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The revised Enskog kinetic theofRET) for a system of hard spheres provides an exceptionally broad
description of mesoscopic and macroscopic dynamics, applicable for both fluid and solid phases, long and
short wavelengths, low and high densities, and exact at short times. This great potential is compromised by the
difficulty of obtaining solutions outside the domain of linear response. In the present work a simpler kinetic
model based on the RET is proposed with the same scope of application but accessible to solution for more
general states. As a test of this model the rheological properties of a fluid under shear far from equilibrium are
calculated as a function of the density and shear rate. Comparisons with Monte Carlo simulations of the RET
show excellent agreement for transport properties but some limitations of the model for predicting velocity
distributions at large shear rates. The model is discussed critically and its potential for several future applica-
tions is noted[S1063-651X98)01902-3

PACS numbg(s): 47.50:+d, 05.20.Dd, 05.66-w, 83.50.Ax

[. INTRODUCTION that admit more detailed analytical soluti¢@]. Together
these two methods have provided great new insight into the
Kinetic theory plays a special role as a description ofcontent of the Boltzmann equation, particularly for states far
many-body systems intermediate between the detailed undeirom equilibrium[3].
lying microdynamics and phenomenological macroscopic Some of the most interesting physical phenomena of cur-
descriptions. For example, the nonlinear Boltzmann kinetiaent interest lie beyond the validity of the Boltzmann equa-
equation provides the basis for calculating a wide range ofion. Examples are dense fluid transport far from equilib-
physical properties for low density gases in states both neaium, short wavelength structural dynamics, kinetics of
and far from equilibrium. The problem of implementing a freezing, crystal elasticity and transport, kinetics of meta-
kinetic theory description is twofold. First, the derivation of stable and amorphous states. As noted above there is no gen-
the kinetic equation for the one-particle reduced distributioreral kinetic equation available to replace the Boltzmann
function requires a detailed many-body analysis and a critiequation at the fluid and solid densities of interest. A singular
cal assessment of the approximations made, in order to urexception, however, is the idealized system of hard spheres
derstand the context of its application. In the case of thdor which the revised Enskog kinetic theo{iRET) provides
Boltzmann equation, there is a small parameter, the reduceal remarkably broad description encompassing all of the
density, and the kinetic equation is understood to apply aabove phenomenp4]. This kinetic equation is asymptoti-
low density and on space and time scales large compared t@lly exact at short times and therefore hasanriori limi-
the force range and collision time, respectively. A corre-tations on the density, space scales, or phase of the states
sponding derivation of a kinetic equation at higher densitiesonsidered. The hard-sphere system supports both fluid and
for general interatomic potentials is still lacking in spite of crystal equilibrium states, and the exact equilibrium distribu-
continual attempts over the past 30 years. The second prokions for these states are stationary solutions to the RET. In
lem in the application of a given kinetic equation is the tech-addition, there is aH theorem governing the approach to
nical difficulty encountered in solving it since kinetic equa- these equilibrium statd$]. For states near equilibrium, the
tions are nonlinear integro-differential equations for the timelinearized RET has been applied to calculate transport prop-
dependent distributions in a six dimensional phase spacerties and the dynamic structuk,w) in the fluid phase
During the last two decades, this technical problem has beefusinglinear kinetic model$ [6]. Comparisons with molecu-
solved for the Boltzmann equation in two ways. One of thesdar dynamics simulations show good agreement over a wide
is the development of an accurate and efficient Monte Carloange of densities and space-time scales. However, its com-
simulation method for constructing the solutigh]. The  plexity has precluded applications outside the domain of lin-
other method is the use of kinetic model equations obtainedar responsg7]. Recently, the Monte Carlo simulation tech-
as approximate representations of the Boltzmann equationiques have been extended to apply to the RE&]T so that
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the full potential of this rich kinetic theory now can be ex- viscosity is calculated and compared with results using the

plored. The objective here is to provide the correspondingnew Monte Carlo simulation method for the RET. The good

generalization of the kinetic model method for complemen-agreement provides support for both the Monte Carlo

tary analytical studies of the full nonlinear RE3—11,7. method and the kinetic model as effective tools for studying
A kinetic model is obtained by replacing the known col- states far from equilibrium at finite densities. The conclu-

lision operator with a simpler form that preserves the mosgions drawn from these applications of the model are given

important physical properties. These include normalizatiori? the last section and a class of new applications is indi-

and the local conservation laws for mass, energy, and md:ated.

mentum. For states near equilibrium, the kinetic equation can

be linearized and the construction of a kinetic model for the Il. THE REVISED ENSKOG THEORY

associated linear collision operator can be made systematic

with anv choice beina part of a converaing seauence of a ~’ The revised Enskog kinetic equation was derived by van
y 9p ging seq pBeijeren and Ernst using a formal many-body analysis of the

ﬂmr)ﬂg?'oﬁnlgrﬁgicﬂgnﬁﬁ' n&?:;}?ﬁa{hgasczagﬁr;?]?gtrﬁggéon icrodynamics for a system of hard sphelék It is a modi-
P gical. ication of an earlier phenomenological theory due to Enskog

aboye there_ IS a great d_eal of latitude, and th? choice of s an attempt to extend the Boltzmann equation to higher
particular kinetic model is usually a compromise between

simplicity and quantitative accuracy. To illustrate this and todensmes. The modifications obtained from the formal analy-

out the proposed model in a broader context, a brief descripls-'s are essential for a proper treatment of mixtures and to

tion of Kinetic modeling and moment methods is provided in nclude crystal or metastable states, via a direct connection to

Appendix A. Here we restrict ourselves to a model that re_denszlty functional theory. The RET gives an equation for the

duces in the low density limit to the simplest kinetic model one-particle distribution functiorf(r.v,t),
for the Boltzmann equation, the Bhatnagar-Gross-Krook
(BGK) model[12]. The BGK model is well tested so that its
accuracy and limitations are well known, and the means to
correct its limitations are understood. In the present study, ) .
we accept such limitations to exploit the simplicity to ex- WhereJg is the Enskog collision operator,
plore new features of the RET collision operator. These in-

clude short wavelength effects due to delocalization of col- _ 2 S N
liding particles, finite density effects, and a stationary state Jelrvilf(®©]=o f dvzf dob(o-g(o-g
with broken fluid symmetry. The resulting kinetic model pro-

J
E"'Vl'vl)f(rlvvlvt):‘JE[rl1V1|f(t)]v (2.1

vides the same semiquantitative representation for the RET X{xlrr—eln(t]f(ra vy,

as the BGK model does for the Boltzmann equation. In this XF(r1— oy, ) = x[ry.r1+on(t)]
respect, it is a significant new tool to explore complex fluid

dynamics previously considered prohibitively difficult. As an Xf(ry,vy,)f(ri+o,vy,t)}. (2.2

illustration, we calculate the rheological properties of a dense
fluid under shear far from equilibrium and compare them toln the above expressiony is the hard-sphere diameter,
new Monte Carlo simulations of the RET. The agreement foly— ¢ ¢ being a unit vector® is the Heaviside func-

gT”SPOV; .propert|i|e$viscos"itz, vis_(;ometrcijc ‘;:JnCtiO”S: Shear_dtion, andg=v;—V,. The primes on the velocities denote
ilatancy is excellent at all densities and shear rates consid- ; n e /
ered, while the velocity distributions show expected discrep-scattergoI va}Iues det.ermmed fr.oﬂﬂ— Vi ((.r’ glo andv,
ancies at the combined conditions of large shear rates aridV21(0-g)o. The differences in the spatial arguments on
high densities. the right side rep_resent the fact that a colliding pair of par-
In the next section the RET kinetic equation is reviewed licles have their centers separated byo. Finally,
The local conservation laws are derived from it and the finiteX[71:72[n(t)] is the pair correlation function for an equilib-
density “collisional transfer” contributions to the pressure UM system with nonuniform density field(r.t). To be
tensor and heat flux are identified. The kinetic model and itdnore explicit, x{ry.ro|n(t)] gives the probability to find
relationship to the RET is described in Sec. Ill. As an initial Particles atr, andr, for a system at equilibrium in an exter-
test of the kinetic model, the Chapman-Enskog solution ig'al potentialUe,(r). According to a theorem of density
obtained for states near equilibrium and the density deperfunctional theory, there is a one to one correspondence be-
dence of the transport coefficients is shown to be the same 44€en the external potential and the density field for this
that for the RET in the usual first Sonine polynomial ap-fictitious equilibrium statg13]. Here, the external potential -
proximation. Next, the stationary state of uniform shear flowS that associated with the density field of the actual nonequi-
is defined and the formal solution to the kinetic model equalibrium state
tion is given for arbitrary values of the shear rate. A set of
nonlinear transport coefficients for momentum transport are
calculated analytically and compared favorably with recent
results for the RET as a function of the density. Also, the
asymptotic behavior of the shear viscosity for large sheailhus x[n] is an equilibrium functional that can be deter-
rates is obtained showing a surprising transition from sheamined exactly from the second functional derivative of the
thinning to shear thickening due to the collisional transferequilibrium free energy functional for an inhomogeneous
contributions. The full shear rate dependence of the sheatate, but it is evaluated at the nonequilibrium density. This

n(r,t)=f dvf(r,v,t). (2.3
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implies thaty[n] and, consequenthydg[ f] are highly non- Jde
linear functionals off through this density dependence and V- (eu+P:Vu+V.q=0. 2.8
Eq. (2.3.

