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Iterative method to improve the Mott-Smith shock-wave structure theory
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Department of Chemistry, Paichai University, Taejon 302-735, Republic of Korea
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In order to improve the Mott-Smith theory for shock-wave structures, an iterative method is introduced. The
method is basically one of the family of iterative schemes constructed by lkenberry and Trji@sdRat.
Mech. Anal.5, 1 (1956]. In the present work, the initial values for the iteration are calculated by using the
Mott-Smith bimodal functioPhys. Rev.82, 885 (1951)]; the equilibrium Maxwellian function is used in
conventional Ikenberry-Truesdell-type approaches. The density profile in the first iterative step for monatomic
Maxwellian molecular gases has been obtained in a closed form. Within the limitation of the lowest-order
calculation, the results show asymmetric density profiles, the correct shock thickness limiting law at the weak
limit, and nonmonotonic kinetic temperature profiles even for monatomic molecules.
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PACS numbd(s): 47.40.Nm

[. INTRODUCTION bution function to calculate these values and follow the MIT
iteration procedure, restricting ourselves to the first iteration
During the past half century much research has addressddr monatomic Maxwellian molecules.
the shock-wave structure problem using the pioneering work

of Mott-Smith. Mott-Smith[1] pointed out that the distribu- Il. FORMULATION OF SHOCK-WAVE PROBLEM
tion function of molecular velocities in a strong shock wave ) N )
in a gas is bimodal. This can be rewritten as It is customary to start by writing down the hydrodynamic

equations for the one-dimensional steady state
fus(V ) = v FP W +[1-v01fP (v, (D

d
wheref{)(v) andf{®(v) are the upstream and downstream ax P =0, (23
Maxwellian distribution functions, respectively, amx) is g
the unknown quantity obtained from the Boltzmann equa- Uy
tion. The Montqe Carlt))/ experiments and the direct numeolical puXWjL d_x(HXX+ =0, (2)
analyses of the Boltzmann equation indicate that the bimodal
function represents the actual velocity distribution of mol- dé dQ, y
ecules quite well in strong shock laydi®]. Because of its pUx g T W+(HXX+ D)WIO, (20

remarkable simplicity and its correct predictions in strong-
shock-wave experiments, the Mott-Smith theory has bee
applied to a wide area of shock phenomé8a] including

the shock structures of dense galdgsand relativistic shocks . L
[6]. However, there are two nontrivial deficiencies in theergy density, andQy the heat flux. For monatomic dilute

theory. The first is the lack of a unique way to determine thegases,é’ is related to the kinetic temperatufie by d&/dx

. . . =¢,dT/dx in which ¢,=3kg/m with the Boltzmann con-
unknown quantityv(x). Usually ther(x) is determined from stantkg and the molecular mass.

a moment equation given by the Boltzmann equation. The Integrating both sides of Eq&2) from x=— (equilib-

choice of velocity moment is to an extent arbitrary, but therium upstream by definitionto a certairx, one obtains
result depends markedly on this choi@d. The second de- P y '

Q/herep is the mass density, the streaming velocityll,,
the normal viscous stresp, the pressuref the internal en-

ficiency is the incorrect shock thickness limiting law at a (W) (w)
. . . . pu —p( u (33)
weak shock. Since the Navier-Stokes theory is believed to be X X
exact at the weak shock limit, the discrepancy between the ) (W U2y (W)
Mott-Smith and the Navier-Stokes limiting laws has been pUtH ot p=p ™ (uc)"+p, (3b)
noted and the former deemed incorrEg}l L s
Although different approaches have attempted to improve pUXC, T+ Qy+ (It p)Uy+ 3 pUy

the Mott-Smith theory[9-14], we propose an alternative
method to eliminate both deficiencies of the Mott-Smith

theory[15]. Our method is based on the iterative approach . , )
first used by Maxwell and later systematically developed by Which the superscriptu) denotes the quantity of the up-

Ikenberry and Truesdell16,17. The Maxwell-lkenberry- stream. It is convenient to introduce the dimensionless quan-
Truesdell(MIT) approach employs the Maxwellian distribu- tities

tion function for the initial values in beginning the iteration. - w = w = “

In the present work, we use the Mott-Smith bimodal distri- p=plp'", u=udu’, T=T/T'Y,

