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The nematic orientation close to a solid substrate is investigated by means of a Landau—de Gennes phe-
nomenological model. We show that a spatial variation of the scalar order parameter induces a subsurface
variation of the average molecular orientation and an intrinsic contribution to the anchoring when the splay and
bend elastic constants are different from the twist elastic constant. A quasi-splay-bend elastic constant is
deduced by comparing the surface term proportional to the first derivative of the tilt angle with the one
proposed long ago by Nehring and Sadpge Chem. Phys54, 337 (1971); 56, 5527 (1972]. The effective
anchoring being a combination of the external contribution originating from the interaction with the substrate
and the intrinsic anchoring energy resulting from the spatial variation of the scalar order parameter is analyzed.
Matching elastic and magnetic effects on a nematic slab, the corresponding effective extrapolation lengths are
estimated[S1063-651X%98)00102-0

PACS numbg(s): 61.30.Cz, 61.30.Gd

[. INTRODUCTION be deduced only for very limited and simplified systems.
Recently, it has been shown using a simple lattice model that
In bulk nematic phases intermolecular interactions resubsurface deformations can be understood in terms of a
sponsible for the nematic order tend to orient molecular longcompetition between external and intrinsic anchoring of the

axesa parallel to a common direction, called the director liquid crystal on the substrate and that they can be rather
[1]. Therefore, in a slab of nematic material confined byweak if anchoring has a normal strengi#]. A given form
surfaces that impose the same molecular orientation onf®r the intermolecular interaction is supposed and the total
would expect a homogeneous nematic orientation. In con€nergy is then deduced by summing all the intermolecular
trast, some experimental investigatiofd—4] show that interactiong14—17. In all these studies a zero-temperature
liquid-crystal molecules in the surface layer can have an oriapproach(perfect nematic ordgrneglecting the effect of
entation different from that in the bulk material. Also, a little fluctuations has been used. A conclusion about the existence
more detailed theoretical analysis immediately shows tha@f subsurface deformations similar to that in REf4] is
nontrivial ordering close to the surface is possible. Theoretcoming from the density-functional approas].
ical predictions about subsurface deformations have been Molecular-dynamics simulations of particles interacting
published by different groups, mainly in connection with the Via a Gay-Berne potentigl9] show a substrate-induced spa-
splay-bend K ;5 elastic constant introduced long ago by Ne- tial variation of the nematic scalar order parameter and mo-
hring and Saupg5,6]. Barberoet al. [7] realized that the lecular density(smectic ordering[20—23. The nematic di-
inclusion of theK 5 term in the Frank elastic energy density rector and the scalar order parameter are deduced by
responsible for deformed ordering close to the surface readveraging molecular quantities. Unfortunately, for computa-
quires an additional term proportional to the square of thdional reasons the number of particles cannot be very large.
second derivative of the angle characterizing the nematic di- The aim of our paper is to analyze the nematic orientation
rector field (second-order elasticityto prevent its infinite close to a solid surface using the Landau—de Gennes phe-
distortion. In this approach a strong and very localized bufitomenological theory24]. A nematic liquid crystal is de-
finite subsurface deformation of the nematic director field isscribed with a uniaxial order parameter that incorporates the
described in terms of the splay-bend elastic condgptand  nematic directon and the nematic scalar order parameer
the effective second-order elastic constiiit [7—10. Pos- [24]. We show that even if the expansion includes only terms
sible variations of the nematic order are not taken into acup to the second power of the first derivatives of the order
count and the scalar order parameter is tacitly assumed to lgarameter, the spatial variation $fnear the bounding walls
constant. Although based on elastic theory, this descriptioyields a subsurface deformation in the nematic director and
yields strong subsurface deformations, which raise manyice versa. Some of the results limited to the strong-
guestiong 11]. Recent, more detailed macroscopic consideranchoring case have been obtained recently by Vissenberg
ations that indicateK,3=0 [12,13 apparently solve the et al.[25] using the same phenomenological approach. Fur-
problem of strong subsurface deformations in the macrother, we show that the variation in order also results in an
scopic description, but do not answer the question about dexddition to the anchoring strength, which becomes evident
formations on the molecular levE2—4]. only if weak anchoring is assumed. Another analysis similar
In a completely molecular picture, nematic ordering canto Ref. [25], but without the strong-anchoring assumption,
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has been performed by Teixeieaal.[26], studying anchor- B=1.6x10° J/n?, C=3.9x10° J/n?, and T,~35.1°C
ing transitions in a nematic liquid crystal. However, this[28]. For a deformed staté=f, is expected; therefore, in
study does not present a reliable method for the determinasq. (2) there are no linear terms in the first-order derivative
tion of the anchoring energy. Therefore, our aim is to presengf Q;; and further all terms quadratic @;;  are assumed to
a method which we believe is generally convenient. be positive definite. This yields the restrictiohg>0 and

