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Liquid dynamics theory of high-temperature specific heat

Duane C. Wallace
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 15 August 1997

The potential-energy surface underlying the liquid dynamics Hamiltonian is supposed to consist of a large
number of intersecting, macroscopically similar, nearly harmonic random valleys. The statistical mechanics
replaces each valley with an infinitely extended harmonic potential surface and then corre(s tfee
anharmonic distortion of the potential surface dbgl the boundary condition that limits the extent of the
potential surface along lines where neighboring valleys intersect. The ion-motional specific heat then consists
of the main quasiharmonic contributioi,;=3NKk plus the anharmonic correctioB, and the boundary
correctionCg . Here we analyze available specific-heat data for monatomic liquids, at tempefatupeto
three times the melting temperatufg,, and suggest the following interpretation of the dé#&:C, is about
the same for both the crystal and liquid at the melting point@gdends toward zero ak increases abovE,,
and(b) Cg is a roughly universal function of/T,, running from around zero &t=T,, to around— 0.6Nk at
T=3T,,. The quintessential liquid property, the primary difference between a liquid and a crystal, is that the
liquid ions move through a vast number of random potential valleys and this property is directly responsible for
the boundary specific he@lz . A physically based model fo€gz agrees with experiment for mercury to high
temperatured.S1063-651X98)08602-4

PACS numbd(s): 65.20+w, 05.70.Ce, 64.16:h

I. INTRODUCTION where( ) indicates an average over the normal mode spec-

trum [3]. The term in curly brackets in Eql) is the quasi-

of r\:]vgnggvriiﬁfeur;g% ﬁr?rsk?enftﬁgo? t?seg;);gé Ic;?]u;?] gyn?(;r)]('f%armonic contribution and for elemental liquids it accounts
q ) y bp for nearly all of the entropy. Two small corrections are the

mate description of_tha_t p_a_rt of the many-par_tlcle potentl_a Ianharmonic entrop$, , resulting from anharmonicity of the
energy surface that is significant for the statistical mechanics

of the liquid state. The potential surface is composed of [hany-particle potential valleys, and the boundary contribu-

: ) . %ion Sg, resulting from truncation of the potential valleys at
large number of intersecting nearly harmonic valleys, each .
. ! the places where two valleys intersect. The sum of these
valley corresponds to a random arrangement ofNhiens in

the system, and all random structural valleys have the samanall terms is denote,g in Eq. (1),

macroscopic average properties in the lakgkmit. For mo- S, 1S.=S 3)
tion within one valley, the system had\3nearly harmonic AT SBTUAB:
normal modes, giving rise to a total ionic specific heat of

approx[g]atleyth&l II( T_ze tratndon; structural vagletzys are all citation of electrons from their ground state, important for
accessible to the liquid state and are supposed to nuwber metals, is denote .

fo_r an N-particle system, hence they giye .the uniyersal CON" " For all the normal melting elements for which the neces-
tribution Nk. In W to the e_ntropy of the liquid rela}tlve to the sary data can be fourdix elementsand to temperatures as
crystal. Calibration of this constant, from experimental datahigh as the data are availabito T=3T,), the quasihar-
. _ . . m/s

2] is _Inw—0.80. Finally, we noted_ that the many-parpcle_ monic contribution in Eq(1), plus the electronic excitation
potentlal-energy valleys might require SOmMe nonzero klnet'ﬁerm, gives an excellent account of the experimental entropy
energy to stab!hze therd ], SO that th? Ha_m|lt0n|an is based [1]. The remaining theoretical ter®,g is of the same mag-
ona self—cor)5|§tent potenu'al, but t.h|s will not alter the CON"nitude as the combined errors of the entropy analysis. In the
se(_qu;]entl_sta_téstlé:al me_char;r:cs StUd'lfd here. traiahtf d present paper, in order to magnify the anharmonic and