One important property of the dependence of the RET orhe flow velocity u(r,t) and the internal energy density
x[n] and the delocalization of the colliding pair, neither ef- g(r t) are defined by
fect present in the Boltzmann equation, is the existence of

stationary solutions corresponding to equilibrium states of
both fluid and crystal phases. They are of the form n(r,t)u(r,t)zf dwif(r,vt), (2.9
m 3/2 m
fs(r,v)zns(r)<§—w> e BmoiR2, (2.9 e(r,t)=f dVE(v—u)zf(r,v,t). (2.10

The pressure tens@(r,t) and the heat flug(r,t) have both
“kinetic” and “collisional transfer” contributions, i.e.,P
=PK+ P andg=g*+ qC. The kinetic contributions are given
by

wherem is the mass of a particlgd is the temperature pa-
rameter, andhg is determined from Eq.2.1), which leads to
[14]

Vlnns(r)=—02J doox[r,r+ alngny(r + o) Pk(r,t)zfdvm(v—u)(v—u)f(r,v,t), (2.12)

=—-vcM[r|ng]. (2.5 m
qk(r,t)=f dvE(v—u)Z(v—u)f(r,v,t), (2.12
The first equality can be recognized as the exact first
Bogoliubov-Born-Green-Kirkwood-YvoriBBGKY) hierar-  while the divergences of the collisional transfer parts are
chy equation for a hard-sphere stationary state. The second

equality recognizes the integral on the right side as the gra-

dient of the one-particle direct correlation function. This is a V-PE(r,t)=— J dvm(v—u)Jelrv[f(1)], (2.13
familiar equation of density functional theory for freezing or

melting [13]. For the equilibrium fluid phasey[r,r+ o|ng] m )

does not depend either @nor on ¢ and the solution of Eq. V-qi(r,t)= _J dv> (v—u) JelrvIf(D)]

(2.5 is ng=const. At sufficiently high average density the

inhomogeneous density distribution representing the crystal —PE(r,t):Vu(r,t). (2.19

phase also is a nontrivial broken symmetry solution repre- . .
senting lower free energy. From Eqgs.(2.13 and (2.14), the following explicit expres-

The linearization of Eq(2.1) around the uniform fluid Sions can be identified:
equilibrium state leads to a kinetic equation that has been

studied extensively. Further approximations, equivalent to P°(r,t)=ma3f dvlf def do® (o)
constructinginear kinetic models, allow calculation of time 2

correlation functions with results that agree favorably with A 1

both computer simulation and experimeipés15]. It is sig- X(o- g)za'o'f dAx[r—(1—-\)o,r

nificant that this agreement extends over a very wide range 0

of wavelengths(from hydrodynamic to those smaller than AT = (1= N o Ve DE(F+ N0 Vs t
the hard-sphere diamejetime scalegfrom macroscopic to o= Jov1,Of( V2,1,
collision times, and densities (&n*=no°<0.7). More re- (2.19
cently, linearization around the nonuniform crystal equilib-

rium state also has been studigidt, 16. In this way, both ¢p M 3f f f A oon

linear hydrodynamic equations for states near the fluid equi- a(r.y 27 dvy | dvz | doO(e-g)

librium and linear elasticity equations for crystal states can
be derived, with detailed expressions for the transport, elas- X(o-g)%(G- &)&fld)\x[r—(l—)\)a,r
tic, and other coefficients occurring in these equations. 0

For a general nonequilibrium state, the conservation equa-

tions for mass, momentum, and energy are derived from Eq. +han(O]f (= (1M ov, Hi(r+hev, ).

(2.1) by multiplying with 1,mv;, and$mv? and integrating (2.1
overvy,
Here, G=3(v;+V,) —u. The derivation of Eqs(2.15 and
an (2.16 is given in Appendix B. The collisional transfer con-
5 TV (nu)=0, (2.6)  tributions are due to the delocalization of the colliding pair

and the additional density dependence of the RET. They van-
ish in the low density limit but dominate at high densities.
These expressions give the collisional transfer parts of the

au
_— . _1 . =
Fu-vut(mn) V- P=0, @7 fluxes as explicitzelocity independertinctionals off (r,v,t)

ot
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and characterize the primary density dependence in the masubspace as the negative of an effective collision frequency
roscopic conservation laws beyond that which follows from\ times the distribution functiof9],
the Boltzmann equation.
Je[f1—=PI[f]— (L—P)AT. (3.6
!l KINETIC MODEL FOR THE RET This choice has all the qualitative features discussed for the
Models for linear kinetic equations can be constructed byRET, regardless of the choice far and is the primary form

approximations to the spectral decomposition of the lineaof the kinetic model we propose.
collision operator. In the case of nonlinear kinetic equations In Ref. [9] A was chosen to be a velocity independent
there is less guidance and greater flexibility, depending ofunctional of f through a dependence on the local density
the desired properties to preserve. This is illustrated by and temperature. Here we consider a generalization to in-
brief discussion of kinetic models and moment methods irclude a possible velocity dependence
Appendix A. We construct a kinetic model with the same
qualitative features as the Enskog equation by first identify- NV f]=v[f]+ Sv[V|f], (3.7
ing the essential features of the collision operaigrf | nec-
essary for the conservation laws. It follows from the briefwherev is independent of the velocity. To further constrain
discussion of the preceding section that the kinetic parts othe form of\, let us particularize the model collision opera-
the fluxes arise from the free streaming tem¥f rather  tor to the local equilibrium state:
than from the collision operator. The remaining collisional
transfer parts of the fluxes come from moments of the colli- Je[f1=Jelf/ 1= (1=P){ov(W)f,+Ielf, 1}, (3.9
sion operator with respect tflv,v?}, so these moments
must be preserved exactly by any approximate kinetic mod
for the collision operator. To extract this feature, the vari-
ablesr andt are fixed andlg[ f] is considered as a function
of the velocity. It is convenient to introduce a Hilbert space
defined by the scalar product

dyhere use has been made of the property-B®vf,
=1y(1-P)f ,=0. Equation(3.8) suggests the choice

Sv(v)=—f LI f,]. (3.9

The interpretation oh f is the change of due to collisions
that affect only the component (P)f. There are two parts.
(§,§)=f dve (V) EF (V) L(v), (3.1)  The first represents an average collision raigepending on
the local temperature and density. The second represents an
where ¢ (V) is related to the local equilibrium distribution additiona_l _co_llision rate due to spatial inhomogeneities of the
f (V) by local eqwhbn_ulm .statérecaIIJE[f/] vfamshes. fpr the homo-
geneous equilibrium stateThe latter is a collisional transfer
3/2 effect associated with the difference in position of the collid-
f(v)=no (v), ¢ (v)= (%) exp(— BmVZ/2). ing particles.
(3.2 The inclusion ofév(v) leads to a quantitative improve-
' ment of the predicted transport coefficients relative to the
Here we have introduced the peculiar velodity: v—u and ~ model of Ref.[9] with 5v(v) =0, but otherwise provides no
B=(ksT) %, wherekg is the Boltzmann constant anlis ~ New qualitative change. However, the price of this quantita-
the nonequilibrium temperature defined by 3nkgT. The  tive improvement is an additional complex velocity depen-

functions{1,v,v2 span a subspace in this Hilbert space angdence, beyond the simple polynomial dependencelef f .
an orthonormal basis for this subspace is given by This undesired complication of the kinetic model can be

eliminated by retaining only the lowest order polynomial de-
2\Y2/mp pendence of (+7P)ésvf. Closer inspection shows that the
{'//a}:[l,(mﬁ)mV,(g) (7\/2_ z)] (3.3 Chapman-Enskog solutiotto first order in the gradients
and transport coefficients depend only on momentkpf |

