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Two-particle dispersion in turbulentlike flows
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Kinematic simulations are non-Markovian Lagrangian models of dispersion that incorporate turbulentlike
flow structure. We investigate the conditions for two-particle dispersion to be local in a turbulentlike flow, and
the dependence of the Richardson constant on the topology of individual realizations of the flow.
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I. INTRODUCTION [4,5]. When the timé is so small that the particles have only
moved in approximate straight linef4,5], Az(t)mAg
Lagrangian calculations of average concentrations require- (eA )%

knowledge of one-particle statistics. However, if Lagrangian One way to formulate the Obukhov-Batchelor similarity
calculations of concentration fluctuations and concentratiomheory of relative dispersion is in terms of the “locality as-
covariances are to account for turbulent mixing associategumption,” and this assumption is of central concern in this
with relative dispersion, then such calculations must incorpaper. The locality assumption states that, in the inertial
porate some features and properties of two-particle statistiaginge, the dominant contribution to the turbulent diffusivity
[1]. The calculation of concentration covariances is impor-(d/dt)P(t) at time t comes from “eddies” of size

tant in the prediction of reaction rates in chemical reactoriAz)uz(t)_ Hence d/dt)P(t) is a function ofA2 and e
and in the atmosphere because chemical reaction rates 8ﬁly and by ,dimensional arguments d/dt)P(t)

end on concentration covariances and not on average con- /3, -— . ) N
Eentrations. The calculation of concentration fluctuatigns i - €A% ProyldedAo_ IS below the .|nert|al range of
also important for air-quality control, combustion, and pol- ength scales, an integration over time yields
lutant dispersal in geophysical flows. —_

Perhaps the most important statistic of two-particle dis- A%(t)~G,et?, 1)
persion(certainly the most frequently studied the mean
square distance between two fluid elemeilso referred to  whereG, is a universal dimensionless consta@L
as particles in this paperA2(t), which is of course a func- The value ofG, is important for quantitative studies of
tion of timet. In certain circumstances, such as downstreanturbulent dispersion and turbulent concentration fluctuations.
of a linear concentration gradieft], A%(t) is the only two- ~ The only experimental measurement @ known to the
particle statistic needed to calculate concentration fluctuaPresent authors is that of Tatargkil. Unfortunately, Tatar-
tions. In generalAZ2(t) is one of the fundamental quantities SKI'S measurements and estimations are fraught with uncer-
of interest in the theory of turbulent dispersion. In a series of@inties and there is no point in referring to the actual value
papers starting in 1926, Richardsi#] studied the turbulent that he assigned 1@, . Nevertheless we can perhaps say,
diffusivity (d/dt)P(t) as a function of the distanck be- with some level of confidence, that according to Tatarski's

tween two particles advected by atmospheric turbulence. RI€ASUrEMentsG, is a number betweerD(10 %) and
chardson’s empirical finding, d{dt)AZ~(A%)2%, implies (10" ) (see the discussion in Furg al.[7).
A2 (3 (neglecting the initial distancA, between pairs of . To this day, with the one except|or_1 of kinematic simula-

] 3 'R - ) tions, no turbulence theory or model gives such a small value
particles under the assumption tM«AZ atatimet thatis G,. Two-point closures such as LHDIA8,9] and
sufficiently large. Obukhov[3] and Batchelof4] derived EDQNM [10] give values between 2.42 and 3_5_' Early sto-
Richardson’s dispersion law theoretically by applying Kol- opastic model§11,17 lead toG,=0(10) and more recent
mogorov's similarity arguments ta\*(t) and obtained stochastic models for two-particle dispersifitB,14 give
A%(t)~et® in an intermediate inertial range of timegeis G, =0(1). However, kinematic simulations of turbulentlike
the average rate of dissipation per unit mass of flldhen  velocity fields yield G, betweenO(10™ ) and O(10 ?)
the timet is much larger than correlation integral time scales,(Funget al. [7] Sabelfeld[15], Elliott and Majda[16]). Ki-
A?(t)~t because the two particles move apart independentlpematic simulations differ from Lagrangian stochastic mod-

els in the qualitative nature of the velocity fields that they
generate. Lagrangian stochastic models generate velocities
*Permanent address: Department of Mathematics, The Honthat look like Brownian random walk@vith or without drift)
Kong University of Science and Technology, Clear Water Bay,in velocity phase space, whereas kinematic simulations gen-