€ fiquid dynamics theory aflows a straigntiorwar boundary contributions to the thermodynamic functions, we

evaluation of the partition function and the free eneft)} i e o ,
Of interest here is the theoretical expression for the entropi&lg{/tj(e ag;fga%tvv:r:%r?foipgaf(li)r:f?gl.low;st;]zg efined

of a liquid metal, in classical statistics for the ion motion,

Finally, the entropy contribution resulting from thermal ex-

CVZSNk+ CAB+CE (4)
S=NK{Inw+3[In(T/6y) + 1]} + Sag+ Sk 1)
Our technique is to evaluate, from the measured constant-
For a representative random structural valley, the harmonigressure specific he@t» and to calculat€g from theory to
normal modes of the ion motion have frequencigs, X obtain the ion-motional specific he@j=Cy—Cg. We then
=1,...,3, and the characteristic temperatukgis defined  try to understand the character & through its liquid-
by dynamics expression

In k00:<|n ﬁw)\), (2) C|:3Nk+CA+CB, (5)
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where Nk is the quasiharmonic contribution and is the ma- I

jor part ofC, . This analysis and interpretation of experimen- K Na

tal specific-heat data is carried out in Sec. Il. - n U .
The anharmonic specific heat expresses that the man' Hg '\\CS

particle potential valleys are not perfectly harmonic, but have gg\ (R

an anharmonic distortion. In principl€, can be of either sl Y \ i

sign. The boundary contribution expresses that the many .'\.\ Sn

particle potential valleys do not extend to infinity in all di- = Ar (1 kbar) —; "\A| Mg

rections, but are truncated along lines of intervalley intersec 3 ch I a2

tion (the boundary Hence part of the infinite-valley T [ Zn N

potential surface is removed a@} is necessarily negative. €

A simple model expressing this picture of the boundary ef- © Ar (1'bar)

fect is constructed in Sec. Il and the model is shown capabl 2 .
of fitting experimental data. A brief summary of conclusions
is presented in Sec. IV.

For normal melting elements, where crystal and liquid B
have approximately the same electronic structure, the mel " Hard spheres
ing temperature plays the role of a characteristic temperatur
and liquid thermodynamic functions are expected to exhibir | | [
regular behavior when considered as functionsTot . Y
However, such behavior cannot be expected for the anom: Cy/NK (crystal)
lous melting elements, where the crystal and liquid have sub-
stantially different electronic structurg4]. In Si and Ge, for FIG. 1. lon-motional specific heat for the liquid at the melting
example, the interionic potential in the metallic liquid bearspoint, against the same quantity for the crystal at the melting point.
no resemblance to that in the covalent diamond crystal andhe line represents equality of liquid and crystal values.
the melting temperature cannot serve as a characteristic tem-
perature[4]. For this reason, our first liquid-dynamics analy- simulations[9]. With this information in mind, the conclu-
sis was limited to normal melting elemerty. In the present  sjon we draw from Fig. 1 is thalg~0 for the liquid at melt
specific-heat analysis, the two least anomalous elements Shd C, is approximately the same for the liquid at melt as
and Ga appear to rationalize well and so are included, whilgor the crystal at melt.
the more strongly anomalous Sb, Bi, Si, and Ge do not raFigure 1 shows two examples requiring clarification. For Ar
tionalize well and are omitted. These four elements aside, thgt 1 bar,C, for the crystal is not unusual, b@, for the
specific-heat data analyzed here include every classical monquid is quite low. We have previously observed that liquid
atomic liquid for which sufficient accurate data currently ex-Ar at 1 bar is noticeably gaslikg4] and that compressed
ist. liquid Ar behaves more like an ordinary liqujd0,11]. Ex-
perimental estimates @,, at 1 kbar pressure were extracted
from the data of Crawford, Lewis, and Dani¢lk2] for the
crystal and from the data of Gosman, McCarty, and Hust
[13] for the liquid. The results foIC,/Nk have estimated

