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Interaction-site-model description of collective excitations in classical molecular fluids
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We describe a molecular theory for liquid dynamics that provides a method for calculating dynamical
correlation functions of classical molecular fluids. The theory is based on the generalized Langevin equation
and on the interaction-site model for molecular liquids. A simple model for memory functions is developed by
generalizing the conventional one that has been successfully applied to monatomic systems. The theory is
applied to the calculation of longitudinal current spectra of a model diatomic liquid and collective excitations
in this solvent are investigated. We also clarify how these excitations originate from the translational and
rotational motions of molecule§S1063-651X98)06202-3

PACS numbdps): 61.20.Lc, 61.25.Em

I. INTRODUCTION tended versior{15,16], which is capable of treating polar
fluids, has been successful in describing a large variety of

The study of the propagation of collective excitations ofequilibrium phenomena in the physical chemistry of liquids
finite wave vectors in molecular fluids has been a subject o&nd solutions.
intense investigation through experimepis-3], molecular- In the theoretical development of the calculation of time-
dynamics(MD) simulations[4-9], and dielectric theories correlation functions of liquids at wavelengths and frequen-
[10,17 in the past decade. In their MD simulation studies,cies of a molecular scale, memory functions, formalized
Ricci et al. [5] observed two different excitation modes in through the use of the projection-operator methidds-19,
water: an expected one associated with the sound propaggave played a key role. Since, in general, the memory func-
tion (an acoustic modeand a newly found high-frequency tions cannot be evaluated exactly, several approximate mod-
optical mode. Since the former is related to the center-ofg|s have been developed and successfully applied to the dy-
mass motions of moleculg$] and the latter is known 0 namical problems of monatomic fluid§20—22. By

stem from rotational motio5,7], these two different exci-  generajizing this rather successful framework to polyatomic
tations are expected to occur generally in molecular liquidsg, iys pased on the interaction-site representation of a mol-

In th|s paper we de.velop a mol_ecula}r theory to study Sqdécule, it is possible to develop theories for dynamical corre-
collective excitations in polyatomic fluids. Two elements in lation functions of molecular liquids and solutions. Along

the statistical mechanics are required to build such a theor;ghis line. Hirata and co-workers have proposed a theorv for
which have been developed relatively independently: the ' prop y

equilibrium statistical mechanics of static structure factors oISOIVent dynamics, the —site-site Smoluchowsk%VIgsov
molecular liquids and the general formalism describing thd >SSV theory [23], and a molecular theory for solvation
time evolution of relevant dynamical variables. dynamics[24]. Since the SSSV theory in its current form is
A traditional model for describing the equilibrium struc- Valid only in the diffusion regime, in the present study we
ture of a polyatomic fluid is the use of the rotational invari- €xtend this theory incorporating the non-Markovian effects
ants to represent the orientational dependence of the interm#rough the use of a simple model for memory functions.
lecular interactions and the static correlation functifh. An advantage of our theoretical approach is that, although
However, methods based on this model become increasingl§oth experiments and MD simulations have difficulty in ob-
cumbersome as asphericity of a molecule gets larger, sindaining the information in the important range of small wave
the convergence of the invariant expansion is slow. In thevectors, it overcomes this limitation by construction and
equilibrium theory of molecular liquids, this problem has more insight into the nature of excitations in molecular fluids
been successfully bypassed by using the interaction-sitean be gained.
model[13,14), in which a molecule is seen as consisting of The paper is organized as follows. In the following sec-
interaction sites most commonly located at the center of contion we develop an interaction-site representation for solvent
stituting atoms. In this model, given the intramolecular cor-dynamics based on the generalized Langevin equation
relations(“bonds”) between atoms, the orientational corre- (GLE). A simple model for memory functions appearing in
lation between a pair of molecules is represented by a densithhe GLE is developed by generalizing a procedure that has
correlation function matrix whose components are center-tobeen successfully applied to monatomic systems. The poten-
center (i.e., radia) correlations between sites of the mol- tial applicability of our theory is demonstrated in Sec. Ill by
ecules. The method based on this model, referred to as trepplying it to the study of collective excitations in molecular
reference interaction-site meth@@ISM) [13,14], and its ex-  liquids. Section IV concludes the paper. The Appendix is
devoted to the evaluation of elements of the frequency mo-
ment matricegto be defined belowthat are required in our
* Author to whom correspondence should be addressed. theoretical calculations.
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Il. THEORY

z
In this section we develop an interaction-site representa-
tion for solvent dynamics based on the GLE. In contrast to
the monatomic solvent case, all functions appearing in the
GLE for a molecular liquid take matrix forms. Throughout
the paper, the fluid is assumed to be homogeneous and iso- o 6) o z=4d
tropic. A A
dA
A. Generalized Langevin equation 1 o .
We begin with the definition of the site-site intermediate A8
scattering function matrix whose components are given by dy
o, @ OFSIR
Fap(kt)= 55 (8pa(K,0)* Spg(k,1)), () BB
in which 8p ,(k,t) denotes a local density of atofsite) « at FIG. 1. Schematic representation of a diatomic molecule, con-
time t in Fourierk space, sisting of atomdA andB, in the body-fixed molecular frame where

the origin is taken to be the center of mass andzlis is along
a the principal axis of the molecule, andzg denote thez coordi-
Spa(k,)=2, ki), (2)  nates of atom# andB, respectively, antlg is the bond length of
' the molecule.