Hong Kong. Electronic address: maifung@uxmail.ust.hk erate smoother velocity fields in every realization of the tur-
TEAX: (+44-1223337918. bulentlike flow. Indeed, kinematic simulations are non-
Electronic address: jcvl0 @damtp.cam.ac.uk Markovian Lagrangian models of dispersion that incorporate
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FIG. 1. Kinematic simulation of the flight of two particléa
thick line and a thin line with symbolsn a turbulentlike velocity 2.0
field with a k=>3 energy spectrum generated as explained in Sec.
Il A. The particles are initially at point& andB and move closely
together until they suddenly separate at two well-identifiable in-
stances, presumably because of hitting a straining region. The tra-
jectories of both particles are also visibly much smoother than 067
Brownian paths and not dissimilar to the turbulent trajectories pho-
tographed in Doget al. [17].

Dy (r)
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turbulentlike flow structure. It may also be instructive to 0.05 0.10 0.50 100 5.00 10.00
compare particle trajectories generated by a kinematic simu- (b) r

lation (Fig. 1) with the photographs of particle trajectories in

turbulent flows reproduced in van Dep al.[17]. Funget al. FIG. 2. (8 Plot of uf(xo,t)/uf(Xo,t=0) against/T, (solid line

[7] attempt to explain their low value @, in terms of the for i=1 and dashed line far=2) demonstrating that the flow field
eddying, streaming, and straining regioflsee Fig. 1(8)] is stationary in time. In this parti((:;JIa)rlszq]=5/3, 2w/L=1.1,

! o o . . = = — -p i —
that appear in individual realizations of their turbulentlike 27/ 7=1860, Ag=7/2, and w,=\ky" ™" with A=0.5, and the
flows. Particle pairs should move together in eddying an ave numberg,, are geometrically distributed witN,=79. Simi-

. . - ar stationary behaviour is observed for an algebraic distribution of
tsrﬁrei/amg]gt ;egtl:)a?iﬁir?g? e(;?!%/sggpg;atiéﬁfuﬁlfé el)il\,l]vggg_ wave numbers and for different values of the above parameters. The

. . . | i lcul 2 lizati -l
trast to Lagrangian stochastic models, the particles are mo$§ semble average is calculated over 2000 realizatitd.og-log

. ) . . . plot of the structure functiol ;4(r)=[uy(x+r,y,t)—u;(x,y,t)]*
of the tl_me m_ovmg together, which may explain why kine againstr for p=5/3. The dashed line has a 2/3 slope for compari-
matic simulations generate smaller values@f than La-

. ; . . son, indicating thab,(r) has a 2/3 slope over about two decades.
grangian stochastic models. Elliott and Majda6] are The ensemble average is over 2000 realizations. The plot has been

mostly concerned with the prowess of their numerical COd%btained for the same parameter valuegagsimilar behavior is

and make no attempt to explain their low valuedf. How-  gpserved for an algebraic distribution of wave numhers
ever, they do emphasize that their velocity field is fractal and

Lheatértglé?]\’g'engf ttﬁiirsijugrgﬁfetﬁﬂkgvgr:)t::(ietlfef[i:?c]i’i;r:ﬁtrt(;rgjce dthis velocity field's relative dispersion properties. The results
P y of our simulations are presented in Sec. Ill and we conclude

by a constant-velocity sweeping of an otherwise frozen ve-

o in Sec. IV.

locity field.
In this paper an attempt is made to address the following

two questions: Il. THE TURBULENTLIKE VELOCITY FIELD AND THE
(i) What parameters of the velocity field influence the LOCALITY ASSUMPTION

inertial range power-law behavior of the turbulent relative
separation of particles, i.eA%(t) ~t3?

(i) How doesG, depend on the parameters and the to- We follow the approach of Turfus and Hupft8], Sa-
pology of individual flow realizations? belfeld [15], and Funget al. [7] and generate on the com-
In the next section we describe the turbulentlike velocityputer an incompressible two-dimensioraD) turbulentlike
field that we generate to study two-particle dispersion and w&elocity fieldu(x,t) that is identical to that of Vassilicos and

discuss the consequences that the locality assumption has Bang[19], i.e.,

A. The velocity field
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FIG. 3. Log-log plot of the mean square displacement of fluid 55 eement with Fig. 3. This plot has been obtained for the same
elements from a fixed point in an isotropic stationary and homogebarameter values as Fig. 3.