To calculateCg reliably, we consider only the nearly free- errors of =0.1 and the point plotted in Fig. 1 puts Ar at 1
electron elements, wher€g is quite small and the low- kbar on the line with the liquid metals. Finally, we plotted
temperature expansion for independent electrons can be ustite data point for a hard-sphere system to demonstrate that
for crystal and liquid alike. The low-temperature expansionthis system does not provide a realistic approximation for the
requires the electron density of states at the Fermi energy andotion of ions in a crystal or a liquid.
this is obtained from band-structure calculations where posconsidering now the temperature dependence of liquid spe-
sible[5,6], corrected for density changes, and otherwise frontific heat, it has long been known th@t decreases as tem-
free-electron theory. The expression ©¢ may be found in  perature increases at atmospheric pressite 16. Grimvall
[1]. [15] graphedC, /Nk vs T/T,, for three metals and we can

We have already observed th@t~3Nk at the melting now extend that graph to the nine metals shown in Fig. 2.
temperaturel,, for both crystal and liquid phasd4]. But  For these nine metals, the thermodynamic data required to
the experimental data contain more information than this beebtainC, at T,,, as well as references providing the experi-
cause the departure @f from 3Nk is generally larger than mental data at elevated temperatures, are listed in Table I.
experimental error. The main additional correlation withinErrors in C,/Nk are expected to be arountl0.05 atT,,,
the data is shown in Fig. 1, a graph ©f /Nk for the liquid, increasing to around0.1 at the highest temperature graphed
against the same quantity for the crystal. Estimated errors dbr each element.
the data in Fig. 1 are-0.05 (except for compressed Ar, see The following qualitative interpretation of Fig. 2 appears rea-
below). Since the ion-motional specific heat for a crystal issonable at this time. Leaving aside Pb, the metals fall into
also given by Eq(5), with the boundary ternCg omitted,  two groups:(a) the four alkali metals, havin@€,/Nk~0.4
we have attributed the differen€® — 3Nk for the crystal at and Cg~0 at T,,, and (b) the remaining four metals for
melt to anharmonicity4,7,8] and have been able to verify which bothC, andCg are approximately zero &t,,. With
this attribution quantitatively for sodium, through computerincreasing temperatur€, for the alkali metals decreases

II. ANHARMONIC AND BOUNDARY CONTRIBUTIONS
TO LIQUID SPECIFIC HEAT
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C//Nk
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T

FIG. 2. lon-motional specific heat as a functionTofT,, .

and is approximately zero far=2T,,. Cg/NKk is roughly a 1 (e o 1

universal function, running from 0 &t,, to —0.6 at 3T ,. Y f ) exp( — Bp®/2M)d Iof ) 9XF< —5 AM wzqz)dq
The curve for Pb falls below the other metals at the higher

temperatures and it does not appear possible to attribute this kT

difference to errors in the analysis. Without further informa- =7 (6)

tion, we cannot interpret the special behavior of Pb. The

weakly anomalous Sn and Ga are rather similar to the normayhere 3= 1/ T. For the liquid system o ions confined to
melting In and Hg. We also note that Fig. 2 shows data at % single harmonic valley in the potential-energy surface, the
bar pressure and the decreasedn with temperature in-  normal modes have frequencies, A=1, . . ., 3N, and the
cludes both the explicit temperature dependence, and som@rresponding partition function (8]

volume dependence as well, through the thermal expansion

with increasing temperature. IT, (kT/h w,).
Finally, extending the liquid configuration space to include
lIl. MODEL FOR THE BOUNDARY CONTRIBUTION wN similar valleys and setting the static structural potential
TO SPECIFIC HEAT energy®, for each valley yields the ion-motional partition

function in the quasiharmonic approximation
We will outline evaluation of the liquid-dynamics classi-

cal partition function, first for harmonic normal modes and N kT

then with a correction for the boundary effect. For a single Zy=w" exp(—Bdo)Ily hoy @
one-dimensional harmonic oscillator, with madsand fre-

guencyw, the partition function is The corresponding Helmholtz free energy is

TABLE |. Data for the high-temperature specific heat analysis. Columns 2-5 are experimental data for
the liquid at melt, wherg3 is thermal expansion coefficient al}; is adiabatic bulk modulus. References
provide the experimental data at elevated temperatures.