andN is the total number of the molecules in the systefn.
specifies the location o atom in theith molecule. Hereaf-
ter, greek subscripts and superscripts refer to the interacti
sites of a molecule and roman letters label the molecules o

unless specified otherwise. The initial valuergk,t) is the S(k,w)sf dt €“'F(k,t),
matrix of the site-site static structure factors -

The matrices of the site-site dynamic structure factors and
OWe longitudinal current spectra are respectively defined by

F(k,0)=x(K)=w(K) + ph(K), 3 e (k)= f 4t 4k L), ©

wherew(k) and h(k) are the intramolecular and intermo-

lecular total correlation function matrices defined by The continuity equatior7) implies that these two matrices

1 e og are connected through the relation
Waﬁ(k)EN<z e ik e|k.ri>’ (4) 5
[ w
Ci(kw)=17 S(k,). (10
1 L a B
h K= — —ik-ry alk-ré 5
Phap(k) N <§.: ,El © © j> © The standard procedure of the projection operator formal-

ism leads to the following GLE in the time domdia5]:
andp is the average density of the solvent. Having assumed
the molecule to be rigidy, (k) takes the form 8 ) t .
F(k,t) +{w)F(k,t)+ | dr K (k,t—7)F(k,7)=0.
0

Wop(K)=Jo(Klap), (6) (1)

wherejq(x) is the zeroth-order spherical Bessel function and
| .5 denotes the “bond” length betweem and S sites.

We choose the external wave veckosuch that it is along
the z axis of the space-fixed laboratory frame. With this 1 (=
choice, the continuity equation reads wp= 5 f dw 0"S(k,w)=(—1)"?

In this equation{wy) denotes the normalizetth frequency
moment matrix ofS(k,w) defined through the relations

dn
ar F(k,)|

t=0

(12

Spak,) =ik v (R TO=ikj, k),  (7)
! -1

1 o =
2 J,wdw Skw)| =wpx k), (13

(@)= g

wherev;*, denotes the component of the velocity af atom

in theith molecule. The final equality defines the longitudi-
nal current density irk space, the time-correlation function where we have used the inverse relation of E).and the

of which is the site-site longitudinal current correlation func- definition of y(k) [see Eq{(3)]. Explicit expressions of ele-
tion ments of the frequency moment matrices depend on molecu-
lar models, and those of the second and fourth orders for
diatomic molecule depicted in Fig. 1, which we consider

1
_ /s * 3
Jap(k )= N (Ja(k,0*j gk, 1)). ® throughout the paper, are reported in the Appendix.
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K. (k,t) in Eq. (11) is the memory function matrix, a The self-part of the site-site dynamic structure factors, also
model for which will be investigated below. The initial value called the incoherent dynamic structure fact&g;(k, ),
of K (k,t) can be expressed in terms of the normalized fre-are defined as the time Fourier transformF@‘ﬁ(k,t). The
qguency matrices g22,25 unnormalized and normalized frequency moment matrices of
5 5 _ S*(k,w) are defined as in Eq$12) and(13):
KL(k,0)=(oj ) —(@i)=A(k) with
— 1 (= d"
(@ )=(wp)(ad) ™" (14 WE,SEEJ do w“SS(k,w)=(—1)“’2[@ Fs(k,t)} ,
’ - t=0

To obtain the GLE in the frequency domain, let us define (25
the Laplace transform as 1 (e -1
- - <w2,s>zw2[g J do S(ko)| =af WK,
F(k,z)sij dt €2'F(k,t) (Im z>0). (15
0 (26)

The GLE in the frequency domain can be derived in a similar

Equation(11) then takes the form .
manner, the result being

F(k,2)=—{z1—[21 +K_(k,2)] YD)} x(k), (16)

S(k,w)=| Y5(k,0)[K (K, 0)] LY3(K,
where we notice Eq(3). It follows directly from Eq.(15) (k@) (k)KL (ko)] (k@)
that 2

-1
w g’ 2
lim F(k,w+ie)=F (k,w)2+iF"(k,w)/2,  (17) "2 KL(k"")) (wegw(k), (27

e—0
whereK;} denotes the memory function matrix for the single-
with the quantities on the right-hand side defined by particle case and we have defined
" — * i w ’
F (k,w)=ﬁmdt e“'F(k,t), (18) YS(k,0)=w?l — (@i )+ 5 Kl (ko). (28)
F'(k,w)= i pfx do'F'(k,0 (o' —w), (19 B. Simple exponential model for K (k,t) and K} (k,t)
n —o0