Our paper is organized as follows. In Sec. Il the classica| .| _ 3 ; Lo
Landau—de Gennes free-energy density is recalled and thLe2 Ls 2L1 [24]. Using Eq.(1) and taking into account

number of “elastic parameters” entering into the model isthatn-n=1 and henceyn; ;=0, it is possible to rewritd
discussed27]. The quasi-splay-bend elastic constant and th&iven by Eq.(2) as[24]
intrinsic anchoring energy due to the spatial variation of the 3
scalar order parameter are deduced in an approximate way ip_ -

, ) o fo(S)+
Sec. lll. Numerical solutions of the planar variational prob- 8
lem connected with the phenomenological free-energy den-
sity written in terms of the scalar order parameters and the x (p.Vs)2

tilt angle formed by the nematic directorand the geometri-
cal normal are presented in Sec. IV. We conclude in Sec. V. + 204N (VX)) P+[ 201+ (Loy+ Lg) [INX (VX A) ]2

(VS)2+(Ly+Lsg)

1
2Ll+ §(L2+ L3)

9 . -
+ §9,2{[2L1+(|_2+ L3)](V-n)?

Il. LANDAU —DE GENNES PHENOMENOLOGICAL — (2L +Lg)V-[n(V-n)+nx(Vxn)]}
MODEL

3 . IR . s o
In order to be able to estimate the influence of the cou-  + 7SVS-{(2Lo—L3)n(V-n)+(Lo=2Lgn X (VXn)j.
pling between order-parameter variation and director defor-
mation we must briefly go through the derivation of the 4

Landau—de Gennes free energy. A nematic liquid crystal is a_ . .. ) .
“quadrupolar” material, which is, in the most general case, | his expression shows thican be divided into three “elas-

characterized by the tensor order paramgtér tic terms.” The first term corresponds to the spatial variation
of S. The second one is the well-known Frank elastic energy

density, which originates in the spatial variationnpfinclud-
ing the saddle-splay contribution. In this approximation

3 1
Qij=5S| ninj— 34

having quadrupolar symmetry. Here stands for theith
component of the director, whilg andm; are components of
the unit vectors that form an orthonormal triad together with

n. Sis the uniaxial scalar order parameter @ds a scalar 9.,

guantity measuring the biaxiality of the nematic. In our KZZZESDLl' ©
analysis we will, for simplicity, assume the system to be

uniaxial and henc®=0. We expect that this simplification 9

will not significantly affect the qualitative character of our K24=ZS§(2L1+ L), W)
results.

freg_ghneepem da;fszfydé?t?r:;eﬁg];ig?jgﬂz:giingght' ;I]:he where S, is the bulk value of the scalar order parameter.
9y N Finally, in Eq. (4) there is a third term connected to the

Qjj changes slowly across the sample, the first spatial deriva- _ -
tives of Q;; are small quantities. In this framewofkcan be spatial variation ofS andn.

expanded only up to the second order in the derivatives Eduations(5)—(7) show that within this approach the
Qij k= 0Qi; 1%, [24]; splay (K1) and bend K33) constants are equal and different

from the twist (K,,) elastic constant. Only in the special case
1 1 1 L,+L;=0 all three Frank elastic constants have the same
f=fot 5L1Qij kQij kT 5 L2Qij jQik k+ 5 L3Qij kQik j » value Ky;= K= Kas=K=2 S2L,, while the value of the
2 saddle-splayK,, elastic constant is still differerisee Eg.
(7)]. In this one-constant approximatidnis given by

9
K11=Kag=7 S[2L1+(Lo+ L)1, )

wherel 4, L,, andL; are the “elastic parameters” entering

the phenomenological moddl,, given by[1 3 - 9 - I
P g o 9 vl f=fO(S)+ZLl(VS)2+ZLlsz{(V~n)2+[n~(V><n)]2

f0=%a(T—T*)SZ— %Bs?ur %cs“, (3 o 9 .
+[NX(VXn)]?— ZL1$2V~[n(V~n)+n><(V><n)]
is the free energy of the uniform ground state of the unper-
turbed liquid crystal. Expressiof8) describes the first-order
nematic-to-isotropic transition af,=T* +2B%/9aC. The
Landau coefficients for a typical liquid crystal
(4'-pentyl-4-cyanobiphenyl are a=0.13x10° J/nPK,  as it follows from Eq.(4).