Element p (glcn) B (107 4/K) Bs (kban Cp/NK Ce/NK Refs.
Na 0.925 2.57 59.4 3.828 0.053 [17-20
K 0.829 2.9 29.4 3.865 0.080 [17,19-2]
Rb 1.479 3.0 23% 3.886 0.089 [17,19,23
Cs 1.84 3.0 172 3.896 0.136 [17,19,23
Pb 10.68 1.12 358 3.684 0.089 [23-26§
Ga 6.09 1.20 4R 3.428 0.036 [23,27)
In 7.03 1.11 378 3.549 0.065 [23,29
Sn 7.00 0.8¢7 442 3.574 0.087 [23,24,24
Hg 13.69 1.80 299 3.426 0.029 [23,29

8¢ calculated from experiment& .
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Fu=®o—NKT In w—3NKT In(T/6y), (8) 32 I |
where 6, is given by Eq.(2). .
Suppose now that the one-dimensional harmonic oscilla- 39} Experiment { £ = 1309 gom’ ———
tor, described by Eq(6), moves in a well extending only up - Modeltheory o
to the amplitudea. The partition function is then sl
1 (= a 1 'é
—f exp(—,8p2/2M)dpf exp — = BMw?g?|dq g
h J_ . —a 2 26l B
kT
=—erfb, ) *
how 24 -
whereb= + /3 BM w?a?. Extending this description to the | |
entire set of normal modes and counting the multiplicity of ~ ?3% 20 30
valleys, the partition function including the boundary effect T,
is
KT FIG. 3. lon-motional specific heat V&/T,, for mercury, com-
N . paring experimental data at constant presqdréan, and at the
Zyg=W" exp(— SPo)II, N erfby, (10) constant density of the liquid at the melting point (13.69 gicm
and the model for harmonic plus boundary contributions appropri-
where ate for constant density.
by=+V3BMwla?. (1) C,=3NK[1-¢B(b%+1+B)], (19)
The corresponding free energyhsg=Fy+Fg, where the
boundary contribution takes the form where
Fg=—kT>, In(erfb,). (12 b? exp(—b?
. X 4§ g 2 SXR—b) (20)
J erfb
Finally, the ion-motional specific heat may be written
C,=Cy+Cg=3Nk+Cg, (13) To compare this model with experiment, we note the pa-
rametersa and { are expected to depend on volume, so to
where the boundary contribution is isolate the explicit temperature dependence, the comparison

should be made at constant volume. The correctioiCpf

2 1 measured at 1 bar 16 at the fixed volume of the liquid at
Ce=~ k; By(bi+z+B)), (14 the melting point follows well-known thermodynamic equa-
tions[7]. The references listed in Table | provide the data to
b, exp(—bf) make this correction for quuid. mercury and mercury is. an
m—. (15)  appropriate example because it appears to have no significant
Jm erf b, anharmonic specific heat. As shown in Fig. 3, the correction

from constant pressure to constant volume is quite significant

Let us now introduce a simple model for the above de+n C, vs T for mercury. By choosing the parameter values
scription of the boundary effect. Takesg<1 and for the

fraction 1—¢ of normal modes let the amplituds, be infi-
nite, so the boundary contribution vanishes for these modes. {=0.56, T,/T,=6, (21)
For the remaining fractiod, set all the normal mode param-
eters the same, i.e., sel,=w anda,=a. Then the total

boundary contribution t& [Eq. (12)] becomes Eq. (19 provides a rather good fit 10, vs T at fixed volume

for mercury, also as shown in Fig. 3.
Fg=—3NKTZ In(erf b). (16) We belieye that_ the abovg physical pictyre of the bound-
ary effect in liquid dynamics is approximately correct,