For a molecular liquid represented by the interaction-site

where P denotes the principal integral. Applying these relamodel, Hirata has employed an overdamped description for

tions to Eq.(16), one obtains the GLE in the frequency do- the memory kernef23] and Friedman and co-workers have
main proposed the reference memory function approximation

[26,27. However, both of the approximations require dy-
namical information as input&.g., knowledge of diffusion
Y (k,w)[K{ (k,®)]" 1Y (k,®) constants is prerequisite in the former, while the latter uti-
lizes a known time-correlation function of some reference
) -1 ) dynamical variableand do not offer a self-contained frame-
+T KL(k1w)) (@i x(k), 20 work for solving dynamical problems. To overcome this
limitation, we propose a simple model for the memory func-
in which Y (k, ) is defined by(l being the unit matrix tion matrix that is a direct generalization of the one devel-
oped by Lovesey28,29 for treating monatomic liquids.
We write K| (k,t) in Eq. (11) as

S(k,w)=

2

Y(k,w)=w?l —<w§>+§ K (K,w). 21
K (k) =exd —t7 1K) JA(K), 29

We next consider single-particle counterparts. The self- . . . .
gle-p P where we notice Eq14) and 7(k) is a time-constant matrix

sggitn%fdtrg;sne site intermediate scattering function matrix ISto be specified below. It should be noted that this form of
K (k,t) guarantees that the first three nonzero moment ma-
FS (k) =(8p3(k,0* 3p3(k,1)), (22)  trices ofS(k,w) are correct regardless of the model k).
oh “ k Defining U,(k), which diagonalizes*(k), one has

wherep?(k,t) denotes a local density ef atom in an arbi-

trarily chosen tagged molecule Ut (k7 (kU (k) =diad 7, (K)], (30
5pS (K t)se”"rf“) 23) wherer{l(k)’s denote eigenvalues of the matsx (k) and
Pt ' diag ) represents a diagonal matrix. Then the memory func-
The initial value ofFS(k,t) is tion matrix can be written as

FS(k,0) = w(k). (24) K (k) =U ([ diage ") U (k) AK) (3D
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and in the frequency domain it follows from E(.7) that

2 A-A
w
K| (k,w)=—2U,(K) diag{m) U, Y(k)A(K), 1
32 0
) _ 1/, (K) . . 2 A-B
KL(k,w)ZZUT(k) dia m UT (k)A(k) ; 1

(33) o -]
2

Now we specify 1#, (k) by generalizing the procedure of

Lovesey[28,29. We first introduce a matrixJ, (k) that di- 1
agonalizeA(k): \/\ﬂ_v

Ux (K A(K) U, (k) =diad A, (K)], (34)

o-1
whereA, (k)’s denote eigenvalues of the mata k). With kAl

the matrixU, (k), the square root of the matrix(k) can be
defined FIG. 2. Site-site static structure factors of the diatomic mol-
ecule, defined in Eq.3), calculated by the extended version of the

AYAk)=U, (k) {diad VA, (k) }U5 (k). (35  RISM.

Then, generalizing the procedure of Lovesey, we writeNow all the quantities appearing in the right-hand side of Eq.
. (k) in the form (31) are specified. A similar model can be constructed for the
single-particle counterpak? (k,t), starting from
7 (0 =6 VAL(K). (36)
KS(k,t)=exfd —t7; (k) ]Ag(k) with
The constang, is determined by requiring that the resultant
S(k,w=0) coincide withS®(k,w=0) in the k—o limit, Al Me? )1 (o2 41
where S°(k,w) is defined as the time Fourier transform of s={ @@~ (@ico), “D
the Gaussian-approximated self-part of the intermediate sc

: . ; az&’nd generalizing the procedure of Lovesey, as we have done
tering function matrix

above.
FO(k,t) =exl — 3{wf Ht2Iw(K). (37)
lll. RESULTS AND DISCUSSION
Since elements of the frequency moment matrices depend on
molecular models, so d§,’s. ) o
As an example, using the results of the Appendix, the Throughout the paper we consider a solvent consisting of

A. System description

to be atoms A and B of massesma=36gmol! and mg
=4 g mol ! separated from each other by a fixed distance of
2/ C Iag=2.0A. Atoms A and B carry partial chargesjy=
&= \/; (F_ 1/, (39 —0.2% andgg= +0.2%, respectively, and the resultant di-

pole moment is 2.4 D. The Lennard-Jones parameters are
oa=4.0 A ande,/kg=200 K for atomA and o5=2.0 A

andeg /kg=100 K for atomB. The number density is 0.012
molecules A2 and the temperature is 250 K.