Finally, a projection operatdP onto this set is given by with respect to two functions in the subspace of-(2),
-1 1 2 m 2 5
PIV)=2 (M, (V)(Yard,'9). (34 DV)=m| W=3VI], SV)={ V=25V,
(3.10

With these definitions, the RET collision operator can be ) o o
decomposed into the two parts 1 being the unit tensor. Retaining only the projectionsof

along these two functions gives
Je[f1=PI[ ]+ (1—P)I[ f]. (3.5

= = = N—v—(f I)BAD(V)+B-S(V)], (3.1
The first term on the right hand side gives the collisional
transfer contributions to the fluxes in the conservation equawhere
tions, and must be retained in any acceptable kinetic model. P 2mp?
Since the second term on the right side of B35 does not _ _f _2m f
contribute to the form of the conservation laws, the simplestA 2n dVD(V)Jelf ], B 5n dVS(V)Jelf /1.
approximation is to represedg[ f] in this “less important” (3.12
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The model kinetic equation is obtained by substituting Eq.Chapman-Enskog method7] yields such a solution for
(3.17) into Egs. (3.6) and (2.1). The contribution from states near spatial uniformity as an expansion in gradients of
PJe[f] in Eq. (3.1) can be made more explicit in terms of the local densities. In this section we restrict attention to the
the collisional transfer contributions to the flux®$,andqg®,  fluid phase and apply the Chapman-Enskog method to derive
using Egs(2.13 and(2.14). The resulting kinetic equation is the solution to first order in the gradients. This solution then

is used to calculate the pressure tensor and heat flux so that

d _ B e [MB, the pressure, shear viscosity, bulk viscosity, and thermal con-

EAAT L U 2Rt 7 A Ll e s ductivity can be identified as functions of the density.

The distribution functiorf is expressed as the local equi-

i librium contribution plus a term of first order in the gradients
X(V-q°+ P " .

(V-q vu of the conserved densitieb=f,+ef(V+ ... wheree is a

formal uniformity parameter introduced to order the gradient

+ Bf,[A:D(V)+B-S(V)]. (3.13 yP g

expansion and set equal to one in the final results. Use of this
expansion in the definitions for the fluxes gives a corre-

The macroscopic conservation laws follow from this equa ) . o )
sponding expansion for these quantities, e®= P

tion, by construction, and it is straightforward to confirm that (1) L _
the stationary solutions obey E(R.5 with the exact fluid +eP e S|m|larly, use of thgse fI.u'xes' in the IOC"’}I con-
and crystal equilibrium solutions. servation equations leads to an identification of the time de-

Equation (3.13 is the kinetic model considered in the rlvatc;ves 0‘; the fields as an expansion in the gradiens,
remainder of this paper. It is not self-evident in what respect™ o2+ edM+ - ... Consider first the conservation laws to
this model equation is more tractable than the underlyinggeroth order ine. Equations(2.6)—(2.8) give ¢{”=0. Ac-
RET kinetic equation. Structurally, E¢8.13) is still a highly ~ cordingly, the kinetic model equatidi3.13 becomes
nonlinear integro-differential equation. The parameterg,of _ 0. )
are functionals of through their definition$2.3), (2.9), and 0=A":D(V)+B™-S(V). (4.)
(2.10. Similarly, P¢ andq°® are functionals of both explic-

i )=B(0)=
itly and implicitly through the density dependencexofThe For consistency, therefore, we must hate=B')=0.

. i This can be verified by direct calculation from the definitions
essential advantage of E(.13 over the RET is that these (3.12), which shows thatA and B are of first order in the
functionals are independent of the velocity, and that the Vegradiénts

locity dependence of the model collision operator on the
right side of Eq(3.13 is simple: Gaussians times polynomi- 2 . 2
als of degree 3. Consequently, for given initial and boundaryA= — 61—57rn*erU+ <o, B=- egwn*erlnT+ S,
conditions, an implicit solution to the kinetic equation can be 4.2
obtained displaying the exact velocity dependence but pa-

rametrized by these space dependent functionals. Use of thighere y, is the pair correlation function at contact for a
implicit solution in the definitions of the functionals provides homogeneous fluich* =na3, and VU denotes the symmet-
velocity independent integral equations for the functionalsric, traceless part of the tens8iu. To this order, the heat
and hence the full solution. In this way the original problemg,,x vanishes from symmetry and the pressure tensor is given

in six dimensional phase space is reduced to one in thrég erms of the kinetic and collisional transfer contributions
dimensional coordinate space. The problem remains quitg, e hydrostatic pressure

difficult in general, but becomes tractable in many cases

where additional simplifications such as symmetries can be 0 Ko . 2
exploited. A nontrivial example of this method for solving PP=(p"+p)l=plL, p=ng 7| 1+ 37N xe|.
the model kinetic equation is given in Sec. V.
4.3
IV. CHAPMAN-ENSKOG SOLUTION The last equation gives the exact equation of state for the

hard-sphere fluid.

For states near equilibrium or near spatial uniformity, the  To first order ine, the kinetic equation becomes
kinetic equation can be solved approximately by expansion

in a small parameter. In the first case the deviation from the
stationary solutiongf=f —f, is the small parameter and to
leading order the kinetic equation can be linearized. The lin-
ear kinetic equation then can be solved exadtgduced to mg ., c
qguadraturesfor the full spectrum of excitations and for all +(TV _1> p*V-u
space and time scales. The result is quite close to existing

kinetic models for the linearized RET and will not be dis- +pf [AD:D(V)+BY-g(V)].
cussed here. A different approach is based onldbel sta- (4.4)
tionary distributionf, as the reference state and the con-

struction of a solution whose space and time dependencEhe first order time derivatives from EgR.6)—(2.8) are
occurs entirely through the conserved local densiti€s,t), D

u(r,t), ande(r,t). Such a solution is called “normal” and is gy n=—V-(nu), (4.9
appropriate for a derivation of closed hydrodynamic equa- D .

tions from the conservation equation®.6)—(2.8). The d;7u=—u-Vu—(mn)~"Vp, (4.9

V.Vp°©

(0P +v-V)f = — Vf<1>—§f/
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dYe=—-V.(eu)—pV-u. 4.7 T |3
Xe— 1—1—2n l—gn .

Use of these results in E.4) gives the desired result

oy V. APPLICATION TO UNIFORM SHEAR FLOW

f(l):_Vilﬁf/ 15

1+

n* Xe) D(V):Vu
The analysis of the preceding section confirms that the

kinetic model represents the RET well for states near equi-
: (4.8 librium. However, the greatest potential of the model is for
situations far from equilibrium, where analysis of the RET

(or even the Boltzmann equatiprs prohibitively difficult.

This has the same form as is obtained by the RET, excepis an illustrative example and a more stringent test of the
that in that cas®(V) andS(V) are replaced by solutions 10 o4l we consider here the state of uniform shear flow

Iingar i”teg”%' equations. Acc_urate approxima_tions to the SO[USP. This state has been studied extensively by molecular
lutions are given by the leading terms of Sonine polynomial

. iting in th locity d d dynamics simulation to analyze rheological properties in
€xpansions, resuiting in the same velocity dependence as mple atomic fluidd20]. The macroscopic state is charac-
Eq. (4.8). This agreement can be enhanced further by choost- . . )

: - : .~ terized by spatially uniform temperature and pressure, and a
ing the model collision frequency to give the same coeffi- k - R

cient for either theVu term or theV InT term. However, itis  linear flow field:u(r)=a-r=ayx, wherea=axy . The con-

not possible to obtain agreement of both terms with the RETStant shear rata is a single control parameter that can be
This is a shortcoming already present in the BGK kineticchosen to dr_|ve the system arbl'Fr_arlly far from equilibrium.
model at low density and of course appears here as welllhe appropriate boundary conditions for USF are those of
Still, it is significant that the additional density dependencelees and Edwardg1], which are simple periodic boundary
of each term in Eq(4.9) is exactly the same as that for the conditions in the local Lagrangian frami22]. The resulting

+

2
1+ ?n*xe>S(V)-VInT

RET. shear produces viscous heating that is compensated by an
The pressure tensor and heat flux now can be calculated tsxternal nonconservative for¢thermostat F=—ma(a)V,

first order in the gradients using E(1.8) in Egs.(2.1)-  where the thermostat paramete(a) is defined to assure

(2.16. The integrations are straightforward but lengthy andthat the temperature remains constant.