—§L3€.{52[ﬁ(€.ﬁ>+ﬁx<€xﬁ)]}, (8
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We have rederived the well-known expressions for the

Landau—de Gennes free-energy denéifyand for the elas-
tic constantg5)—(7) [24,29. In the rest of this section we are
going to show hows variation can induce a distortion of the
director field, studying a slab of nematic liquid crystal be-
tween plane parallel substrates and allowing only planar di
tortions. In a simple planar case, whef&=S(z) and

n=n(z) =[sing(2),0,cosh(2)], #(z) being the angle between
n and the surface normal, E®) becomes

3 9
f=f0(S)+ZL18’2+ZL182¢’2, 9)

where the prime denotes the derivative with respect.to
Note that in the planar case the last two terms in ).
vanish identically. Expressiof8) has been considered by

S

BARBERO, AND DMER

Ill. QUASI-SPLAY-BEND ELASTIC CONSTANT
AND INTRINSIC ANCHORING ENERGY

Let us assume that the nematic sample occupiez:t@
half space and that in the planar one-dimensional case
S(0)=S, and ¢(0)= ¢, are fixed by short-range forces. In
the bulk the value o8 depends only on temperatyigqg. (3)]
and is denoted bys5,. Let us assume&,#S,. As is well
known from the Landau theory for nonhomogeneous sys-
tems,S(z) relaxes toS, over a length that is of the order of
the nematic-isotropic correlation lenggr+L./a(T—T.)
[24]. This characteristic length, however, does not applg to
variations since there is no preferred orientation of nematic
molecules¢y, in the bulk of the sample, which would be
analogous td5,. Bulk ¢ variations, i.e., bulk elastic defor-
mations, caused by external fields or confinements, occur
usually over a scale considerably larger thgan

different authors, mainly to describe the influence of the spa- In the following we show that in a nematic layer thick
tial variation of the elastic constant on the nematic tilt anglecompared tct it is possible to include a spatial variation of
profile ¢(z) [26,30—34. A simple analysis shows that in the the scalar order parameter in two additional surface energy
strong anchoring case, in which valuesdft both walls of  terms, one corresponding to an intrinsic anchoring and one to
the nematic slab are the same, 8% S(z) dependence does a quasi-splay-bend elastic term. To show this we have to
not induce any subsurface deformation. In fact, a minimuntonsider the second and the fourth termd afefined in Eq.

of f given by Eq.(9) corresponds tap’'=0. The spatial
variation ofS can induce an additiona(z) variation only if
the deformation is already present.

Let us now consider a more general case in which

L,+L3#0, whereK,;=K33#Ky,. In the planar geometry
discussed above the free-energy density given by(4ddcas
four terms

f=1o(S)+f1(#,S)+ (8", +5(4.¢".S,F),
(10

introducing three elastic contributions,(f,,f3). The en-
ergy termf, quadratic inS’ depends also ogb:

+Ls

(co§¢+%

1

f1(¢,S’)=§L1[1+ L }3'2. (12)

The Frank elastic term

e 9 ) Lo+Ls 2
fa(¢',9)=7LsS 1+T é (12)
1

is similar in structure to the corresponding term in E9j.
The third part of the free energy

3
fa(4.4',5,8)=—g(LatLg)sin2¢)¢’SS, (13

which is not present in the equal elastic constant case,

couples variations inp and S. If the substrates impose a

scalar order parameter different from the bulk one, the free

energyf is no longer minimized by a solution witth’ =0.

Hence a scalar order-parameter spatial dependence, which is
usually localized near the substrates, induces a spatial varia-

tion of the tilt angleg [25]. The influence of ; on structural

(10). The total energies per unit surface connected to these
contributions are given by

w= [ i@z 14
0

G- f:fg(zmz. (15

From Egs.(11) and(14) we obtain

e 2
T4

Lo+Ljs

1
L1[1+ (co§¢(z*)+§ ]x(s*), (16)

1

where

1

<s'2>:—f S'?dz, (17
Ao

N\ being of the order of a few coherence lengthsin Eq.