in which the constant€ andD are respectively given by

2 2 2
czg(kB_T 4 (ksT) zf+ § (kB_T z;‘, Figure 2 gives the site-site static structure fact{@scal-
M MI St (39) culated by the extended version of RISNb,16. The peak
positions arekm.,=1.69 A™! and ky,,,=1.65 A"1 for A-A
~ keT  2kgT , andB-B pairs, respectively. Note that in the-0 limit, all
VTS the site-site structure factors coincife?] and we define
HereM and| denote the total mass and the principal mo- X(0)=xaa(0)=xas(0) = x88(0). (42
ment of inertia of the diatomic molecule, respectively, apd ) ) ) )
is specified in Fig. 1. We also define the following quantity for later convenience:
For any model for diatomic molecule, it is found that all
£’s are close to each othdand they are approximately X"(0)= xaa(0)+ xgp(0) —2x4g(0)  with

equal to 1. In view of this, we approximate
Xeop(0)=lim dzxaﬁ(k)/dkz. (43
U (k)=~U,(k). (40 k—0
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50 . . . . . isothermal sound velocity, consistent with the fact that en-
@ ergy fluctuations are not explicit dynamical variables in our
theory.
40 The contributions from each atom to the acoustic mode
can be extracted in the following way. Diagonalizing the
= 307 ] matrix (w?) corresponds to turning the description of the
= i 1 system in terms of the densities of each atémy(k) and
20 7 1 6pg(k) to that in terms of their linear combination:
ol T _ Xa(K) 3pA(K) +xp(K) 5pg(K), (46)
wherex (k) andxg(k) are the components of the eigenvec-
0 ' ‘ ‘ ' ' N tor corresponding to the mode. It can be readily found for the
®) A acoustic mode that
o5F ] lim [xa(K) Xa(K) <[ 1,1 (47
0 el /,/"‘\\\\XB/_ k—0
This is consistent with the fact that the sound mode stems
1 L *_ | from the center-of-maséranslationgl motion of the mol-
ecules, i.e., each atom in the molecule equally contributes to
051 _ this mode.
0 \/_\_/x,‘*— Figure 3b) summarizex,(k) andxg(k) of the acoustic
branch at various wave vectors, normalized such xl,?:{{ak)
0 1 5 3 4 5 6 +x§(k)=1.. It is seen from the figure thatA(.k)%xB(k)
KA holds well in the smalk (up to ~1.0 A1) region. In the

largek (i.e., k>kq.0 region, however, it is found that
Xa(k)~=1 with xg(k)=~0, i.e., the dispersion curve of the

FIG. 3. (@ Eigenfrequencies as evaluated by diagonalizing, . stical branch in this region reflects the self-motithre
(wi). Solid and dashed lines give the eigenfrequencies of the

acoustic and optical modes, respectivéh). x5 (solid line) andxg sllngle-par.tlcle motlph of the heavier atoma. (The cqllec-
(dashed ling defined in the text corresponding to the acousti(:tuve and smgle-par'uclg hature .Of the.modes will be dI.SCUSSEd
mode.(c) x4 (solid line) andxg (dashed ling corresponding to the in Sec. Il C) In the intermediatéc (i.e., k~Kknyg) region,
optical modex, andxg are normalized such thaf+x3=1. Xa(k)~xg(k) does not hold andg(k) becomes even nega-
tive [see Fig. 8)]. As will be clarified below, this fact re-

veals that the rotational motion is also involved in this
) i ) i . region.

In this subsection we investigate eigenmodes of the sys- \ye next turn our attention to the dispersion relation of the
tem and hOW each atom in the molecule contributes to th%ptical branch of w?), presented as a dashed line in Fig.
modes. To find the eigenmodes B(k,t), we neglect the 35 The optical branch is well separated from the acoustic
damping term(represented by the memory function makrix one at all wave vectorédue to the large difference in the
in Eq. (11) and obtain masses of constituent atojrand it is apparent from the fig-
ure that this mode does not vanish in tke:0 limit. (The
term “optical” comes from this facj.The eigenfrequency in
this limit is given by[5]

B. Eigenmodes of the system

F(k,0)=—(f)F(K,0). (44)

Elements of( w?) for the diatomic molecule can be calcu-
lated using Eqgs(13), (Al), and(A18) and the eigenmodes ) 4kgT
can be obtained by diagonalizing this matrix. The fact that Wopii(k—0)= W e (48)
(w?) for the diatomic molecule is 22 matrix naturally
leads to the possible existence of two modes, which turn oudind the corresponding eigenvector, using the notation in Eq.
to be acoustic and optical ones, as is explained below. (46), turns out to be

