structure which vanishes with
four molecular thickness. These structures of the pair dis
bution functions together with the results on the bond or
parameters andg'(r'

* ) characterize the phase atT* 513.00
as theDhd phase.

V. CONCLUSIONS

The shifted form of Lennard-Jones 12-6 potential h
proved successful in computer-simulation studies of syst
composed of rodlike and disklike molecules. The range
rameter s(û1 ,û2 , r̂ ) for disklike molecules is estimate
based on either spheres or oblate ellipsoids in the GB mo
The range parameter estimated in this way appears to f
formation of the diskotic-nematic phase over the disko
columnar phase. The thick middle region of the ellipso
together with its relatively tapered edge favors interdigita
packing. This makes formation of the diskotic-column
phase difficult, and favors the diskotic-nematic phase. T
effect is enhanced as the shape anisotropy decreases
have successfully removed this problem by modeling

FIG. 11. Snapshots of the final configurations taken from
production stages at two scaled temperatures as viewed at a
with respect to the director@~a! and~c!# and along the director@~b!
and~d!# for model II. For the sake of clarity the dimensions of th
particles are reduced by 20%.~a! 1.5 (Dho8 , side view!. ~b!
1.5 (Dho8 , top view!. ~c! 13.0 (Dhd, side view!. ~d! 13.0 (Dhd, top
view!.
to
-
a

ts

-

i-
r

s
s
-

el.
or
-

d
r
is
We
e

range parameter based on an oblate spherocylinder, whi
a more realistic model to study disklike molecules. The co
puter simulation of our model potential clearly showed t
stability of a variety of stable diskotic-columnar an
diskotic-nematic phases. We have successfully demonstr
how to characterize the structure of the various disko
phases using combinations of results obtained from the v
ous thermodynamic and structural properties. TheS-function
expansion approach of the strength parameter allows e
term to be associated with a specific type of interaction: i
tropic, anisotropic~nematic favoring, columnar favoring
smectic favoring!, and quadrupolar~responsible for tilt for-
mation!. This enables each coefficient in the expansion of
strength parameter to be fine tuned to reflect the rela
strength of a specific type of interaction.S functions can be
evaluated efficiently by computers. This makes our mo
potential computationally cheaper. This reduction in co
puter time could be significant when studying systems w
large sample size or systems with molecules made up
units joined together to study a variety of geometries.
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FIG. 12. Plots of pair distribution functions for model II:gi(r i* )
~dotted line! andgc(r c* ) ~solid line! for two reduced temperatures
~a! 1.5 (Dho). ~b! 13.0 (Dhd).
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