neous turbulentlike flow2). The solid dots are the computational
result and the d_ashed lines represent different slopes,xtf.er,2 unsteadiness frequeney, is proportional to the eddy turn-
whent<T_ andxi=t whent>T_. The ensemble average is over gyer time of wave modae, i.e.,
2000 realizations. The plot has been obtained for the same param-
eter values as Fig.(@) (similar behavior is observed for an alge- wn=AVKE(Kp), (5)
braic distribution of wave numbers and different values\pf
where\ is a dimensionless constant, afiid a model[ 16,18
Ni where all the wave modes are advected with a constant ve-
U= 2, [An oKy X+ nt) + By sin(kn:x+@nh)],  locity U, ie.,

)

whereN, is the number of modes in the simulations and the
Cartesian coordinates &, B,, andk, are given byA,
=A,(cosd,,—sin¢,), B,=B,(—cos¢,,sing,), and k,

=k, (sin ¢,,cos¢,). The anglesp,, are random and uncorre-
lated with each other and the velocity fidR) is incompress-
ible becausé,-k,=B,,-k,=0 for all n. The positive am-
plitudesA, andB,, are chosen according to

1'00l|lll||||||||ll||llll||

F

AZ=BZ=E(k,)Ak,, 3 A
whereE(K) is a prescribed Eulerian energy spectrum of the
form

E(k)=EqL(kL)"P 4

in the range Zr/L =k;<ks<ky =27/7 and such thaE(k) L -
=0 outside this rangeAk,=(k,;1—Kk,_1)/2 for 2<N 0007+ T T T T T
<Ny—1, Ak;=(ky—k;)/2 andAky, = (kn, —ky,_)/2. The -20 -1.0 0.0 10 20
distribution of wave numberk,, is either algebraic or geo- Ay/o '

metric, i.e.,

FIG. 5. PDF of the separation vector compondnt/o at dif-
ferent times,t=858T,, (dot-dashed ling t=1716T, (dotted ling,
andt=4290T,, (solid ling). At the largest timeé=4290T,,, the data
wherea anda are dimensionless numbers that are function9'<€ Very .Closefly with the Gaussian q'smbunon of the same stan-

_ dard deviation(circles but cannot be fitted by a Gaussian at the
of L/ and Ny because ky =2#/7%. [Hence ier ti ¢ this bl his plot has b btained
e )k . earlier times of this plot. This plot has been obtaine Mu
=In(L/7)/In N anda= (L/#5) "k, respectivelyl _ =100, p=>5/3 and a geometric distribution of wave numbsisni-

The frequencies, in Eq. (2) determine the unsteadiness |ar results are obtained with an algebraic distributicfihe un-
associated with wave mode We experiment with two dif- steadiness parameter=0.5 and the other parameters of the turbu-
ferent models of unsteadiness; a model[7,19] where the lentlike flow arep=5/3, 2w/L=1.1, 27/ n=1860, andA,= 7/2.

kin® (algebraig

Kn=1k,a" 1 (geometris,
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FIG. 6. Log-log plots ofP/AS againstt/T,, whereT =5/ JE,. These plots have been obtained for5/3, 27/L=1.1. 2nly
=1860. Ag= 7/2, and unsteadiness parametsfsr{:)\kﬁf”")/27 with A=0.5. The averages were calculated over 2000 particle pairs and
T, /T,=1693, whereT =L/ JEo. The wave numberk, are distributed either algebraicalfpAD) or geometrically(GD). (a) GD andNy
=79, (b) AD andN, =20, (c) AD andN,=40, (d) AD andN,=79, () AD andN,= 125 and(f) AD andN,=158. The dashed line is a line
with slope equals to 3.

w,=UKk,. (6) This kinematically simulated velocity field is 2D in the
sense that it has two components. There are of course no
dynamics, whether 2D or 3D, in such simulations. Instead,
The turbulentlike velocity fields simulated here are sta-we prescribe the power that characterizes the energy spec-
tionary in time[see Fig. 2a)] and their spatial structure func- trum’s scaling, and in this paper valuesfare chosen be-
tion Dyy(r)=[uy(x+r,y,t) —us(x,y,t)]°~rP~ ! over a sig- tweenp=1 andp=3. The advantage of studying a 2D rather
nificant range of length scaldsee Fig. 2)]. than a 3D flow is that flow topology is significantly simpler
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FIG. 7. Linear plots of the powey defined in Eq(9) againstt/T,,, whereT,= 7/\E,. These plots have been obtained for the same
parameter values as Fig. 6 and a geometric distribution of wave numberisltf9 (except for(a) and(b) where the highest wave number
is 27t/ p=4000 andN,=87). (Similar results are obtained with an algebraic distribution of wave numb@sp=1.2, (b) p=1.4,(c) p
=1.6667, andd) p=1.8, respectively. The dashed line has a value equal to4p)3for comparison. The values of oscillate slightly
around 4/(3- p) thus confirming the validity of Eq(10). The values ofy are calculated by taking the logarithmic derivativeAdf versus
t.