In Fig. 3 we report the results of the diagonalization of
(e?). The solid line in Fig. 8) represents the dispersion lim [Xa(K),Xg(K) ][ Za,Zg]- (49
curve corresponding to the acoustic branch. It is seen that the k=0
dispersion behavior of the acoustic mode is very similar to

that of a monatomic system. The-0 limit of the eigenfre- Note from Fig. 1 thatz, and zg are opposite in sigrithe
quency of this mode is given L] solvent model used here gives lmy[Xa(k),Xg(K)]=
[—0.11,0.99 when the norm of the eigenvector is normal-

T ized to unity, thusA and B atoms contribute to this mode
2 (k0)= —2 K2 4 with the out-of-phase fashion in terms of E¢6). Since the
Wacod kK—0) , (45) . - .
Mx(0) magnitude ofz, gauges the efficiency of atom for partici-
pating in the orientational motion, the optical mode is evi-
i.e., that of the ordinary sound mode that propagates with thdently related to the rotational motion of the molecules.
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FIG. 5. Eigenvalues of the relaxation-time matrix as defined in
Eq. (29). The solid line gives the relaxation times corresponding to
the acoustic mode and the dashed line the optical mode.

we analyze the collective excitations in our model liquid by
solving the full GLE that incorporates the damping effect
represented by the memory function matkix(k,t).

As in other studie$5-7,9-11, we consider the longitu-
dinal current spectra, rather than the dynamic structure fac-
tors, in investigating the collective excitations in the liquid
since the former always exhibits a peaked structure even
when the inelastic peaks in the latter are not well defined

FIG. 4. Eigenfrequencies and the components of the eigenvec{zo]_ The physical information contained in these two quan-

tors for (wg, ) defined in Eq(14). The notation is the same as in
Fig. 3.

[This is also obvious by noting that EGI8) depends on the
moment of inertia of the molecule.

Figure 3c) presentx, (k) andxg(k) corresponding to the
optical mode at various wave vecto(dlote that since gen-
erally (w?) is not a symmetrical matrix, the eigenvectors
corresponding to the acoustic and optical modes are not o
thogonal to each othgr.lt is seen that[xa(k),xg(k)]
«[zp,zg] is well satisfied in the smak- (up to approxi-
mately 1.0 A°%) region. In the largek region, it is found
that the dispersion curve is dominated by the single-particl
contribution from the lighter atonB, i.e., xg(k)=~1 with
Xa(k)=~0.

So far we discussed the eigenmode&K,t), but a simi-
lar analysis can be applied to those of the longitudinal cur
rent correlation function(k,t). The eigenmodes ai(k,t)
can be obtained by the same manner from the GLE fo
J(k,t) which takes a form similar to Eq11), and it follows
after the nondamping approximation

JI(k,0)=— (e )I(K,0), (50)
which clarifies the physical meaning ()foﬁ,,_) defined in Eq.
(14). Elements of{w ) for the diatomic molecule can be
calculated using Eqg13), (A20), and(A22) and the eigen-

frequencies and eigenvectors can be found by diagonalizin

this matrix, the results of which are presented in Fig. 4.

C. Longitudinal current spectra

In the preceding subsection we discussed the eigenmod

tities, however, is basically the same due to Ed).

Before embarking on the analysis of the longitudinal cur-
rent spectra, we briefly comment on the relaxation times for
the memory functions defined through E89). In Fig. 5 we
report the wave-vector dependence of the relaxation times
calculated from Eq9:36) and(38): The solid line gives those
corresponding to the acoustic mode and the dashed line the
optical mode. It is seen from the figure that the component of
the optical mode relaxes faster than that of the acoustic mode
at all wave vectors. It is worthwhile to note at this point that
our prescription, Eq(36), implies an infinite relaxation time
for the acoustic mode in thie—0 limit since A, (k) corre-

%ponding to the mode vanishes kfsin the smallk region,

which is inconsistent with the prediction of the hydrody-
namic theory[22]. The inconsistency also occurs in the
original theory of Lovesey28,29. It is known, however, in

the monatomic liquid case that, although the simple expo-

nential model for memory function®ften referred to as the
Viscoelastic modglis only expected to be reliable for wave
vectors outside the strict hydrodynamic regime, the conse-
quences of the above inconsistency are likely to be not so
serious in practicg22]. Anticipating this to be valid also in
the case of molecular fluids, we believe the essential features
of the results to be presented below will not be altered sig-
nificantly even after the inconsistency is removed in some
way. This defect in the present theory, caused by the incor-
rect relaxation times in the smallregime, may be remedied
gy improving the approximation scheme for memory func-
tions, and such a study, exploiting the mode-coupling ap-
proximation, is currently under way in our group.

The longitudinal current spectra at various wave vectors
ese calculated using Eg&L0) and (20) with the simple ex-

of the system within the nondamping approximation. Hereponential model folK (k,t) of the form given by Eq(29)
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(a) e
20 e

o [ps']

o[ps ']

FIG. 6. Solid lines, the longitudinal current spectra of e\
pair C_aa(k,w) as a function ofw at the indicateck (in A~
values, in arbitrary units; dashed lines, the single-particle contribu-
tions.