(16) z* is an effective distance in the rangeXp, Since\ is

a mesoscopic length)y can be considered as an additional

surface energy whose anisotropic part

1
fs=§Wic032¢>(z*) (18

can be interpreted as intrinsic anchoring with a strength de-
fined by

3 o 3 (Sp—So)?
Wizz||—2Jr L3N (S'2)~ Z|L2+|—3| N

-3

_ |K11— Kz
3\

LS

(19
So

transitions in nematic liquid crystals has been partially anaassuming thatS'?)~(S,— S;)%\? and taking into account

lyzed by Jeome[35,36.

Egs.(5) and(6). The sign ofL,+ L3 determines the direction
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of the easy axis, while the anchoring strenlfthis propor-
tional just to the modulus ol ,+L;. The Kleman—de
Gennes extrapolation length=K;/W; [1] is then given by

3Ky ( S, )zk
|K11—= Kzl | Sp—So

and depends strongly on the differergg- S,.
Also the integral(15) of the term coupling the order and
angle variations can be rewritten in an effective form z=-d/2 z=+d/?

(20

3 FIG. 1. Slab of nematic liquid tal; the definiti f the tilt
__ 2 2 2 . , 1. quida crystal; the dertinition o el
g_ 16(L2+L3)(SD SO)[SIH(2¢)¢ ]Z** ’ (21) ang|e¢(2).

taking into account th&B(z) is a monotonic function, as will order parameter is equivalent to an additional intrinsic aniso-

K=~ gLt La)(S-Sp)=——

be shown in Sec. IV. The product sirfRp’ is taken at some tropic part of the surface anchoring energy and to an effec-
intermediate distance** . Since 0<z** <\, G can be con- tive elastic term similar to the splay-bend term introduced by
sidered as an effective surface contribution having the funcNehring and Saupe. We have assumed ®atS(z) is a
tional form of the splay-bend elastic term introduced by Ne-monotonic function, which, over a distance comparable to
hring and Saupé5,6]. The corresponding quasi-splay-bend few & approaches its bulk value. In this framework we have
elastic constant is equal to shown that anS=S(z) induces a¢= ¢(z), localized in a
region where thé variation occurs, but we were not able to
Sy 2 estimate the magnitude of the distortion. In this section we
1-{—| |- (22  solve numerically the variational problem connected to the
S minimization of the total free energy of the nematic sample.
It should be stressed thgtis only effectively a surface term We choose i nematlc_slab of thl_ckneissvlth the c_onf|_n|ng
. . surfaces az= *+d/2 (Fig. 1). Again the deformation is as-
and cannot produce any divergent subsurface deformation as
. . . S sumed to be planar.
in the case of the ordinar 5 term. Essentially, it is a bulk L . .

i . ) X To solve the minimization problem we first have to derive
term effective only in a thin layer of thickneas Therefore, he Euler-L ; d th dina bound
the G term-induced subsurface deformations are stabilized by'c CUer--adrange equations and the corresponding bound-

X ¥1ry conditions. The total free energy to be minimized can
the bulk elastic term$, [Eq. (11)] and f, [Eq. (12)]. The :
. . ; ; . . then be written as

detailed director profile, which requires a complete solution
of the free-energy minimization procedure, will be discussed
in Sec. IV. F=J fe(é(2),¢'(2),5(2),S'(2))dV

The intrinsic anchoring strengi; given by Eq.(19) and v
a quasiK,; given by Eq. (22) are both temperature- N N
dependent because both the bulk value of the scalar order + st(¢(_d/2),¢>0,8(_d/2),SO)dS (23
parameterS, and the lengthh«<¢ exhibit rather a strong
temperature dependence on approaching the nematigrhere fy="fy+f,+f,+f; andfg are the bulk and surface
Isotropic phase transition. free-energy densities, respectively, whilg and S, denote

According to the pseudomolecular model proposed bythe substrate-induced values ¢fandS. The surface contri-
Vertogen, Flapper, and Dullemoni87,38 it is possible to  pution f arising from the interaction between the nematic
evaluate elastic constants if the interparticle interacfion and the substrate is nonzero only in the weak-anchoring case.
responsible for the nematic phase is known. The interactiom the presence of an external field also the field energy
energy for two molecules & andR’=R+r, whose orien-  contribution must be added fg .

tations are n=n(R) and n’=n(R’) is U=U(n,n",r) In our case the Euler-Lagrange equations have the form
=L{(ﬁ-ﬁ’,ﬁ'ﬁ,ﬁ’-ﬁ), whereu=r/r. In the fr'amework of of d of

Vertogen, Flapper, and Dullemond’s model it can be shown 78— TB_p (24)
that if &/ depends only on the relative position nfwith ap 9z g’

respect ton’, but not onn-u and n’-u, the relations

K11=K5,=Ks33 andK;3=0 hold[39]. This is in accordance @_ i ﬂzo 25)
with our result that the qua$i,; also vanishes for S  dz s