in 2D. However, the results obtained in this paper’s study ofcontext the locality assumption states that in the limit where
2D turbulentlike flows should not be extrapolated to 3D tur-the Reynolds number RgL/7)*? tends to infinity and in an
bulentlike flows without further analysis, which is beyond intermediate range of times, max{o)/VEo<t<L/+\Eo,

this paper’s scope. the only dimensional parameters affectidg are t and
the energy density atk= \/ﬁ ie., E(\/ﬁ)
B. The locality assumption =EoL(L%/A2) P2 Hence, in these limits, Eq7a) may be
The mean square distande(t) between two fluid ele- replaced by
ments that are advected by the turbulentlike velocity fig)d __ _
is a function of the following parameters: A%=A?(t,E( \/ﬁ);p,Nk,Re)\) (8a)
AZ=A%(t,L,7,40,Eq;p,Ni,\) (78 and Eq.(7h) by

if the unsteadiness is simulated as in Eg).and

o A2=A2[ t,E(V1/A?);p,N,,Re,— | .
AZ:AZ(tvL!n1A01E01U;p1Nk) (7b) \/E_O

if the unsteadiness is simulated as in E). The first set of At this stage dimensional requirements yi€a0|
parameters in Eq(7) is a set of dimensional parameters, o

while the second is a set of dimensionless parameters. In A?=G,(EoL1P)2E=pPity, 9
either case, dimensional analysis is inconclusive unless a

strong additional assumption is introduced. In the presenthere

(8b)
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FIG. 8. Linear plots of the powey defined in Eq.(9) againstt/T,, whereT,= 7/ JE,. These plots have been obtained far=79,
p=5/3 and a geometric distribution of wave numbéssmilar results are obtained with an algebraic distributiohhe unsteadiness
parametein is varied from 0.1 to 3.0 and the other parameters of the turbulentlike flow are the same as in Fig. &/Le: 121, 27/ 7
=1860, andA = 7/2.

4 dependence on dimensionless parameters is implicit in func-

Y= ﬂ (100 tion f. Both formulations lead to Eq$9) and(10) by dimen-
sional arguments provided thpt< 3. However, wherp=3
It is only for p<3 that Egs.(9) and (10) can be deduced the first formulation_leads to Iﬂ_(zlAS ~\Eot/L, while the

from Eq. (8) and more generally from the locality assump- second leads to 18¢/A%)~(\Eqt/L)*. The consequences
tion. [The locality assumption can also be formulated forof the locality assumption whep>3 are absurd.Note that
(d/dt)AZ but in two different ways: either dfdt)A2 Egs. (9) and (10) are equivalent to Eq(l) when p=5/3
=f(AZ,E(\/1/A2) or d/dtAZ=f(t,E(\/1/A2)), where the becausey=3 and EoL* P)Z(G P =(Ey)3/L, which ispro-
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FIG. 9. Linear plots of the powey defined in Eq.(9) againstt/T,, whereT,= 7/ \E,. These plots have been obtained fy= 79,
p=5/3 and a geometric distribution of wave numbésimilar results are obtained with an algebraic distribytiohhe unsteadiness
parametetU/\E, is varied from 0.1 to 2.0 and the other parameters of the turbulentlike flow are the same as in Fig. 6/Le=121,
27/ 7=1860, andA,= 7/2.