similar to those described in Appendix D of R¢L8]. The Uniform shear flow is therefore a stationary state with a

results are particularly simple spatial inhomogeneity. Even the latter

L _ L can be suppressed in the kinetic equation by a transformation
PW=—nVu-«(V-u)l, gqP==\VT, (49 {0 the relative velocity/=v—u(r). The stationary solution

) . o ] . then has the forni(r,v,t)=f(V) and Eq.(3.13 becomes
where 7 is the shear viscosity is the bulk viscosity, and

is the thermal conductivity,

J J
n(  Am 23 ~|aVy—+a—— V- )f
= By 1+ e xe| T35 YoV, YoV g
_ _ mpB
5nkB 2T . 2 3kB :ﬁf/ ,B lV_n 1P§ya Tvz—l)
M omp s M Xe| Fome (410
+A:D(V)+B-S(V)}. (5.1)
:i 2 4 1/2
K gn o xe(m/ B)~4. (4.11)

The bulk viscosity is independent of the parameteand is In these variables there is no longer any space dependence in
the same as that obtained from the RET. As noted abeve. th€ problem. The first term on the left hand side represents
may be chosen to assure the correct shear viscosity or theél inertial force due to the velocity transformation, while the

correct thermal conductivity. For example, the correct RETS€cONd term is due to the thermosji2g]. On the right hand
viscosity is given by the choice side we have taken into account that in the USF the heat flux

vanishes and the pressure tensor is uniform. Since the com-
16 5 1 plete velocity dependence of the right side is given explic-
v= g\/;mf Xe(BM) ™%, (412 itly, the equation can be solved to determinia terms of the
constantsA(a), B(a), «a(a), and Pf(y(a). The first two con-
The thermal conductivity for the model for this choice is stants are determined entirely by the local equilibrium distri-
smaller than that for the RET by a factor between 2/3 andution specialized to uniform shear flow, according to Eq.
(67+32)/(97+32)=0.84. For practical purposes the pair (3.12. SinceB(a) is a vector and no vector can be con-
correlation function at contact can be approximated by thetructed from the tensoa alone, it follows thatB(a)=0.
Carnahan-Starling forrfi19] The nonvanishing elements 8{a) are found to be



1650 SANTOS, MONTANERO, DUFTY, AND BREY 57

4
1- zan P +2A,,

k n -2
PYy,=—a5(1+2a) 3

—2a1(1+2a)AXy}. (5.8

2 — . 2

X aoyoy —1/2(:10')(03,67"1
T

Substitution of this into Eq(5.4) yields a cubic equation for
a(a) in terms of P} (a),

+(1+2a%0%0?)erf(aoyoy) |, (5.2 4 ,
3| 2a+ gan Py |(1+2a)*+4(1+2a)ah,,
4’7T _ 2— 4
A=~ 75(MB) Mnazxea[lﬁaz), (53 =237 1—§an1P§y+2AXX), (5.9

where a=}ac(mg)"? and, for uniform density,x[r,r  which has only one real root. Finallp;, is obtained from
+ o|n]— xe(n). Next, the constan&(a) characterizing the Eq.(2.15,

thermostat is determined by requiring that the temperature be

constant. There is an additional term in the energy equation . m 3 nn A - A
(2.8) due to this external force; 3na(a)/ 3. For a stationary Py=%0 XeJ d‘mx(’yJ dvlf dV,0(o-g)(0-9)
state this must cancel the viscous heating, which gives the

defining equation for(a) in terms ofP,(a), Xf(Vi+a-o)f(Vy), (5.10
a(a)=— BaPyy(a)/3n. (5.4  where for uniform shear flom(r+xo)—u[r—(1—-2\) o]
- . =a- o, with a=axy.
The kinetic and collisional transfer parts Bf(a) are ex- Equations5.7), (5.9), and(5.10 show that the solution to

plicit functionals off given by Eqgs.(2.11) and (2.19, re-  the kinetic equation has been reduced to quadratures. Substi-
spectively. Since Eq(5.1) givesf as a function ofP{(a),  tution of Eq.(5.7) into Eq.(5.10 and performing the veloc-
these can be determined self-consistently. _ ity integrals provides an algebraic equation ff(a) in

In order to ease the notation, we choose units such thagrms ofa(a). Together with Eq(5.9) these two equations
v=1,m=1, andmB/2=1. This implies that thg mean free yetermine the shear rate dependence of bﬁilj(a) and
path also equals one and consequently the diamst@x- 5) Use of these forms in E@5.7) then completely deter-

pres;ed assa muItiEIe of the mean freg path, is a function gfjines the velocity distribution. All properties of interest can
density,o=5y2mn* x¢(n). In these units, Eq(S.1) can be  pe optained from integrals over this distribution. In general

written as this self-consistent procedure must be implemented numeri-
—~ cally. However, to illustrate the approach and to test the pre-
LEV)=1 V), dictive quality of the kinetic model we first extract the ana-
Iytic results for small and large shear rates.

~ 4 3
f,(V)=f(V 1——(v2—— an P +2A:D(V)|,
AVI=TAY) 3 2 X V) A. Solution for small shear rates
5.
©9 Assume a series expansion for the distribution function in
where powers ofa:
P p) f=f, +afV+a2f@+a3f@+. ... (5.19)
L=(1-3a)-aVy—F —aV-—. (5.6
IVx N This implies
The solution is ny(a):aP§§>+a3P§f§,)+ .
f(V):J dse S£F (V) a(a)=a’aP+a*a@+. ... (5.12
0

" The fact thatP,,(a) is an odd function of and«(a) is an
:J dse 17395F (e*S(1+sa)-V), (5.70  even function follows from considerations of symmetry un-
0 der space inversion of the or y axes. It follows directly

_ from Eq. (5.9 that
where use has been made of the properties

exp@tugd, )X(v)=X(€"v,) and  exphtvyd, )X(v,)=X(vx 1 A

+atv,) From this formal solution, the kinetic a®=2{ 1+ en*xe—2n PV |, (.13
v): , part of the 3 15 xy

pressure tensdPty(a) can be calculated directly by multi-

plication with mV,V, and integration over the velocity to Use of Eq.(5.13 in the formal solution(5.7) allows expan-

give sion up througha® with the results
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i 4ar .
f(V)=-2|1+ l_5n Xe|VXVyf AV),  (5.14

fAv)=

4m 2 2 N
L+ e xe| | 1 5VE-2V2+4VV2

6m
(n* xe)A(V2=3V7)

+ 1575 fAV),

(5.19

fE(V)=4V,V,

1+ 27 e x| 3v2— 2v2v2
15” Xe y Xy

2 2w 5
Tl1_n-1pcl) . T % 2_
+3 1-n" Py '+ 15n Xe)(v 2”

256m% . 128w
2625 (" Xe)" ™ 7575(M" Xe)

x(v2—3v§—1)] f, (V). (5.16

To this order, onIfo(g,l) remains undetermined in E¢p.16).
This is obtained directly by using E¢6.14) in the expansion
of Eq. (5.10,

2
pei=—n2Tnty,

4+
15 3

1+4
5 3

5 . (.17

*
n" Xe

1651

4|4 16w . 167
n(a)=n(0)— 7sXxe 3T Xt 555 73

5 5127725( 232

41 1477)

2
X(n*)()2+2— 1+2—7T(n*X -
¢ " 3375 3 e 16875 49

137 2 . 4
t Ty (N* xe)

a’+0(a%),

(5.29

where 7(0) is the Navier-Stokes shear viscosity given by
EqQ. (4.10 and g= 3Ny, is the low density Boltzmann vis-
cosity in the current units. The viscometric functions are

2

™ * 6m * 2 2
¥, (a)=—n 1+1—5n Xet 225(n Xe) | +0(a%),
(5.22
644 . ) 8w N )
\Pz(a)=—n%(n Xe) 3+?n Xe| +O(a%).
(5.23
Finally, the shear dilatancy is
32 . ) 167 . )
y(a)=n2—25(n Xe) 1+1—5” Xe| T0O(@%).
(5.29

The density dependence of these nonlinear transport coef-
ficients is a nontrivial prediction of the kinetic model. Until

Further details of these calculations are given in Appendix Crecently, only the low density limit of these coefficients was
Equations(5.14—(5.17 completely determine the distribu- known from kinetic theory. However, they now have been

tion function through ordea®.

calculated from the RET at finite densities using Grad’s mo-

As an illustration of these small shear rate results, thenent method approximation, showing good agreement with
shear viscosity, viscometric functions, and shear dilatancyesults from computer simulatiofi7]. Comparison of the
are calculated. These transport properties characterize th@ove expressions with those from the RET shows good
non-Newtonian effects of the shear rate beyond Navieragreement. In both cases, the kinetic contribuigf{0) and
Stokes order hydrodynamics. The shear rate dependent sheﬂro)/(n* Xe)? are linear functions ofi* y, the kinetic con-

viscosity is defined as

ny
7](&)——?,

(5.18
the viscometric functions are defined by

P,,—P
V(@)=

P,—P
= Y@= (519

and the shear dilatancy by

_P@)—p0)

1
y(a) ;. p@=3TrP@). (5.20
a

tribution ‘le(O) is a quadratic function af* y., ¥,(0) is a
cubic function ofn* y., and\lfl(O)oc[\I"{(O)]z. To perform

a more quantitative comparison, consider the extreme den-
sity of n* =0.95, at which the hard-sphere system undergoes
a fluid-solid transition[24]. According to the Carnahan-
Starling equation of stat§l9], this corresponds tm* x.
=5.6. The relative deviations of the model predictions for
¥,(0), ¥,(0), andy(0) are found to be 1.2%, 13%, and
2.1%, respectively. Evidently, the kinetic model captures the
density dependence of the RET very well for these leading
order nonlinear transport coefficients.