K11=Kao.

and are both of the second order. Hence there must be four
boundary conditions for the above equations to present a
well-defined system. In the strong-anchoring case and for a
symmetric sample these read¢(+d/2)=¢, and

In the approximate analysis presented above we hav8(*+d/2)=S,, while in the weak-anchoring case they be-
shown that the effect of the spatial variation of the scalacome

IV. NUMERICAL SOLUTION
OF THE VARIATIONAL PROBLEM
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ob ()
2 5.68 8578
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5.64 5.74 b
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0.355 0.38 a
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FIG. 2. Director and scalar order-parameter profiles in the FIG. 3. Director and scalar order-parameter profiles in the
strong-anchoring case;¢$,=0.1(180°/r)~5.73°, S,~0.3747,  strong-anchoring case; all the parameters are equal to those of Fig.
$=0.35, andL,+Lz=+Ly,0—L; (casesa, b, andc, respec- 2, exceptS,=0.4.
tively). The sample thickness is equalde=1 um.

interface, the same relation as for the ordinKrys may be

of of used to approximately predict the deformation amplitidie
i(—B) +———=0, 26)  [41]:

I ] jorqp IB(£32) -

Kis .
Ap~— Xsmzq';( +d/2). (29
L[| Te + _fs 0 27)
—\ gs i IS(+ 4 ' Note that whereas the deformation stabilization in Rét]
z==*

is governed by second-order elasticity, it is here by the
positive-definite termsf;«S'? and f,x¢’? introduced in
The systen{24)—(27) has been solved numerically by means sec. |1,

of the relaxation method for boundary-value problg@g]. The quasiK .5 elastic constant given by E@2) depends

We WilcljﬁLSt consiqler the_ (r:]ase with infinitel;l/ strong _ar?chor- on bothL,+ L3 and the difference between the bulk and the
Ing and then continue with a more general case with an alg,, tace scalar order parameter. The numerical solutions con-
bitrary strength of anchoring.

firm that if L,+ L5 changes sign, the deformation amplitude

A ¢xK 5 changes sign as well. If,+ L3 =0, the subsurface
A. Strong-anchoring case deformation vanishes and ¢=0. Further, the change in

In the strong-anchoring limit at the confining surfaces theSi9n of A¢ occurs if the sign 05— S, is changed. From
scalar order paramet&is fixed toS, by surface treatment, Figs. 2 and 3 it can be deduced that also the characteristic

while in the bulk it takes the temperature-determined valudength of the subsurface distortion dependslon-Ls. In
S,#Sy. Further, the surface tilt anglé(+d/2) is fixed to ~ comparison to cases with negatikg+ L3, positiveL,+L;

0. Although the actual surface tilt does not vaByariation yield larger proportionality constants_ln the stabilizing terms
induces a subsurface deformation. Some examples of direz andf2 [see Eqs(11) and (12)], which means that stabi-
tor and scalar order-parameter profiles are shown in Figs. pzation effects for L,+L3>0 are stronger than for
and 3. TheS variation occurs in a layer whose thickness ist2Ls<0. Hence the corresponding deformations are
~10 nm, which is indeed of the order &f as predicted by a weaker, i.e., occurring over a Iar_ger distance and having
rough estimate in Sec. I11. In this region also the variation ofSmaller amplitude, the former holding for boghandS pro-

¢, i.e., a subsurface deformation, occurs. We find that thdiles, while the latter is true fop profiles only sinces,— S,
amplitude of the resulting deformatiod#, defined as S fixed if anchoring is strong.

A= pp— dg (P, being the bulk tilt anglg is proportional
to the above-introduced quakic; elastic constant, similar to
the case of normaK,; elastic constant. If the amplitude of Let us now consider a more realistic nematic-surface cou-
the S variation (i.e., S,—S;) is small enough to neglect the pling, i.e., an anchoring situation where actual surface values
variation of the Frank elastic constaktxS2 close to the S(*+d/2) and ¢(*d/2) are allowed to vary. Any deviation