. . k[A™
and the results foA-A andB-B pairs are presented as solid (Al

lines in Figs. 6 and 7, respectivelfRemember that atorA

is much heavier than atofd.) Also added in these figures  FIG. 8. Dispersion relation of thea) acoustic andb) optical

are the single-particle contributiorfise., contributions from modes as evalugteq from the peak po_si_tions i2n the longitudinal cur-
the self-motiony calculated using Eq$27) and (41), with rent spectra(solzld lines, by dlagopaI|Z|ng(wk> (lower dashed
the aim of elucidating the collective nature of the excitationgi"eS and by(wi, ) (upper dashed lings

in the smallk region.

A number of observations can be made concerning th&on from the lower-frequency acoustic mode and the higher-
theoretical results given in Figs. 6 and 7. We first note thafrequency peakapproximately 20 ps) is only barely seen.
two peaks are observable in both of the spectrakat The lower-frequency peak also appearsGpgg because
=0.1 A1, However,C, a is dominated by the contribu- both atomsA andB participate in the center-of-mass density
fluctuations as discussed above. The higher-frequency peak
corresponding to the optical mode is exaggerate€,irsg

10 e k=10 k=22 since the lighter atonB is much more responsible for the
05 |/ orientational motion of the molecule. The collective nature
! N of these two excitations in the sm&llregion is apparent by
10 / N comparing solid lines with dashed ones in Figs. 6 and 7. In
the largek region, however, the spectra are almost identical
0.5 to those from the single-particle contribution€; aa is
o dominated by the contribution from the self-motion of atom
*§10 A, while that of atomB determines the overall shape of
& ClLgs-
05 The resultant low and high peak frequencidspersion
relationg of the longitudinal current spectra are shown as
1.0 solid lines in Figs. &) and &b), respectively. It is seen from
Fig. 8@ that the dispersion curve of the low-frequency
0.5 acoustic mode is very similar to that of monatomic fluids and
the positive dispersion is apparent from the figure. The dis-
0 persion behavior of the optical mode presented in Fib) 8
0 20 40 20 40 gualitatively in accord with that of water reported by Resat,
o [ps'] Raineri, and Friedmap10], who calculated it based on a

dielectric theory that takes into account the rotational motion
of water.

FIG. 7. Solid lines, the longitudinal current spectra of BB
pair C_ gg(k,w) as a function ofw at the indicateck (in A1) The reasons for this qualitative correspondence of the dis-

values, in arbitrary units; dashed lines, the single-particle contribupersion behavior of the optical mode between our results and
tions. those of Resat, Raineri, and Friednja@] (but for watey are
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twofold: similarities in the solvent models and in the descrip-tional and rotational motions of the molecules.

tions of the mode. First, although our diatomic solvent model The theory presented here can be applied to the descrip-
seems to be very different from water, they have a similaritytion of time-dependent phenomena in polar fluids: solvation
other than being molecular liquids in that both of them havedynamics and dynamical solvent effect on charge transfer
quite heterogeneous mass distributions of constituent atomeeactions will be among the most interesting applications.
The translational motion is almost carried by aténin our ~ The research for this direction is currently under way in our
model and by an oxygen atom in water, while the rotationalgroup and we plan to report the results in subsequent papers.
motion is dominated by that & and hydrogen atoms. Sec-  In order to refine our theory further, several extensions are
ond, we have found in Sec. Il Bout within the nondamping conceivable by developing approximation schemes for
approximation that the optical mode in the sma&llregion = memory functions. The most promising extension will be
(this is the most interesting regipoan be described in terms adopting the mode-coupling approximation, in view of the

of the linear combination success of the mode-coupling theory in describing time-
correlation functions of simple liquid®2]. The research for
2p0pa(K) +2g6pp(K). (51)  this direction is also one of our concerns in the future study.

This is “nearly” the same combination as that of the basic

dynamical variabléthe local charge densityn the dielectric ACKNOWLEDGMENTS
theory of Resat, Raineri, and Friedmid©], The authors are grateful to Professor Munakata for fruitful
discussions. We thank Dr. Raineri for private communication
qadpa(k) +agdpg(k), (52 of Ref.[30]. S.-H.C. gratefully acknowledges financial sup-

port from the Japan Society for the Promotion of Science for
Young Scientists. This work was supported by the Joint
Studies Program of the Institute for Molecular Science.