portional to € in high Reynolds number equilibrium turbu- of G, on dimensionless parameters of the flow by which
lence[21]. In this derivation, the constaf, is a function of  token we attempt to reach some insight into the dependence

the dimensionless numbeps N, and either\ or U/\/E_o- of G, on the topology and temporal structure of the flow.
In the following section we investigate the conditions un-
der which Egs(9) and(10) are valid, and by induction the Il RESULTS

conditions under which the locality of two-particle disper-  Particle trajectoriex(t) are obtained by integrating
sion is valid in a turbulentlike velocity field. These are con-

ditions on the topology and temporal structure of individual

d
realizations of the flow. We also investigate the dependence dt X(O)=ukx(1),1) (1)
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FIG. 10. Instantaneous streamline pattern of the turbulentlike velocity @lavith p=5/3 as one zooms into smaller scales of the
velocity field. This is achieved by simultaneously increadiigand focusing into inserted smaller regions of the fi¢&lN, =2, where we
also point at eddying, straining, and streaming regigbs.Magnified picture of the square region marked ins{de with N,=4. (c)
Magpnified picture of the square region marked insidewith N,=8. (d) Magnified picture of the square region marked insidewith
N,=16. (e) Magnified picture of the square region marked indidewith N, .= 32. (f) Magnified picture of the square region marked inside
(e) with N,=64. (g) Magnified picture of the square region marked insiflewith N,=128. (h) Magnified picture of the square region
marked insidgg) with N,=256. In all these plots2/L =2 and the distribution of wave numbers is geometjgs (27/L)2" 1. A similar
fractal-eddy structure is also observed for algebraic distributions of wave numbers, but one needs to go up to a much higher number of
zoom-in iterations and values bl to repeatedly see the eddying region breaking up into two or more smaller and inserted eddying regions.



57 TWO-PARTICLE DISPERSION IN TURBULENTLIKE FLOWS 1685

1.7825

17775
1775

17725 @

S e e 177
047 0,475 0.48 0.485 0.49 0.495 05 047 04725 0475 04775  04B 04825 0485

e

€ T
FIG. 10(Continued.

numerically with an adaptive step-size control scheme fomparticle dispersion in the range of times where the PDE of
fourth-order Runge-Kuttf22] where the time step is always is not Gaussian.

smaller than all the time scales of the velocity fidee Ref.

[19] for details) When u(x,t) is given by a turbulentlike B. Locality scaling

velocity field such as Eq2) the particle trajectories are gen-
erated by a Lagrangian model of turbulent dispersion Ca"e%m
kinematic simulationKS), which incorporates turbulentlike
flow structures, namely, eddying, straining, and streamin
regions.

Figure 6 shows examples of log-log plots &f versus

et where the power law9) and (10) is observed to be
well defined over nearly two decades irrespective of the
$umber of moded, or the distribution of the wave numbers
k,, (whether algebraic or geometridMore important for the
existence of a well-defined locality scalif@ and(10) seem

A. One-particle dispersion to be the ratid_/ » and the parameter governing the unsteadi-

We start with a simple demonstration of the dispersiveN€SSA or U. Indeed, we find that the scaling) and(l% is
power of the turbulentlike velocity field ER). Figure 3isa Not well defined unless the Reynolds numberRle/ 7)™ is
log-log plot of the one-particle mean square displacement diérge enough and in Fig. 6 Re€0145. Figure &) shows

of isotropy xi as a function of time. This figure illustrates _nolds nhumber even with as few Big=40 modes. However,

; . : tis also found that ifN, is excessively low, that is below 20
the resultfwhich we verified for a large variety of parameters : . k . ' ) :
b, N, and\ or U) thatx?~ t2 for smallt andx2~t for large at the high Reynolds number of Figl®, the locality scaling

¢ well in aareement with classical predictions by Tavior (9) and(10) does not holdnote that the slope in Fig.(B) is

, Well In ag Wi ical predicti y lay larger than 3 These observations are relevant because it is
[23]. V\{e also%atethe Lagrangian eLlutocorreIanon funcTmportant to know that the locality scaling@) and(10) can

tion Ryy(7)=ur(t)us(t+7)/u’? where up(t)=u(X(t),t),  pe observed with as few as 40 modes of randomly chosen
x(t) is given by Eq.(11) andu’ is the root-mean-square gjrections.

intensity of one-component turbulence fluctuations. An ex-  Figyre 7 testifies to the validity of Eq$9) and (10) for
ample is given in Fig. 4. FronRy(7) we derive T_  four different values ofp. In these figures the Reynolds
=[5Ryy(7)d7, and verify thatx®~u’?t? for t<T_andx®  number is as high as in Fig. 6, wik),=4000,N,=87 for (a)
~2u'?Tt for t=T_ in complete agreement with Taylor's and (b), and with k,=1860, N,=79 for (c) and (d). The

formulas[23]. unsteadiness parameter is carefully chosen ta b@.5 so
We now turn to the study of two-particle dispersion in that Eqs.(9) and(10) are valid over a significant range.
turbulentlike velocity fieldg2). The separation vecta be- The existence and extent of a locality scaling depend cru-