B. Weak-anchoring case
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of these values from the surface-induced on8s gnd ¢, 574 —
respectively is penalized with an increase of the anchoring 5
energy. This short-range interaction energy is usually mod- 572
eled as a contribution to the surface free energy expressed in ® 5.7
powers of the tensor order parame@y . Here we us¢42] = 568
. S
1
We=35We(Q;j — Qi) (29 >66 .
5.64
0 001 002 003 004 0.05
with Qﬂ as the tensor order parameter corresponding to sur- =d
face preferred values & andn (and consequently) and
W, related to the corresponding substrég&terna) anchor- 0.374
ing strength. Taking into account expressidn, Eq. (29) 0.372
reads 037
«
0.368
Wszgwe[E[S( +d/2)%+ S2]— 2S( = d/2) 0366
8 °3 0.364
1 0 0.01 002 0.03 0.04 0.05
X So| coST p(£d/2)— o] — §) } (30) =/d

FIG. 4. Director and scalar order-parameter profiles in the weak-

Note that if there is n@ variation, Eq.(30) reduces to the anchoring casew.=10, ¢=0.1(180°/r)~5.73°, $,~0.3747,
standard Rapini-Papoular expression Ws  S=02, andlp+Ls=+L,0-L, (casesa, b, andc, respec-
o« — co[ p(+d/2)— o] [43], while in cases without elastic fively)- The sample thickness is equalde-1 um.

distortion [¢(=d/2)=¢] it has the form Wg

%[ S(*+d/2)—Sy]?. In the most general case, howev@iand 1 .. 1

¢ variations are coupled in the anchoring ene(gg). The fm= =5 Koxa(n: H)?=— El/«oXaHZCOSZ[QS(Z)—a]
weak-anchoring case has been considered previously in Ref. (31)
[32] in the one-constant approximation, in which the quasi-

splay-bend elastic constant is identically zero. Now we shall

generalize this analysis by allowiig+L;#0. to the bulk free-energy densitfl0). Here H denotes the

The same Euler-Lagrange equations as in the strongsirength of the magnetic field directed at an angle with

anchoring case _have been solved, however', with mgdifiepespect to the surface normal, the permeability of the
boundary conditions. As the actual surface tilt angle is not

fixed anymore, effects oS-variation-induced intrinsic an-

choring can now be revealed. The easy axis for this intrinsic 577
anchoring contribution can be either plartfor L,+L3>0) 5.76 ‘
or homeotropidfor L,+L;<<0), as it follows from Eq(16). —~ 575
The calculated director profiles confirm this prediction, i
which is evident from Figs. 4 and 5: foL,+L;<0 % 5.74
¢d(£d/2)< ¢y and forL,+L3>0 ¢H(*=d/2)> ¢py. The sub-
surface deformation is still present and behaves in the same 73
manner as in the strong-anchoring case. However, supposing 57
the sames, andS,, it is weaker than in the strong-anchoring 0 001 002 0.03 004 0.05
case sincéS,— S(=d/2)|<|S,— Syl =d
It should be stressed that molecular models mentioned in 0.384
Sec. lll, where, for instance, the intermolecular interaction is
described as a superposition of the Maier-Saupe and the 0.382
induced-dipole—induced-dipole coupling, yield+L;<0, 0.38
i.e.,K11<K,,[39], which corresponds to a homeotropic easy tn
axis in our study. Thus we are going to restrict further dis- 0.378
cussion only to cases with,+L;<0. 0.376
o i 0.374
C. Determination of the extrapolation length 0 0.01 0.02 0.03 0.04 0.05

. . . /d
A suitable method to estimate the strength of effective §

anchoring is to investigate its competition with magnetic-  FIG. 5. Director and scalar order-parameter profiles in the weak-
field effects[14]. Therefore, we add the magnetic energyanchoring case; all the parameters are equal to those of Fig. 4,
term[1] exceptS,=0.5.
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T
; coshz/
5.7 e ¢(Z)=a+A—h £n) : (32
56f-C coshd/2&y,)
= 55 AFig. (b)
3 '4 [T the parameteA being related to the amplitude of the defor-
g . mation, d the sample thickness, ang},, the characteristic
53 | length of this field-induced deformation, i.e., the magnetic
5.2 | coherence lengtlg,,= VK/uoxaH? [1]. Figure &b) shows
0 01 02 03 07 05 the enlarged subsurface region of Figa)¢ in which the

) 2/d ansatz(32) describing the macroscopic director profile fails
to match the calculated profile. Since this region is of micro-
scopic thicknesgfew nanometens it will be neglected in the

5.76 determination of the anchoring strength, as already stated
- . above.
%’J 372 W If ¢q is the direction favored by the effective anchoring,
= 568 the parameters of the fitA(¢,,,) for small ¢o— « yield the

e IR ey effective extrapolation lengtfl4]
sedf -, ] K do—a d
0 001 0.02 0.03 0.04 005 vl Bl el Py EE