in terms of phase sincg, andzg are opposite in sign and so
areq, andqgg (only the relative sign has importancd hat
the descriptions of the optical mode in terms of E§4) and
(52 are nearly the same can also be understood by noting
that the rotational motion gives rise to the local charge-

density ﬂuctua.tions, while the center-of-mass motion does In this Appendix we present an evaluation of elements of
not due to the charge neutrality of the solvent molecule; it ishe second and fourth frequency moment matrices, as defined
the former(the rotational motionthat is responsible for the iy Egs.(12) and(25). Since the final outcome depends on the

optical mode. . . molecular model, only the expressions for the diatomic mol-
In this connection, it is also instructive to note that theecyle depicted in Fig. 1 are reported.

following linear combination, which is found to describe the
acoustic mode in the smatl+egion:

APPENDIX

1. Second moment matrix

Spa(K) + bpg(k), (53 The outline of the calculation of the second moment ma-
_ _ o trix is given in the paper of Ricaét al.[5] and the results for
is again nearly the same combination as that of the locajarious molecular fluids are presented by Raifi@d. Since

mass-density fluctuations of the system one requires similar manipulation repeatedly in obtaining el-
ements of the fourth moment matrix, we evaluate those of
Madpa(k) +mgSpg(K) (54) the second moment matrix in some detail. Our treatment here

in terms of phase since masses are always positive. In facftollows closely that of Raineri30].
I P ! ways positive. ' We first note from Eqgs(7), (12), and(25) that

both of the above combinations can give the same descrip-

tion as far as the dynamics of the acoustic mode in the small- — 1 o
k region is concernefd]. [@p]ap=K? N > (vl ki)
]
ik (9B —
IV. CONCLUDING REMARKS =K p8 e Ty =[w? ], 5=k25(K).
In the present paper we described a molecular theory for (A1)

liquid dynamics that provides a method for calculating dy-

namical correlation functions of polyatomic fluids. The The second equality is due to the statistical independence of
theory is based on the generalized Langevin equation and dhe velocities of different molecules at the same time. In
the interaction-site model of molecular liquids and is capable/iew of this relation, it suffices to evaluafi (k) to obtain

of treating the general class of molecular fluids. Another disboth [wﬁ]aﬁ and[mﬁvs]aﬂ.

tinctive feature of our theory is that it offers a self-contained Having assumed the molecule to be rigid, one has
framework for solving dynamical problems without making

reference to any dynamical information from outside, i.e., it VE= VWX ST, (A2)
requires only the knowledge of parameters for potential .
functions and molecular geometfyuch as bond lengthsis a®=aC+W; X 8+ w, X (W; X 8r), (A3)

in simulation studies. As an application of the theory, we

calculated longitudinal current spectra of a diatomic dipolawherev;" anda denote the velocity and the acceleration of
liquid, discussed the collective excitations in this solvent,a atom in theith molecule, respectivelwf andaiC represent
and clarified how these excitations arise from the translathe velocity and the acceleration of the center of mass of the
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ith molecule, respectivelyy; is its angular velocity, and

S)_ T(D) (s) — I% (b)
5riC“ is the vector joining the center of mass and atem E D T Cio _; Don()Cin
Due to the statistical independence of translational and (A10)
rotational velocities, substituting EqA2) into Eq. (A1)
gives where the quantities with the superscripf) (refer to theb
frame andD () is the Wigner functior(rotation matriy in
Jaﬁ(k)=((vfz)2e‘ik'”§"f)> terms of the Eular angl€, which describes the orientation
’ of the molecule with respect to tleeframe. Substituting Eq.
+([wy X 5r *],[wy X 5rll3] e ik (r{- f1>> (A10) into Eqg. (A9) and using the properties of the Wigner
functions[12], one has
Jtranik)‘f‘\]mt(k) (A4)

2 : .
The first term can be easily evaluated, due to the statistical Jag(K)=— 3 §|: (-b'(l +1)J|(k|a,3)n§; (—nn
independence of the translational velocities and coordinates, 1e
as X C(111;000C(111;n,+ nz,nz,nl)

T a(b)
trans(k <(Ulz)2><e |k(r1 rﬁ)>_iwaﬁ(k) ><<T1nl 1n2 >Cln1+n2(e ) (All)

T whereC(l41,l;m;m,m) is the Clebsch-GordatCG) coeffi-
_ B jo(Kl,z) (A5) cient andn=—n. Due to the properties of CG coefficients
M “p [12], only | =0 and 2 terms in the above equation can give a

. nonzero contribution and one obtains
where we notice Eqg4) and(6).