We shall make the temperature dependence explicit by writtamely, that each many-particle potential valley effectively

ing b, from Eq.(11), in the form extends to infinity in some directions, while in other direc-
tions it is truncated at the intersection with another valley.
b=+ \T./T, (17)  The above parameters then suggest that the truncation takes
up roughly half the perimeter of each valley and that a single
kT,=iMw?a?. (18) normal mode with energylér,, and moving in the appropri-

ate direction will carry the system to an intervalley intersec-
It is then convenient to write the specific heat in the form tion.
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IV. CONCLUSIONS agreement with our predominantly quasiharmonic liquid-
dynamics Hamiltoniaf1]. The present analysis allows a
more detailed conclusion for the case whérg is actually

. > ; significant, namely, for the alkali metals. SinCg decreases
theory givesC,=3Nk+Ca+Cg. We have experimental asT increases, fof>T,,, the anharmonic distortion must

data forC, for both the crystal and liquid at the melting point lie at potential energy per ion small comparedkfd,, i.e.,

for 15 normal melting metals, plus the weakly anomalous Sn . .
. . near the bottom of the many-particle potential-energy valley.
and Ga, and Ar at 1 kbar pressure. One existing data poi : : . X .
otice that this property is then consistent with, being

only, namely, that for the strongly anomaloud §j, is omit- X A .
ted from consideration here. In view of the theoretical ex-nearly the same in both the crystal and liquid at the melting

) ) o oint, a strong characteristic of the alkali metéfsy. 1).
pressions and the strong correlation of crystal and liquid dat . L
Lo . . LA The essential difference between a crystal and a liquid is
shown in Fig. 1, the following conclusions appear justified

g - . ‘that while the ions in a crystal move almost entirely within a

?hpetﬁqg{tri?]rs oéiact)ufnh(% %]Nilg.a(a) r%i%%t?lr t&zlg;rlr?eitor single highly ordered many-particle potential valley, the lig-
the crystalgapnd liquid at thAc\e melr'zirr:g point y uid ions move through a vast number of disordered valleys.
Experimental data for temperature dependend@,axist The essential property of the liquid state, which allows this

for ten liauid metals. of which the anomalous-melting Bi is intervalley motion, is truncation of the potential surface at
9 ' 9 the intersection of neighboring valleys. The experimental

omitted, and the other nine are graphed in Fig. 2. For so fe‘%?undary specific he&lg reveals this property of the liquid
examples, our conclusions cannot be supposed general, b

are restricted to the nine elements considefefl.For the State. A simple b.Ut physic_:ally realistic model f0g can be

alkali metals(Na,K,Rb,C$, C, is a roughly universal func- made to agrlee W't.h experkllment for mercu:cyil'tGB.ZTmz, at

tion of T/T,, running from around OMk at T=T, to constant volumérig. 3)'.T '€ parameters of e fieq. (21)]

around zer(;n 'forT>2T (b) For a second grou (f)"f four then suggest that the liquid ions move easily from valley to

metals(Hg,In,Sn G/QL Cm.~0 at all T. (¢) For %othpgroups valley. We shall attempt to make this notion quantitative in
i ) 3 AT . 1

Cg is a roughly universal function of/T,,, running from future research.
zero atT/T,, to —0.6Nk at T=3T,,. (d) Pb falls below the

At classical temperatures for the ion motion, lattice dy-
namics theory givesC,;=3Nk+C, and liquid dynamics

other metals at the higher temperatures for reasons remaining ACKNOWLEDGMENT
to be learned.
Compared to the harmonic specific h&gt=3Nk, the Stimulating discussions with Bradford Clements are

anharmonic contributiorC, is apparently always small, in greatly valued by the author.
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