(b) z/d eff m

This anchoring is a superposition of the intrinsic and external
contribution. From the analysis performed in previous sec-
tions it is possible to estimate the extrapolation lengths for
both sources of anchoring separately. For intrinsic anchoring
we can rewrite Eq(20) using Eqgs.(5) and(6) as

__3S
[S-S(£ )12

2L,
Lo+Lg

1/, (34)

¢ (deg)
S S R N

0 01 02 03 04 05
(¢} z/d

FIG. 6. Calculated director profilgslots in the magnetic field Provided\ is known, we can, using Eq433), compare this
compared with the hyperbolic cosine fisolid ling: w.,=5, approximate value with the “measured” one. Similarly, it is
L,+Ls=—Ly, $,~0.3747, and5,=0 [caseqa) and(b); no exter-  possible to derive an estimate for the external anchoring ex-
nal anchoring or S,=0.5 [case(c); external anchoring favoring trapolation lengthl,=K;;/Wg. The external anchoring
homeotropic alignmenteg,=0°) is present The sample thickness  strengthWg can be deduced from E¢30) and is given by

is equal to d=1um, the magnetic field direction _9 + : ; ; ;
a=0.1(180°#r)~5.73°. The magnetic-field strengths expressed inV\./E 2 WeS(+d/2)S,, while the elastic constaty, is still

terms of the coherence lenggh, amount to~ 65 nm, 90 nm, 205 given by Eq.(5). In terms of the dimensionless anchoring
nm, 290 nm, 650 nm, and 920 nm, the first value corresponding tgtrengthwe=Wed/L1, the lengthl, can be expressedor

the top and the last to the bottom curves@&fand(c). Comparing S#0) as

casega) and(c), it is evident that the external anchoring is consid- 5

erably stronger than the intrinsic on®) presents the enlarged sec- | = Sy n Lo+Ls d 35
tion of (a) that is marked with a dashed line. e_WeSOS( + %) 2L, : (35

vacuum, andy, the macroscopic anisotropy of the magneticAssummg that both intrinsic and external anchoring have the

Do o . same easy axige.g., homeotropic the effective anchoring
tibility, which is proportional to th lar order pa- .
f:ri(;etgrsb 4 ch is proportional to the scalar order pa strength can be written &,:s=W,+W¢g. Then for the cor-

Director and scalar order-parameter profiles are again cal® sponding extrapolation lengths the relation
culated by solving the Euler-Lagrange equations, which are
now different from those in Secs. IV A and IV B due to the i =4+ = (36)
additional magnetic contribution to the bulk free energy. The lesr 1
influence of subsurface deformations on the large-scale di-
rector profile enters only via the effective intrinsic anchoringholds. If, e.g.|<<I;, thenlgs~l,.
contribution. Therefore, ignoring the thin subsurface layer in  Let us consider a nematic slab confined by two substates
which the subsurface deformation occurs, we can for sthall treated by SiO-evaporation technique, for whigh=0 can
fit the calculated director profiles by the ans@see Figs. be assumed. In this case the angular dependence i(86q.
6(a)—6(c)] vanishes and hence the external anchoring in the Rapini-
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TABLE |. Effective anchoring extrapolation lengtlg;s com- negligible with respect to the external one. Further, setting
pared with the valuek andl,, predicted for intrinsic and external S,=0 and considering the intrinsic anchoring alone, the
anchoring, respectively. All estimates foys with Sy=0 refer to agreement of predicteldq. (34)] and measured values bf

pure intrinsic anchoring, while the ones wiy=0.5 refer to a can be achieved by setting~6—7 nm, which is compa-
superposition of intrinsic and external anchoring, where the Iatterrable to the thickness of the layer in’Which tSeand ¢

prevails. Easy axes for both kinds of anchoring are homeotropic. ™ . i in the ab £ th tic field. Not
The angle between the magnetic field direction and the surface noM2rations occur in the absence o the magnetic Tield. Note

mal is equal tax=0.1(180°r)~5.73°, the bulk value of the order also that in all cases the deformation strength of the subsur-

parameter td,~0.3747, and the sample thicknessdte 1 zm. face deformation is rather small. For instance, Q=5 and
Sp=0.5, yielding a still reasonable extrapolation length, and

W, Sy S(*d/2) l; le (M) lg¢r (NM) close togy= /4 we obtaind¢/dz~3x 10 4<1/py (po~1