The shear viscosity has been calculated to one order
higher in the shear rate in E¢5.21 than the viscometric
functions and it appears there have been no corresponding
calculations from the RET as yet. At low and intermediate
densities, the coefficient @ in Eq. (5.21) is negative. This
representshear thinningi.e., the shear viscosity decreases

These four scalar functions are sufficient to represent thas the shear rate increases. Nevertheless, the term propor-
complete pressure tensBr They are calculated from Eqgs. tional to (n* x)* has a sign opposite to that of the remaining

(2.11) and(5.10 for the kinetic and collisional transfer con-

terms. Consequently, there is a qualitative change at higher

tributions to the pressure tensor, using the above expansiatensities from shear thinning tshear thickening This
for the distribution function. The details are given in Appen-change takes place at* y.=3.06, which corresponds to

dix C, leading to the results

n*=0.79.
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B. Solution for large shear rates

To study the case of asymptotically large values of the

shear rate, Eq.C11) can be rewritten as

P°=ga3)(ej d&&&f dvlf dV,0(o-(g—a- o))
X[a-(g—a- )2 (V) F(Vy), (5.29

where the change of variabl¥s—V;—a- o has been made.
In the limit a—« it is possible to negled relative toa- o,

since the effective values of the relative velocity are not ' R R S

much larger than the thermal velocity. Consequently,

m
~ 3, n2a2,.2 el 2 2
pc~§o- Xeh“a“o jda’a’a’@(—oxay)axay,

(5.26
where use has been made of E2.3). More explicitly

2

875

P§x~ P§y~3P§Z~n (n* Xe)saza

PL,~—n a. (5.2

Also, the nonvanishing elements &fa) anda(a) are found
from Egs.(5.2), (5.3), and(5.9) to have the asymptotic forms

1 2048w . \3.3
Axx:Ayy__EAzzm T625(n Xe) @,
256m° .
Axyw_m(n Xe)7@%, (5.28
20487 1353, T 5.9
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n(a)/(0)

0.0 0.2

FIG. 1. Plot of (a8 7(a)/7(0) and(b) 7*(a)/ 7(0) for n* x.
=2. Lines are from the kinetic model; symbols are from Monte
Carlo simulations of the RET.

Equation(5.30 shows that shear thickening appears for any
density at sufficiently large shear rates. The first viscometric
function vanishes whilel,(a) and y(a) are qualitatively
similar to their behavior at small shear rates.

C. Comparison with Monte Carlo simulation

As discussed in the Introduction, recent methods have
been developed by two of us for Monte Carlo simulation of
the solution to the RET kinetic equati¢@]. These methods
have been implemented for uniform shear flow to calculate
the distribution function and rheological properties for com-
parison with the results from the kinetic model. The Monte
Carlo method employed in this paper takes the uniformity
condition f(r,v,t)=f(V) for granted[25], so that the pos-
sible instability of the USF is not addressed. The results pre-
sented in this section demonstrate the utility of both the
Monte Carlo and kinetic model for describing states far from
equilibrium at dense fluid conditions accessible previously
only via molecular dynamics simulation. The full solution to
the kinetic model for arbitrary shear rates requires substitu-
tion of the formal solution(5.7) into Eq. (5.10 for P§(a).
While the velocity integrals are explicit and Gaussian, the

These results specify all the parameters of the formal solutémaining integrals pose a multidimension task that is diffi-
tion (5.7) so an explicit asymptotic form of the distribution cult to implement in the self-consistent calculationRjf(a)

function is obtained.

and a(a). Instead, we obtain a reasonable estimate for

It is shown in Appendix C that the collisional transfer Pﬁy(a) by using a first Sonine approximation férin Eq.
contributions dominate the kinetic parts of the pressure tent5.10),

sor at large shear rates, so that E(¢s27 determine the

asymptotic behavior of the shear viscosity, viscometric func-

tions, and shear dilatancy

(5.30

1024

2

256 . 3
¥,(a)—0, Wz(a)a—nﬁ(n Xe)®,  (5.3))

128
7(a)—>nm(n Xe)®- (5.32

f—f,[1+C:D(V)]. (5.33

The coefficientC can be identified by requiring that the mo-
ments of this trial function with respect ¥V, should be the
same as those for the exact distribution,

C=(2n"'P*-1). (5.39

With this approximation, the evaluation &€ is similar to
that of the tensoA(a),
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RV)

5
P@)/pO |

4

0.0 0.2 0.4 0.6 0.8 1.0 2 1

FIG. 2. Plot of (8 P.(a)/p(0), (b) Py,(2)/p(0), and (c) FIG. 4. Distribution functionR (V,) for n* y,=0.2 anda=1.

P,(2)/p(0) for n*xe=2. Lines are from the kinetic model; sym- ¢ gashed line is from the kinetic model; the solid line is from
bols are from Monte Carlo simulations of the RET. Monte Carlo simulations of the RET.

. | 2 g havior ongy(a) depends only on the normalization oaind
Pij=—2N"Xe | dogioj) —zaooye * ™% therefore is the same as described above.
& With Piy(a) and a(a) determined self-consistently in
—(1+ 2?(})2((}5)erf0(§(}x(}y) this way, the parameters of the formal distribution function

(5.7 are known and any property of interest can be calcu-
~~ 1 —_— lated from it, for arbitrary density and shear rate. Figure 1
- ( oo 51) :Cerfao,oy) shows a comparison ajf(a)/ 5(0) as a function of the shear
rate for the high density oh* y.=2. Also shown is the
1/ .. 1 29 _ —~2-2 corresponding kinetic part. The good agreement indicates
- 5[ ( 00— gl) 30} —;a0x0ye 2% . (539  that both the kinetic and collisional transfer contributions are
™ given accurately by the model. The chosen density is such
that the shear thickening effect due to the collisional transfer
The self-consistent determination ty(a) for a given den-  parts dominates for shear rates above about 0.3. Figures 2
sity anda is now a straightforward numerical iteration prob- and 3 show the normal stresseg(a)/p(0), etc., as a func-
lem. As a check of this practical approach it is found that thelion of the shear rate at the same density. While there are
small shear rate behavior is quite good, with exact result§oticeable differences for the kinetic parts for treandzz
through second order in the shear rate. The super-Burnegomponents, the total normal stress is given quite accurately
coefficientPZ(* is found to have the same qualitative densityn all cases. A similar accuracy holds at low density so we
dependence and still shows shear thickening above a criticgPnclude that the kinetic model gives a good description of
density, now given by* =0.78 instead of the more accurate rheological transport throughout the density-shear rate plane.

value from Eq.(5.21) of n*=0.79. The large shear rate be- To test the distribution function itself, we consider the
reduced distributions for a single component of the velocity

1.4 T T T T T T T

1.6 T T T T T T

13
L PN
11}
10
iy
08
07|
06|

0.5

04 . ; . : .
0.0 0.2 04 0.6 0.8 1.0 04 . : . ' . '
a -2 -1 0 1 2

FIG. 3. Plot of(a) Pk(a)/p¥, (b) PY,(a)/p, and(c) PkLa)/p
for n* y,=2. Lines are from the kinetic model; symbols are from  FIG. 5. The same as in Fig. 4 but for the distribution function
Monte Carlo simulations of the RET. Ry(Vy).
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FIG. 6. The same as in Fig. 4 but faF y,=0.5.

relative to the corresponding local equilibrium distribution,
e.g.,

JdV,dV,f(V)

RV = Jdv,dV,f(V)’ (539

with similar definitions for they and z component distribu-

SANTOS, MONTANERO, DUFTY, AND BREY

FIG. 7. The same as in Fig. 5 but foFf y,=0.5.