:p<u)U§(U)CUT(U>+ ug(u)p(u)_,_ %p(u)(ug(u))S, (30
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EEp/P(u)(uiu))z, ﬁEHxx/P(u)(uiu))zl R(® = f mq?de, (7d)
Q=Qu/p (UM, B=kgT"/m(ui’)?
~ e (4)_ 22
Sincep=BpT, Egs.(3) are rewritten as R f mG,CTdC, (78
pu=1, (48 in which C is the peculiar velocity of moleculed ™ and
- A(Q in Egs.(6) are derived from the collision integral of the
u+Il+BpT=1+B, (4b) Boltzmann equation. As for the monatomic Maxwellian mol-
ecules[17], these are written as
5BT+20+ 2ull+u2=1+5B. (40)
p
The parameteB is related to the Mach number of the up- A=~ ;Hxxv (83
stream velocityM through
3 1/2 4p
W AQ=—-_—Qq,, 8b
M=ul"/U, (SB) , (5) 377Qx (8b)

whereUy, is the sound speed in the upstream, which is equalvhere 7 is the viscosity. In the MIT iteration scheme, one
to (5kBT(”)/3m)1’2for monatomic dilute gasd$]. The equi- calculates the new right-hand-sides valugise collision
librium values in the upstream and downstream are immediterms using the old left-hand sideghe streaming termsn
ately obtained by solving Eqg4) simultaneously because Egs.(6). One needs the equations Bf*) and R™ for the
both I and @ vanish. In order to have the values in the Second iteration and more equations for higher step itera-
shock layer, however, one has to know about the nonvanistions. Using the dimensionless quantities, E@are rewrit-

ing Il and Q, which are to be calculated by the iterative ten in iterative form

method. =3) ~ a5

d 2dQ,, ~dII 1

] L ] [r]

IIl. THE MIT ITERATION — - 3 SHU—— ‘(7H[r]+4p[r]) =

: dx dx dx 3

Ikenberry and Truesde[l16,17] constructed a family of 8/2B\¥2__
iterative methods that extracts with successive approxima- =- E( —) pll 147, (93
a

tions the mathematical relations between the physical quan-
tities of gases from the Boltzmann equation. One member of
the family they called the “Maxwell iteration” constitutes RE4) Nd”Qm
the basic method, which we will follow in this paper. We can +2u——
start by writing down the one-dimensional moment equations dx dx
for IT,, and Q,,

1 -~ _ d ~ _
_I_)(ZH[r]"_Sp[r])E(H[r]"' Prry)

+2(R[r]+2Q[r]) oA pQrr+1y (9D

du  32/2B\Y2__
15\ 7

dR® 2.dQ, dH

(H)
ax 3 dx YT

XX

63 for the (r +1)th iteration, wherex is the reduced distance
4R q 1 q scaled by the upstream mean free pattwhich is an effec-
7 4ou &_ (211, + 5p) = (IT .+ p) tive free path[8] established by substituting the theoretical

dx X dx > dx viscosity of the Maxwellian molecules into a hard-sphere
relationship between the mean free path and the viscosity;
—A(Q) (6b) RG®)= R(3)/p(u§u))3 andR@= R(4)/p(u§<”))4.

The first iteration corresponds to the lowest-order calcu-
lation thatr =0 in Egs.(9). The initial values for the iteration
are calculated by the definitions of velocity moments given
in Egs.(7) with the help of the bimodal distribution function.

1 Since the bimodal function has only one unknown quantity
p= f §mC2de, (79 v, all the initial values in the streaming terms of E(®. are
expressed in its functionals. Without any difficulties, the in-

dependent variable can be changed frefo p. After some
Hxxzf m(C2—1C?)fdC, (7b)  algebraic manipulations, one obtains the first iterates as

+2(R®

The moments in Eq96) are defined by the velocity distri-
bution function in the kinetic theory of gases as

2B 1/2
) PH[l] , (108

QX:JE”‘CXC fdc, (79 g(1+5B)(1+8) £=¢
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1+5B ) dp
~[p(1-10B+5B%)+8(1+B)] = 012 Navier-Stokes
32p dx = this work
32/ 2B 2 o L e i
e P> _’,;./-‘/ ott-Smi
=— 1—5( 7) pQ[l] . (10b) 0.08 //://’
MA A
The first iteration implies that the streaming terms in E§5. 0.06 o
are approximated by the values of the bimodal distribution 0.04 7
function to find the unknown collision terms. The obtained Y
valuesll;;; andQy4; are used in the hydrodynamic equations 02y A
(4) to get the shock profiles. After some rearranging, we have 0
H 1 1.1 1.2 1.3 1.4
the equation Maah number
d; 512/ 2B\ 2 (F—l)(4—58;—;) FIG. 1. Dimensionless reciprocal density thickness of weak
d_§ T (1+ 58)[;(1— 10B+5B2)+ 16(1+B)] . shock waves. The curves for Navier-Stokes and Burnett theories are