tween two particles has two components=(A;,A,) and  cially on the parametex or U governing the unsteadiness of
A2=Af+ A%. In Fig. 5 we plot an example of the PDF of the flow. In Figs. 8 and 9 the powerdefined in Eq.(9) is
A, /o for various times, where?(t) is the variance of the plotted as a function of time for different values o (Fig.
component separatia; at timet. This PDF is the same as 8) andU (Fig. 9); the dotted horizontal line marks the con-
that of A,/o because of isotropy and is markedly non- stant value ofy according to Eq(10). As illustrated by these
Gaussian except at very late times when it is very well fittedfigures we find that Eqs9) and (10) are valid whenh is
by a Gaussian distribution of variance AT, t, as indeed around 0.25 to 0.5 dd/E, near 0.25. For smaller values of
expected becaus&~2x?~4u’'2T t at these large times. \ or U/\E,, the power lawA?~t” seems to hold but the
Note that the plotted PDF is normalized to have unit vari-powery is not given by Eq(10); and for larger values of
ance, thus better illustrating the non-Gaussian effects at earlyr U/\E,, the power law(9) and(10) does not hold over a
times. The remainder of this paper is concerned with twosignificant range of times.
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FIG. 11. Instantaneous streamline pattern of the turbulentlike velocity @@ldvith p=5/3 as one zooms into smaller scales of the
velocity field. In contrast to Fig. 10, here we plot the fulby L field atN,= 128 and then successively magnify smaller regions of the field.
(&) Afull L by L field. (b) Magnified picture of the square region marked ing@e (c) Magnified picture of the square region marked inside
(b). (d) Magnified picture of the square region marked indicje (€) Magnified picture of the square region marked ingidle (f) Magnified
picture of the square region marked insi@®. In all these plots Z/L=1 and the distribution of wave numbers is geometkg,
=(2x/L)1.1""1. A similar fractal-eddy structure is also observed for algebraic distributions of wave numbers, but one needs to go up to a
much higher number of zoom-in iterations and valuedNpfto see eddying region breaking up into smaller eddying regions a sufficient
number of times.
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FIG. 12. Schematic interpretation of the fractal-eddy structure
revealed in Figs. 10 and 11. The streamline pattern consists of ir 0.05
creasingly small cat’s eyes. More and smaller cat’s eyes are forme i
in the field asy decreases and RéL/7)*® increases. .
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The conditionA=0.5 for the existence of the locality 0ot 12 13 14 5 s 17 18 19 20
scaling (9) and (10) means that the turbulentlike velocity p
field should be neither frozepw,< \/kgnE(kn)] nor effec-
tively structureless| w,> Vk3E(k,)]. The condition U FIG. 14. Linear plot of the straining-region densjty, against

~ \/E—o can perhaps be interpreted in similar terms and in facthe powem. The straining-r_egion density is the fraction of the area
Elliott and Majda[16] enforce the same condition to obtain Wherell >l s, wherellyis the root-mean-square valueldffor
the locality scaling9) and(10) over eight to twelve decades. the particular value op. The straining-region density is obtained
[We note, however, that Sabelfdlii5] obtains a scaling9) by averaging| over 50 realizations and over a uniform grid of 200
and (10) \;vith U:O’ in a 3D turbulentlike velocity that is by 200(i.e., 40 000 POintbin an area of & by 5L. This partiCU|ar.
therefore frozen. 3D velocity fields are topologically differ- POt 1as been obtained for the same parameter values as Fig. 6.
ent from 2D velocity fields and the conditions hrandU for Similar behavior is observed for an algebraic distribution of wave

. . s .. numbers.
the scaling(9) and (10) to be valid can be significantly dif- .

ferent] zooming into other regions. When zooming into streamin
We noted in the previous section that the locality assump: 9 9 : 9 9

tion does not imply a power law such as HE) if p=3 regions, for example, what appears is either a better resolved