The agreement is exceptionally good for this highly nonequi-

librium state. Figure 5 shows the same comparisonRipr

The agreement is less striking but the qualitative features are
preserved by the kinetic model, except for velocities exceed-
ing the thermal velocity. Figures 6 and 7 show the corre-

sponding comparisons at the higher densityndfy.=0.5,

still for a=1. This corresponds to a shear rate for which the

collisional part of the shear viscosity is about 50% larger

tions. Since they are defined relative to the local equilibriumthan its kinetic part. The predictions of the model are now
distribution, they represent distortions that occur only farless reliable, with even the qualitative featuresRyfgiven

from equilibrium. As an extreme case we considerl. In

incorrectly, although the model correctly predicts a cusp of

the chosen units this is a shear rate equal to the collisioR, atV,=0. At sufficiently large density and/or shear rate,

frequency, which is very large, particularly at high density.

Figure 4 showsR, for the moderate density of* y,=0.2.

r

2
1-An— =

—1,2_cC
3N a“n“(a)

1- =n"ta?y(a)
R,(V,)

Ayt

n

the distribution function is no longer positive. To understand
this failure, consider the behavior &, for small |V,|:

(a<1),

(5.37

—1a2 77C(a)

2 _
§n

Thus Rzy(Vy)<O for small |V,| whenever A,
>2n~1aZyX(a). This failure of the model originates from
the approximation to (+ P) svf=(1—"P)J[f ] [see above

Eqg. (3.11], which leads to an anomalous velocity depen-

V|2 (a>1).

a?n(a)

nonequilibrium phenomena for both fluids and solids, near
and far from equilibrium. Recently developed Monte Carlo
methods provide the first general means for practical solution
to the RET in this broad context. In the present work we

dence under these extreme conditions. However, this amave presented a complementary analytical method, using a

proximation does not affect the moment equat{érB), so

model kinetic equation closely related to the RET. These two

the transport properties are still given accurately. If a bettéethods have great potential for a new understanding of
velocity dependence is required, direct calculation of (1ngnequilibrium systems under conditions accessible previ-

—P)Jelf ] is possible for this case of uniform shear flow.

VI. DISCUSSION

The revised Enskog kinetic theory for hard spheres pro-

ously only by molecular dynamics simulation. Although the
RET is limited to hard spheres, many of the physical mecha-
nisms active in more realistic systems occur for hard spheres
as well.

The Chapman-Enskog expansion of Sec. IV shows that

vides a firm theoretical basis to address a wide range dhe kinetic model captures the correct density dependence of
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the RET for transport near equilibrium. This prediction of cation to uniform shear flow at low density also has shown
density dependence is further reinforced by the exact agregood agreement with direct numerical simulat{@T], so it
ment for the nonlinear transport coefficients considered ins expected that its extension to the dense fluid case consid-
Sec. V. The most severe test of the model here has been i@sed here also yield the same level of accuracy.

prediction of the shear rate dependence of the pressure tensor

at high densities, far from equilibrium. Figures 1-3 illustrate ACKNOWLEDGMENTS

the impressive predictive quality under such conditions for

both the Monte Carlo simulation method and the kineticPHY 9722133. Partial support by the DireatiGeneral de
model. This preliminary study of shear flow already haslnvestigacicm Cientfica y Tecnica (Spain through Grant

given new insight into the competition between kinetic andy;qq. PB96-0534J.J.B) and PB94-1021J.M.M. and A.S)
collisional transfer mechanisms. For example, it has beep, gratefully acknowledged.

noted that the collisional transfer leads to a crossover from

shear thinning to shear thickening at sufficiently large shear

rates. In this study we have not addressed the stability of

uniform shear flow and it is possible that the large shear rate

domain considered represents metastable states. It is well In this appendix a brief overview of kinetic modeling and

established that there is a transition at large shear rates antbment methods is provided to put in context and to further

high densities to an ordered phase which may occur beforgotivate the specific choice made here. The general kinetic

shear thickening effects dominate. Although it has been sugzquation is assumed to have the form

gested that this transition is due to a hydrodynamic instabil-

ity, and therefore should be predicted by the RET, it has not (e v-V)E(r,v;t)=J[r,v[f(D)], (A1)

been seen from the Monte Carlo simulations yet. If some . o

other mechanism is responsible for the transition it is pos¥/heredLr.v/f(t)] denotes the collision operator, specified as

sible that this is not contained in the RET. Further Monte 9iven functional of that is local inr andt. The discussion

Carlo studies are required to resolve this question. here can be generalized to include an external force and to
There is a class of exact solutions to the BGK kineticcollision operators that are nonlocal functionals.

model at low density for various types of heat and momen-

tum transport. It is expected that the kinetic model proposed 1. Moment methods

here for the RET can be solved for this class at the same The simplest class of approximate solutions are those ob-
|eVe| as descnbed here fOI’ Un|f0rm Shear ﬂOW More |nter‘tained by a representation bfas a vector in a Hilbert Space

esting perhaps are the new problems relevant only at highefpanned by a complete set of functidids,(v)?,
densities. These include flow of two immiscible fluids near a

solid boundary where the usual boundary conditions fail at

the contact lind26]. This and related boundary layer prob- f(r,v;t):%: Calr, 1) alV),

lems have been studied recently by molecular dynamics

simulation but without other theoretical analysis. Other ex-

amples of interest occur in the crystal phase, for which there Ca(r,t)=f dvyl (v)f(r,v;t), (A2)
have been few studies to date. Extensions of hydrodynamic

descriptions to short wavelengths have been very successfyhere{y,(v)} is a corresponding biorthogonal set defined
in the fluid phase, and it is expected a similar descriptior,y SV (V) E5(V) = 8, 5. Substitution of Eq(A2) into Eq.

based on local elastic constants could be developed for the\1) gives an infinite set of coupled equations for the coef-
crystal phase as well using the simplifications afforded b¥icientsc (r,1),

the kinetic model. Finally, there is a new possibility to study

the dynamics of metastable fluid and crystal states from a ACo(r, 1)+ A, 5-Veg(r,t)=J,[r,t[f], (A3)

fundamental kinetic theory point of view. Since the theory

contains the structural features of metastable statgg i

(the free energy topology such effects as structural arrest Anp= f dvgy, (VIVE(V),

for selected initial conditions$e.g., the wrong crystal struc-

ture, quenched fluidcan be considered. The latter are rel- N

evant for understanding a possible hard-sphere glass transi- Ja[r,t|f]:f dvyg (VI vIf()]. (A4)

tion and the kinetics of a disordered crystalacancy

diffusion). We plan to address some of these topics in theThere is little advantage to this representation unless the ma-

near future. trix A,z is sparse, i.e., couples only few pairs of functions,
Finally, we note that both the RET and the kinetic modeland if J, depends only on relatively few coefficients, .

presented here have been extended to the case of inelashgen in this case approximations are required to close the

hard-sphere collisionsl0,11]. The corresponding Chapman- infinite set of coupled equations. These approximations en-

Enskog solution for the kinetic model has been used to detail a restriction of the sum in EqA2) to some finite set

rive hydrodynamic equations and transport coefficients fo{{, ;@ e S} and implies that the solution is being approxi-

rapid granular flow. Such calculations are prohibitively dif- mated in a corresponding finite dimensional subspace of the

ficult from the RET, without further uncontrolled approxima- Hilbert space. The choice of this set is suggested by the

tions, but are straightforward from the kinetic model. Appli- average properties of interest, to ensure that their prediction

The research of J.W.D. was supported by NSF Grant No.