(11) the values of Chanfg]. O denotes the Monte Carlo res{ilt9].
which is in exact accord with the Navier-Stokes the[8Y
In order to compare the results of this work with the val-
p*=(p—p"NI(p@—pW) ues for the Maxwellian molecules in the literature, the recip-
rocal density thicknesses are illustrated in Figs. 1 and 2. For
and take the origix=0 as the point wherp* =3. Then the  weak shocks oM < 1.5, agreement between the first iterative
solution of Eq.(11) is written as calculations and the Monte Carlo experimefit§] is excel-
- lent, giving the correct limiting law. For strong shocks of
p*I(1—p*)*"1=2%xpbx), (12 M>2, the present work underestimates by about 30% the
Monte Carlo result$20,21], which are even worse than the
Mott-Smithu§ choice[22]. This discrepancy is regarded as a
(3—5B)(1—10B+5B2) limitation of the lowest-order iteration, which is reduced by
a= 5 (13 the higher-order iterations. In Fig. 3 the normalized density
(1+5B)(17+6B+5B%) profiles are compared with the calculations of the Mott-
Smith vf choice. The density profile shows a monotonic in-
crease from upstream to downstream. The kinetic tempera-
2B\ 12 3-58 ture profile, however, shows the maximum point within the
Z( ) i (14) shock layer, which is absent in the Mott-Smith thef2g].
(1+5B)(17+6B+5B2) The nonmonotonic profile occurs whéh>3.313. It is well
) ] ) known that this kind of temperature profile is not a math-
Equation(12) is the main result of the present study. The gmatical artifact but the result of atomistic dynamics
profiles of the other quantities are obtained from E4sand 2 21 24 25 The profiles of normalized kinetic temperatures
(10) with the use of Eq(12). are compared in Fig. 4 with the Mott-Smith calculation,
where the normalized kinetic temperature is defined as

Let us define a normalized density

where

and

51
T 15\ @

IV. DISCUSSION
T*=(T-TW)/(TD-TW),
It should be noticed that the density profile shape given by

Eq. (12) is asymmetric. It has been argued that the symmet- 0.25
ric density profile from the original Mott-Smith theory is a
defect in the theory because experimental density profiles are

0.201
asymmetric for all Mach numbef48]. The shock thickness
A is defined by using the maximum density slope as ot
dp MA
=(pd_ (W) _
A=(p'"=p )/‘dx 0.10

max

and the dimensionless reciprocal thickna¢4 is a param- 0.05
eter that is used for comparing calculations to experiments.
SinceB in Egs.(13) and(14) is related to the Mach number
through Eq.(5), the limiting properties of the shock profiles 2 4 Mach n?:mber 8 10
are evaluated immediately. FMt — 1, the reciprocal thick-

ness takes the form FIG. 2. Dimensionless reciprocal density thickness of strong
4/ 6 |12 shock waves. —, this work;- -, the Mott-Smithv2 choice;O, the
MA yea= —( —) (M—1) Monte Carlo result of Yen and N@0]; O, the Monte Carlo result
7\57 ' of Bird [21].
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FIG. 3. Normalized density profiles vs reduced distanoa ). FIG. 4. Normalized kinetic temperature profiles vs reduced dis-
—, this work; - - -, the Mott-Smithu2 choice. tance &/\). —, this work; - - -, the Mott-Smithv 2 choice.

method depends mainly on the convergence, which will at
last give the exact result.

In conclusion, the Mott-Smith theory can be systemati-
cally improved by introducing an iterative scheme for the
calculations of unknown moments. At the lowest iterative
step, the evidence of improvement is clear. Following the This work was supported by a research grant from the
suggestions of Ikenberry and Truesdell, there is a variety oKorea Science and Engineering FoundatiofkOSER
iterative method$16]. The other iterative methods will give Project No. 961-0305-043-2. The preliminary study of this
similar results as long as the initial values are calculatedvork was initiated during the stay of the author at the labo-
using the Mott-Smith bimodal distribution function. The va- ratory of Professor B. C. Eu, Department of Chemistry,
riety of iterative methods does not indicate the lack of aMcGill University with the support of the Korea—Canada
unique way to determine the unknown moments such as ibilateral visit program of KOSEF and National Science and
the original Mott-Smith theory. The choice of iterative Engineering Research Council of Canada.

V. CONCLUSION
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