There is in fact a dramatic difference in the topology of thezturtezm'?g rﬁgt'gln Zroznn?n?r:l eidnd'ishéhl?gc?rtehgf E):]ees‘;l;/ﬁdz\évg:{
flow below and above=3. Forp<3 turbulentlike velocity into Z?ticﬁlar Iogations ofga sfreamin region without seein
fields such as those considered here have a fractal-ed P greg 9

structure(see Figs. 10 and 11which we schematically in- Me fractal-eddy structure of the flow is not uncharacteristic

terpret as consisting of cat's eyes within cat's egfg. 12. of fractal structures. One of the most commonly cited ex-
This fractal-eddy structure is most readily revealed by zoom-

ing into eddy regions of the flow, but it can also be seen by 0.030 -ttt b b e
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FIG. 15. Linear plot ofG, againstt/T,, whereT,= 7/ JEo.
FIG. 13. Linear plot ofG, against the powep. The parameters This plot has been obtained for the same parameter values as Fig. 6,
of the turbulentlike flow are the same as in Fig. 7. The valu€pf in particular p=5/3 and\=0.5. The solid line corresponds to a
at timet is obtained by fitting a straight line to the curves similar to geometric distribution of wave numbers aNg=79. All the other
Fig. 6 over a small interval arountdand G, is given by the inter- lines correspond to an algebraic distribution, whidh =40
section of this straight line with the& axis. Similar behavior is (dashed, N,=79 (dot-dashej] N,=125 (triple-dot—dashedand
observed for an algebraic distribution of wave numbers. N,= 158 (dotted.
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rametersp and N,. The dependence db, on p and N,
throws some light onto the dependence@)f on the topol-

ogy of individual realizations of the flow. In Fig. 13 we plot
the dependence o6, on p for A=0.5 and see thaG,
decreases quite sharply frop=1.2 to p=1.8. Asp in-
creases the largest eddying regions in individual realizations
of the turbulentlike flow grow in size relative to the fixed
outer length scalk (see Vassilicos and Furjd9]). As dem-
onstrated in Fig. 14, these larger eddying regions seem to
occur at the expense of a smaller number of straining regions
per unit area of the flow. In Fig. 14 we plot the straining-
region density against the expongmtand show that this
straining-region density decreases with increasing values of
p. Following the arguments of Fungt al. [7], the value of

G, should therefore be smaller because the density of strain-
ing regions is smaller. Hence, the decreasing valu& pf

FIG. 16. Linear plot ofG, against the numbeN, of wave with p is (_:onsiste_nt with the ide[z?] that particle pairs move .
modes. Parameter values are the same as for Fig. 15. Algebraﬁggether in eddying and streaming regions and separate vio-

distribution of wave numberé®), geometric distribution of wave €Nty in §training regions. . _
numbers(M). At a fixed Reynolds number ReL/7)*3 G, is an in-

creasing function ofN,, which does, however, appear to
symptote to a constant independenNgfwhenN, is larger
an about 10Qsee Figs. 15 and 16; fdd,=500 and all
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Ny

amples of a fractal is the triadic Cantor set and one cann
see its fractal structure if one zooms into the wrong empt); : ;
regions between points of the set, and such empty region%ther parameters as_for thes_e figures, we Ob@B
exist at all scales. Fqu=3 (not shown here for economy of :0‘0082. an.cG.A=(.).015, respectively, for the algebraic and
space however, such a fractal-eddy structure does not exis eometric distributions of wave numbers, thus corroborating

and no extra topological feature is uncovered by zooming%_ e asymptotic valu_es in Fig. J6it may be unexpected to
into increasingly small scales inside eddies. ind that G, can differ by as much as a factor of 2 for

different distributions of wave numbeksg (Figs. 15 and 16

We refer the reader to Sec. Il C in Vassilicos and Fi®)

where it is explained how, for the same energy spectrum,
Richardson’s constai@, is well defined when the power subtle differences in wave-number distribution can dramati-

law (9) is well defined, and whep=5/3 the power law9) is  cally change the topology of a field, and in particular the

best defined fon around 0.5 in which cas&, turns out to  spatial distribution of maxima and minima of that fi¢\das-

be O(10?). silicos and Fund18] discuss the examples of Weierstrass,
In the derivation of the locality scaling®) and(10) from Riemann, and other such functions consisting of sums of sine

the locality assumptiori8) the constants, depends on the waves. Such changes in topology may be expected to affect

unsteadiness but is also a function of the dimensionless pawo-particle dispersion quantities such@g, but we leave

C. Richardson’s constantG,
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FIG. 17. Linear plots against the numb¥é of wave modes ofa) the skewnes$ and(b) the flatnes$ of the Lagrangian distributions
of second invariantd sampled along the particle trajectories. Parameter values are the same as for Figs. 15 and 16, in parb(ailand
A=0.5. Algebraic distribution of wave numbe{®), geometric distribution of wave numbe(ll).
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for subsequent study this sensitive dependendg,0bn the  Fig. 12. Whenp=3 no fractal-eddy structure exists, and
details of the wave-number distribution. However, we doeddying regions are simple without extra topological features
attempt to gain some understanding of the dependen@g of appearing by zooming into increasingly small scales inside
on Ny. them.