APPENDIX A: KINETIC MODELING
AND MOMENT METHODS
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is included in the approximation considered. Otherwise, the

selection of functiongZ,(v)} and subsetr € S requires fur- LIrv8f()]— 2 La(V)L,apdCk(r,t)

ther analysis of the convergence properties or successive ap- wpes

proximations. The best studied example is that due to Grad

who chose Hermite polynomials fdms,(v)} and chose as -\ Es La(V)6C,(r,1)

the approximate finite set those polynomials in the velocity 8

for which the corresponding,(r,t) are the average mass

density, energy density, momentum density, pressure tensor, :a;es La(V)(Lapt N, g)oCH(T,1)

and heat flux. This 13 moment approximation is reasonable ’

since his interests were in the derivation of hydrodynamics

from the conservation laws which relate just these fields. N2 La(V)8C,(r1). (A8)
A variant of this method is to approximate only the colli- “

sion operator by an expansion in a finite subset of therhe summation in the last term of EGh8) extends over the

{da(W)}: complete set and is therefore simp#j. The linear kinetic

equation with this approximation becomes

@V VD=2 L,)I[rtf]l (A5) (Ftv-VHA)SH(r Vi)

=1(r,v;t)+ %‘,S La(V)(LagT N3, 5)5CH(T 1),

In this case, the distribution function is not restricted to a
finite dimensional subspace, but rather is determined by the

solution to Eq.(AS5). The solution is obtained in two Steps. tiq equation can be solved in the same self-consistent way
First f(r,v;t) is determmec{tnwally) as a linear fun(_:tlonal as Eq.(A5). The proportionality constant is clearly inde-

of J[r.t|f]. Next, a nonlinear integral equation for ,onjent of velocity from this analysis, but can be chosen as
J,[r,t|f] is obtained from this sol_utlon using the definition jna of the matrix elements in the complementary subspace,
of J,. These two sets of equations must be solved selfzposen to fit some properte.g., a transport coefficientor
consistently. The advantage is that the nonlinear integraly otherwise optimize the approximation. In other contexts
equation no longer depends on the velocity. This choice ofpercolation theory, lattice gagesiosely related approxima-
approximating the collision operator rather than the solutionigns are called effective medium theories.

to the kinetic equation is the basic difference between the Thg |inear operator is approximated such that it is exact in
moment methods and kinetic models. Equatié) is one  {he subspace defined i$yand approximated elsewhere sim-

(A9)

example of a kinetic model. ply as proportional to the identity operator. This can be sum-
marized in terms of the projection operaf@y onto this sub-
2. Linear kinetic models space,

The construction of kinetic models is most straightfor- L=PoLPy—N(1—Py),

ward for linear kinetic theories. Consider some known refer-

ence statd, and consider small perturbations from this state S N

f="f,+ 5f. Then, retaining terms in EGA1) only to linear PoX= 2, oY) | Vi (V)X(V), (A10)

order in the small perturbation gives

where £ denotes the linear operator associated With

(O Vv-V) SE(r Vi) =1 (Vi) + L[V 5FD)],  (A6) P
3. Nonlinear kinetic models

wherel =J[fo]— (4 +Vv-V)fy andL is the linear functional The linear kinetic models are based on a matrix represen-
of 6f obtained fromJ[ f,+ 5f]. To construct a kinetic model tation of the linear collision operator that is preserved exactly
the linear functional is first expanded in the complete set ofn some subspace and approximated in its complement.
functions Clearly, it can be improved systematically by expanding the
dimension of the chosen subspace. For nonlinear collision
operators this decomposition into its contributions in two

L[r.v|8f(t)]=2, La(V)L4p8C4(1 1), complementary subspaces also is possible,
@B

(9 +v-V)F =PI+ (1-P)J, (AlD

whereP is the projection operator onto the subspacedor
Laﬁ:f dvis (VLLr,V[Zg]. (A7) S defined in the same way &, [the notation is changed
to distinguish the choices ¢t ,(v)} for linear and nonlinear
models, as indicated beldwThe approximatioqfA5) corre-
This is still an exact representation bf Now separate off sponds to neglecting the last term on the right side of Eq.
the contribution to the double sum from B8e S and make (All). Instead, it is better to retain some approximation to
the approximatiorL ,;— —\ 6, 5 for the a,B¢ S, this contribution. The choice analogous to that of EgL0)
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for linear operators is to approximate the collision operatormade, the first leading to more accurate but more complex
in this subspace as proportional to the identity operator, (tructure while the second leads to greater simplicity but less
—P)J— —(1—"P)Af. In contrast to the linear case, we now accuracy. These differences illustrate the flexibility of kinetic
allow {£,(v)}, P, and\ to be functionals of. This gives a modeling to adapt to both mathematical and subjective con-
great deal more flexibility in the construction of kinetic mod- straints. In the present case, both models, that given here and
els, at the price of being less systematic. fgtdenote a in [7] appear to give surprisingly good representations of the
distribution function that is a functional of through the RET.

constraints that they have the same average valugg ©f)

for ae S, APPENDIX B: COLLISIONAL TRANSFER
CONTRIBUTIONS

f dvyy (V) (f(v) = fo[V[f])=0, (A12) In this appendix some details of the derivation of Egs.
(2.19 and(2.16 are given. Let(v) be an arbitrary function
and choose the basis set tofig(v)} ={fo,(V)}. Also, let  of v and consider the integral
N V|f]=v[f]+ 6v[v|f], wherev[f] is independent of the
velocity. The kinetic mode{A11) becomes
|gEJ dvy&(vy)Jelry, vyl f(1)]
(O +v-V)f=—p(f—fo)+PI-(1-P)svf, (AL3)

where we have assumed that,=1 belongs to the set :sz dvlf def doO(o-9g)(o-9)&(va)

e S, which impliesPf=f,. This kinetic model has two ve-

locity dependent functionald,, and sv, and one velocity X{x[ri,r1—on(t)1f(r,vy,t)f(ri—o,v5,t)
independent functionaly, as free parameters to optimize

simplicity and accuracy. Clearly, a wide range of constraints —x[ri.ritenIf(ry, v, Hf(ri+o,v,, )

can be accommodated in such a structure. The emphasis on (B1)

hydrodynamics and transport in the text suggests the choice
of subspace to be that spanned by polynomials in the velo
ity corresponding to the conserved densities. Then(Ef3)
necessarily yields the exact conservation laws. The use
fo—f, is a convenient way to incorporate the condition that

fo[v|fe]=fe is the stationary equilibrium distribution, but |,= 02f dvlf dvzj doO (o g) (o g E(V))
other choices are possible as well. Finally, the choices /for

By making the changesv{,v,)—(v},v5) and 6— — & in
gpe first term of the right hand side, one gets

and év have been selected for accuracy of transport coeffi- — &) Ix[r 1 rit+ on()1f(ry, vy, O (ri+o,v,,t).
cients. As seen in Sec. V, better choices may be necessary
for the distribution of velocities under extreme conditions. (B2)

Finally, the connection of this work with that of Réf/] ) ) )
is considered. There are two components to that work, first 2owW we takeg(v) 2t0 be one of the summational invariants,
moment method approximation and then a kinetic model id-€-. §(V)={1v,v7}. Then, it is &(vi)—&(vi)=£(V2)
proposed to improve that approximation. The moment—§(V2), So that we can write
method approximation is given by a straightforward applica-

tion of Grad’s methodf — Pf, J[ f]—PJ[ Pf], resulting in a o, A A -
closed set of equations obtained from EA43) in the sub- lg=0® | dvi | dv; | doB(o-g)(o-g)[£(V2)
space of 13 velocity moments. To improve this approxima- .
tion a kinetic model is proposed, not fdff] but for J[f] —&(vo)Ix[ry,rat oln(O1f(ry,ve, O (ri+ o,V t)
_J[f/]:
=02f dvlf dv2f do®(a-g)(a-g)[E(V)
JF]=30F, 1+ PQLF]=I[f, D+ (1=P)I[F]-I[f, ]
S JI[F,]+PAI[F]1-I[f,])—(1—P)vf —&(vp)Ixlri.ri—on(1f(ry, v, Hf(ri— oy, b),
— —(f—f,)+ PIF1+(1-P)I[],] (B3)
——p(f—1,)+PIPI]+(1-P)I[f,]. (A14)  where in the last step we have performed the chamgesv,

_ o , and o— — . Combination of Eqs(B2) and (B3) yields
The first approximation on the second line of E414) cor-

responds to the choicévf=—J[f ], which is the same as o2 o A
Eq. (3.9. Hence, this model is more general than that con- If:?f dvlf dvzf do®(o-g)(o-g)[&(vy)—&(vy)]
sidered here which retains only certain projections of this

result for greater simplicity. The approximation in the fourth SXIVIT Fa4oln(T1E(rs Ve D+ o Vs 1) — ¥ .1
line of Eq. (Al4) retains only those restricted contributions raratoln(]i(r v, Dt 20 =xrn
in the subspacé® that are retained in the moment approxi- —oln(t)]f(ry—o,vqy ,t)f(ry, vy, )} (B4)

mation. In this respect it is more limited than the approxima-
tion considered here. Thus two different approximations are Next, we note the identity
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F(r,r+o)—F(r—o,r)

f d)\—F(r—(l Mo, r+No)

:(T-Vfld)\F(l'—(l—)\)O',l’-F)\O'). (B5)
0

By taking into account the properfyfrq,ro|n]=x[r,,r1|nl,
we can then rewrite EqB4) as a divergence:

3
==V 5[ aw [ av. [ do6(5- 0/ gatam

1
—f(vmfo dAx[r1—(1-N)a,ri+Nafn(t)]

Xf(rl_(l_)\)ﬂ',vl,t)f(r1+)\ﬂ',V2,t). (B6)
Particularizing this equation foé(v)=mv, Eq. (2.15 fol-
lows directly. To get Eq(2.16), choosez(v) = (m/2)v? and
use the relation

7 (vi-vi?)=m(e-G)(0"9)

=m(o-G)(a-g)+m(o-u)(a-g), (B7)

whereG=3(v;+Vv,) andG=G—u.