1 0 0.3720 5810 x A 1P nm be|r)g the molecular d|rr_1ensﬁ)ras required by the elas-
tic continuum theory. In this case also the variation of the

1 0.5 0.3756 510° A 374 375 . .
order parameter is rather weak, i.6S(*=d/2)—S,]/S,

> 0 0.3613 23510\ L67x10* ~0.01. Cases with lowew,, yield an even smaller deforma-

5 05 03791 210'A 74 75 o Stemath e

10 0 03484 610 4.3x10° gth-

10 0.5  0.3832 5.810° A 37 37

50 0 0.2606 33 205 V. CONCLUSION

50 05  0.4072 400, 7 7 : U

100 0 0.1861 1a 63 In contrast to the well-knowi , s-term-related subsurface

100 05 04255 16@ 3 3 deformations of the director field, we study here the much

less known effect of the variable order parameter. A nematic

Papoular sense is absent. The ch@ge 0 enables us there- liquid crystal in the slab geometry is treated using the
fore to investigate pure intrinsic anchoring, althougly0 Landau—de Gennes phenomenological theory, allowing both

and thus simplifies the analysis significantly,# 0 is, how- order and tilt angle variations. If_surface and_ bulk values_; of
ever, necessary to yiel®{( = d/2)# S, , which is required for the scglar order parameter are dlfferent and |f an approxima-
intrinsic anchoring to occur at all. However, in addition to tion with more than one constant is used, an intrinsic contri-
studying cases witl$,=0, it will be instructive to consider bution to the anchoring energy is predicted. Although the
also those withSy#0 in order to see the increase of the free energy was expanded only up to first derivatives, the
effective anchoring strength when external anchoring isoupling between the order and tilt angle variations induces
present as well. subsurface deformations similar to those caused by the ordi-
Director andS profiles in the magnetic field have been naryK,; term within the second-order elastic the¢r}. The
calculated for different values of the field strendgth the  characteristic range of deformation is of the order &f
surface-imposed order paramet&,, and the anchoring (nematic-isotropic correlation lengthin the analysis both
strengthw, (the examplew,=5 is given in Fig. 6. In all  strong- and weak-anchoring cases were treated. In the latter
cased ,+Lz=—L; holds, which means that,;<K,, and  case the effective anchoring strength was estimated using the
yields a homeotropic easy axis for the intrinsic anchoring.competition of the magnetic field and anchoring effects. The
The Landau parameters,B,C and the temperature were effective anchoring consists of the intrinsic and the external
chosen such th&,~0.3747. The estimates for the measuredcontribution, the external being present only if the scalar
effective extrapolation length are given in Table I. The re-order parameter imposed by the substrate is nonzego (
sults forS,=0 show that if the coupling with the surface has #0). Considering cases witB,#0 and with an effective
a strengthw,<50, the intrinsic anchoring is rather weak extrapolation length larger than100 nm, as experimentally
(1;>100 nm. Its strength increases with increasing as  opserved for typical substrates, the intrinsic
Sp— S(+d/2) increases, which is in agreement with formula s.yariation-induced anchoring contribution is shown to be
(34). However, ifSy#0, the external contribution to the an- considerably weaker than the external one. Iggr 100 nm
choring is nonzero as well and is, f8=0.5, e.g., consid-  the accompanying subsurface deformation andSheria-
erably stronger than the weak intrinsic pfgbmpare Figs. tion are small, e.g., dp/dz~3x10"%p, and
6(a) and Gc)]. Consequently, leaving other parameters U”;[S(rd/Z)—Sb]/Sb~0.Ol. It should be clearly stressed that
changed, the effective extrapolation length decreases signifihe described phenomenological continuous approach cannot
cantly in comparison to th&,=0 case, and now onlwe<<5  explain peculiarities in the orientation of molecules observed
yields extrapolation lengths of the order of those observecﬂ)y Shen and co-workeri2—4] in the first molecular layer,

experimentally &100 nm. Since the external contribution \which is in direct contact with the substrate.
to the effective anchoring seems to completely overwhelm

the intrinsic one, we cannot expect to observe any
temperature-driven anchoring transitions due to their compe-
tition.

Comparing the predicted values fog in cases with We wish to acknowledge the financial support of the Min-
S,=0.5 [Eq. (35)] and the measured effective onfgq. istry of Science and Technology of Slover@rant No. J1-
(33)], very good agreement is observisge Table), which 7067 and from the European Unior{Project INCO-
again shows that in these cases the intrinsic anchoring i€opernicus No. ERBCIC15CT960744
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