We sample the values of the second invaridmt (iii) When p=5/3, G,=0(10"?) as in Tatarski's mea-
=(du;/ox;)(du;/dx;) along particle trajectories and calcu- surementg6]. However,G, can change by a factor of 2
late the skewned$-ig. 17a)] and the flatnes=ig. 17b)] of  simply by changing the distribution of modes in wave-
[l from this Lagrangian sample. The averadgk) over this number spaceG, is a decreasing function qF and an in-
Lagrangian sample id1)=0, and therefore the skewness is creasing function of the number of modds,. The low
S=(113)/(11?)%2 and the flatness iE=(11%)/(112)2, where value ofG, and the ways of these dependencies are consis-
the angle brackets denote averages over the Lagrangidgent with the idea(proposed by Fungt al. [7]) that two-
sample of second invariants. In Fig. 17 we plotS andF particle dispersion is effectively happening in burstse Fig.
againstN, and see tha$ decreases towards a constant valuel) when particle pairs meet straining regions. This idea is
around — 1.1 whereas increases towards somewhere be-investigated quantitatively by measuring the skewrgasd
tween 8.5 and 9. A negative value of the skewness diat  the flatness$= of the second invariarit sampled along par-
is smaller than- 1.0 strongly suggests that during their flight ticle trajectories. The skewnes$ decreases to a constant
particles visit eddying regions much more often than othewvalue of —1.1 and the flatnes§ increases to a constant
regions[24,25. However, a flatness of that is much larger value between 8.5 and 9.0 with increasiNg. Particles are
than 3(the flatness of a Gaussian distributiamplies that therefore more often in eddying regions than in straining
extreme values ofl, whether positive or negative, are more regions, but also more often in both eddying regions and
likely than for a normal(Gaussiah process. Hence, ad¥,  straining regions for increasing values Mf.
increases, more eddyirand straining regions are visited by This paper is an attempt to articulate together the three
the particles[24,25, and even though the behavior of the central issues of this paper: the locality assumption, the
skewnessS indicates that particles are more often in eddyingfractal-eddy structure, and the straining regions’ role in sepa-
regions than in straining regions, the increas&gfwith N, rating particle pairs in bursts. For 2D turbulentlike flows, we
is consistent with the increase in the frequency of strainingropose to sharpen the locality assumption that “in the iner-
region visits that is reflected in the flatnesslbf The fact tial range, the dominant contribution to the turbulent diffu-
that S decreases rather than increases Withis consistent  sivity (d/dt)A?(t) comes from “eddies” of size
with the low value ofG,, which remainsO(10 2) (when (A?)Y(t),” where the word “eddies” has no clear topologi-
p=5/3) for all values ofN,. A sharp increase db with N, cal meaning, by replacing it with: “in the inertial range, the
would have resulted in much higher values@f because dominant contribution to the turbulent diffusivity

straining regions would have then been visited more ofterid/dt)AZ(t) comes from straining regions of siza3)¥4(t);

than eddying regions. these straining regions are embedded in a fractal-eddy struc-
ture of cat's eyes within cat’'s eyes and therefore straining
IV. SUMMARY OF CONCLUSIONS regions exist with a variety of length scales over the entire

. . inertial range.”
The summary of our conclusions is as follows:

(i) The locality scalingA?= G ,(EoL1 ™ P)Z/G-Pt4(3-p) jg
valid over the largest possible range provided f&at3 and
that the unsteadiness is neither too strong nor too weak, spe- The bulk of this work was carried out when J.C.H.F. was
cifically A~0.5 orU~0.25/E,,. visiting the Department of Applied Mathematics and Theo-

(i) Individual realization of turbulentlike flows are topo- retical Physics of the University of Cambridge as a Visiting
logically different above and below=3. Whenp<3, 2D  Scholar of Wolfson College, Cambridge in 1995. Support
turbulentlike flows have a fractal-eddy structure that consistfrom the Royal Society and from the Hong Kong Research
of cat's eyes within cat’s eyes as schematically illustrated inrGrant Council are gratefully acknowledged.
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