APPENDIX C: CALCULATION OF PK(a) AND P%(a)

In this appendix some further details for the calculation of
the pressure tensor in Sec. V are given. Consider first the

kinetic partP¥(a). Substitution of the formal solutiof5.7)
into Eq.(2.11 gives

demVVf dse 17395F (e*S(1+sa)-V)

=me dse 1+2a>5f dvT (V)(1-sa)-V(1—sa)-V.

(CD

The integrals are easily performed to give the nonzero ele-

ments of the kinetic pressure tensor

3

n 4
Pix=§(1+ 20)1[ 1-zan 'Py + 2AXX)

X[14+2(1+2a) 2a]—4a(1+ Za)_ley},

(C2

k 1 4 —1pcC
Pyy—2(1+2a) 1-zan 'Pi+2A4), (C3

n 4
P§Z=—(1+2a)1(1——an1P§y—4AXX), (C4)

3

SANTOS, MONTANERO, DUFTY, AND BREY 57

4
1- zan P +2A,,

k n -2
PYy,=—a5(1+2a) 3

—2a Y 1+2a)A,, (C5)

The tensorA occurring in these equations is given by Eq.
(3.12), which for uniform shear flow reduces to

A=(mﬂ)—1’2nazxef do'( oo— %1)

2 . . 220252
XaO'xO'y llza(TXO'ye Xy
—(1+2a 2a? )erfo( aaxay)l (Co)
wherea=3ac(mpB)Y2 This gives directly the results.2)
and(5.3).

For small shear rates the above results gheaA®)
+a?A@+a3A®+ ... where the nonzero elements are
A= —(2m5n* x., A= —(256m%/2625)(0* xe)°,
and A&i)—(128rr/1575)(n Xe)2 Also, the condition for
stationarity, Eq(5.9), gives a(a)—a?a®@+- .., with «®

=3(1-2n"'PgEN—2A0). Use of these results in Egs.
(C.2) —(Cb) gives

LB af |, 4w 64ar
213 T s xet s (M xe)”
(C7
e N2 Aw 128w
S e TR 55 (N Xe) |
(CY
o N2 4w o 26m
5173 15" XeT 555 (N xe) I
(C9
n 47 4 2
P)‘ﬁy:—za 1+En*xe—§[(l n~tPgt+ 15n*Xe)
A 12T e e | — o 2| 1 o (x| [
15 € 525 € €
+o (C10

Consider next the collisional transfer contribution to the
momentum flux. Equatiof2.15 becomes

m .
PCZE(TsXeJ dO’o-O'j dVlJ dV,0(o-9)(o-9)*f(V;
ta- o)f(Vy). (C1Y

The small shear rate dependence is obtained by the expan-
sion (5.11) and
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f(V+a-o)=f(V)+aoo J f(V)+az 252 % f(V)
a-o)= aocoy, —— OO o,——
YoV, 2 Y ov,2

358
+—alod——f(V)+---,
yﬁvx3

(C12
to get
P§<y1>:gsxef d(}(}x(}yj dvlf dV,0 (& g)(&-g)>2

x| v

f Vo), (C13

o
1)+ E‘Ty N1 f (V1)

P§§2)=U3xef d{n}if dvlf dV,0(a-g)(o-g)?

X | FANVE Vo) + %f(l)(Vl)f(l’(Vz)

O A

_a (1) (1)
+§UyaV1 [FH VDAV +HTA(V)FH(V))]
X

2 2

(C14

1 (VDT (Vo) 1

P§<y3>:gsxef d&&xayf dV1J dV,0 (- g)(o-g)?

x{f@( DfAV)+EP (v, )f(l)(V2)+—a'yaV

X[FPV)F Vo) +FDV) FB(Vo) + £ (V) P

O'ZA 2
X (V) ]+ Zoi

SLEVVD (V) +f (V) f

1x

3 3

X (Vo) ]+

T30y 3 VTV

(C19

The expressions for the elemem§” and PS?) can be ob-
tained from Eq.(C14) by replacings? by o and o7, re-
spectively. The integrations overin Egs.(C13—(C15) can
be performed using the identities

~ R “ 2n A 2 )
do®(o-9)(o-9) O'io'j:E(ZQigj"'g dij),
(C16)

J’ doO(o-9)(0-9)%0i0)0%

r
=@[9i9j9k+ 9%(9i Sjk+ 9 Sik+ 9kdij) 1,
(C17)
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~ ~ R N~ n oA A 2T
Jd0’®(0"9)(0'g)sziffjffkfflzl—m—)[z(gigj5k|+gi9k5j|

+0i01 6t 99k 8i + 9;91 S+ 9ud1 8ij) T 9%( 8 S
+ ik 0j1 + 6 S 1, (C18

~ A ~ A A aa
j do®(o-g)(0-g)2oy0y= Ggagx<sg“+6929§—g;‘>.

(C19

So far, Eqs.(C13—-(C15 are also valid for the RET. The
explicit forms forf™), 2 andf® follow from the formal
solution to our kinetic mode(5.7),

(V)= =2(1-2A5) VW f A(V), (C20

f (V)= [(1 2A<1>)( v2 2v2+4v2v2)

+2AR(V2=3V2)|f (V), (C21

B(v)= 4vay[ (1- 2A<X1y>)[3v§— 2v2y2

2 _ 5

+3(1=n"PLY - A<1>)(v2 5”
+A§§>—A§?<v2—3V§—1)]f/(V>. (C22

With these results the velocity integrals of E¢S13—(C15
can be carried out by introducing the variablés=3(V,
+V,) andg=V,;—V, to get

e _ _

A el 1 2A0 4 o0 (C23
Xy 2 15 Xe Xy 5 Xel»

o 0 107 *Xel | 1+ S (1-2AQ)
x "2 45 35 Xe
+ﬁ(n X)2+3A<2> (C249
175 e Xx |
poiz) N 167 1 36 12l
w =3 a5 "X T2 g e y)
+ ﬂ(n % )2 EA(Z) (C25
175 e x|

«2_N n 16m -

— E_l_Zn*X (1_2A(1))
zz 2 45 Xe 2 35 € Xy

48
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n 16 6 n 8
P;g,s)zz 4—5n*Xe[ 1—n_1P§§,1)—A§é,) 1+ 3—5n*Xe) \If‘i(a)=—§ 2+ 1—5n*Xe +O(a2),
n 256w
1 256 vha)=— (N* xe)?+0(a?). (C29
35" Xe (1 2A) — o (N* xo)° 2 2 525 Xe
The collisional transfer contributions are calculated in a
3 32 3 similar way, leading to the results quoted in Sec. V.
— A2 1+—n* x|+ = Ag(fj/)]_ (C27) To study the case of asymptotically large values of the
2 35 2 shear rate, the resul{s.26) for the collisional transfer con-

tributions to the pressure tensor can be compared to those for

These small shear rate results R andP° allow calcu- e yinetic parts. Using Eq(5.27) we obtain from Egs.
lation of the shear viscosity, viscometric functions, and shea(cz)_(CS)

dilatancy. For example, the kinetic parts are found to be

PPy, ~4P;~2n, (C30
4 4 32 pk 3m (C31)
n T n T ~——n.
Kia)— T S e Xy 16
Comparison with Eq(5.27) shows that even in the dilute
2 regime (* <1) the collisional transfer part of the pressure
+ﬁ f+ T\ in Ye z_ﬁ@_z) tensor dominates over the kinetic part for asymptotically
45\7 5 337517 3 large shear rates. In particulag(a)~a, which shows that
for densities lower tham* =0.79 there is a crossover from
shear thinning to shear thickening at sufficiently large shear
X(N* xe)®|a%+0(a%), (C28 rates.
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