The evaluation of the rotational pa}fﬂ(k) is somewhat ot n=a(b)~B(D)
involved. To this end, we note that?t(k) can be written in Ja (k)__310(k|aﬁ)z (—DNTH"TL, ") (AL2)
terms of a zeroth component of a sphencal tensor of rank 1
defined by[12]

—%Jl_c)jz<klaﬁ>n2n (—1)Mm

i
a _ Ca
075 [wyx ory®l;. (A6) XC(211n,+ n2,n2,n1)
ThenJjs(k) can be written as X(THTE Can, 1 n,(E41)- (A13)
Ik = — 2T The 'k as), (A7) Averages of the form(TT) and (TTC) can be evaluated

P ] ) ) using the product rule for spherical tensptg]:
where ér ,s=r7—r7. Hereafter in this appendix, the label

specifying the molecule 1 will be dropped. A Rayleigh ex-

a(b) _ . b), a(b
pansion[12] of the exponential gives T )—§m: c(11rmn-mnwrih, (Al9)
e K ap=> (—1)!(2141)ji(Kl 4p) Cim( &) Cn(€5)), where w?”) and r® denote the spherical components of
hm w® and 6r¢«®) respectively.

(A8) Finally, let us evaluate the elements ﬁf};(k) for the

in which I 5= ., e§<s) andeSZ; denote unit vectors along d_iatomic molecule depi_cte(_j in Fig_._l. I_n terms of the quan-
k and or,5, respectively,j,(x) is the Ith-order spherical tities in theb frame (which is specified in Fig. )1 one has
Bessel function, an€,,, is the Racah spherical harmonics. n2

The quantities with the superscrips)(refer to the space- (T“<b)Tﬁ’<b>>—— 25w WD), (A15)
fixed laboratory frame, which we abbreviate as thizame

from here on(Do not confuse it with the subscript and su- N2

perscripts indicating single-particle quantitigsNote that a(b)TB(b) (O — _ (b)yp,(b)
Cim(6¥)= 6,0 since we have chosek to be along thez (Tiny Tin, Canyen(€p)) 2 ZaZg{Wn o),

axis in thes frame, and Eq(A7) becomes (A16)

where we notic£2n(eg"ﬁ))= on,o for the diatomic molecule.
Jmt(k)——zz (=)'(21+1)j (Kl o) Substituting these into EqA13) and noting (w{Pw{)
=<w§b)w§b)>=kBT/| for the diatomic molecule, one obtains
X(Ti" Tho” Clo(elh)- (A9)

It is more convenient to evaluate the ensemble averages in Jap(K) =3 == zaZgljo(klap) +ja(klep)]. (A7)
the body-fixed molecular framg frame, which we choose
to be coincident with the inertial principal one. The transfor-The totalJ,z(k) for the diatomic molecule is a sum of Egs.
mation law to theb frame is[12] (A5) and(A17), the final result being
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kgT . 2 kgT , _ — kgT\2.
Joup(k)= o Jo(klgp) + 3T 2,2 jo(Klag) +]a(klgp)]. [wﬁ,s]aﬁzkz(V) Jo 3k2+% 9275(0)
(A18)
, (kg2 )
+k M (Joti2)1 42,2k
2
2. Fourth moment matrix + %(Za"'zﬁ)% ZyQyé(o)]
. 2
We next consider the fourth moment matrﬁm‘k‘] g z(kBT) 8: | 165 | 24: \12
@ +k2 —— i+ 0,+ 2j )k
From Egs.(1), (2), and(12), one has(definingrf}ﬁzri“—rf) || Ze%8 ZaZg(slot Tl2t 55la)

[wﬁ]af%<5ba<k,o>*5bﬁ<k,o>> 3o+ 5ot i2) 2 205 >]

(A20)
1 0 a
=Kk2 = > (affzafze"k‘rijﬂ) Here we have used the abbreviatign=jmn(kl,z) and
N %7 02 (k) is defined by
.1 ka8 . P hs(r)
o o K-r:: p k.
+Ik3ﬁi2j ([af,(wf )%= (vf)%af Je ") szg(k)EkB—der e ik fgw(r)a—z‘z
1 o LaB p
= @20 B \2a—ik-rE _ " i _9i
K .2,: (Wit (v} e M) 3KeT f drgy,s(r)[cﬁy,s(r)[lo(kr) 2jo(kr)]
=[ 04 Japt [ glap, (A19) 2¢%5(1) .
+——Lio(kn+ja(kn)] . (A21)

In this equation,¢,s(r), ¢.s(r), and ¢’ (r) denote the
- - site-site interaction potential and its first and second deriva-
where[ wy ]z denotes the selfi & j) part and @y 4], the  tives with respect t@, respectively.
distinct (i#j) part. The elements of the distinct part can be evaluated in a
Substituting Egs.(A2) and (A3) into Eq. (A19) gives Similar manner. It turns out that all the kinetic terms cancel
many terms and each term can be evaluated as we have doﬂ'ét in the distinct part and one is left with the interaction
in deriving Eq.(A18). After straightforward but lengthy cal- {€rms, which can be summarized as

culations, one has for the self-part of the diatomic molecule — )
[oxalas=—K2 J0y(Q5:(K0 355K, (A22)
Y

whereJ,z(k) in the case of the diatomic molecule is given
by Eq.(A18).
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