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Observer-based approach for controlling chaotic systems
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This paper presents a nonlinear state observer for a class of nonlinear systems which have an output
dependent nonlinearity. By the observer design scheme proposed herein, an observer-based linear state feed-
back control approach is then derived to stabilize this class of systems. Analysis results indicate that both error
dynamics and the subsequent closed-loop system can be made exponentially stable. The control strategy is also
applied to two well-known chaotic systems: $3ter chaos and Lorenz chaos. Numerical simulations demon-
strate the effectiveness of the proposed schéBE063-651X98)13802-3

PACS numbe(s): 05.45+b

[. INTRODUCTION perspectivg17,18. The synchronization problem consists of
forcing the transmitter system and receiver system to oscil-
Several chaotic systems have been developed and thdate in a synchronous manner. The receiver system is usually
oughly analyzed in recent decades. A chaotic system is @& duplicate of the transmitter system, thereby accounting for
nonlinear deterministic system having a complex and unprewhy the receiver can be considered as an observer able to
dictable behavior. The sensitive dependence on initial condisynchronously detect the state of the transmitter one. Hence,
tion and on the system parameter variation is a prominerfor an observer design similar to the synchronization design,
feature of chaotic behavior. The controlling chaos problenknowledge of explicit dynamics of the controlled complex
of chaotic systems has received increasing atterjierig]. ~ nonlinear systems is obviously a prerequisite. S
In their pioneering work involving the controlling chaos, Ott, The observer design of a general nonlinear system is a diffi-
Grebogi, and Yorkd1] proposed a methotDGY methog ~ cult problem in control and estimation theory. A variety of
which stabilizes unstable periodic orbit§PO) embedded Methods have been developed in recent years for some non-
within a chaotic attractor by making small parameter perturdinear systems. Four approaches are generally available for
bations. Adhering to the OGY method, several extension§onstructing nonlinear observe$9,20. However, the ob-
have been successfully applied to many physical systems f&erver error linearization and coordinate transformation are
various purposef2,3]. Pyragag4] proposed an alternative deemed necessary to construct the state observer.
means of feedback stabilizing UPO by using a delayed selfln this paper, we address the problem of designing state ob-
controlling feedback, in which a continuous feedback termservers for a class of nonlinear systems. The class of systems
contains a delay variable and the delay corresponds to thdetermined is allowed to have output dependent nonlinearity.
period of UPO. Moreover, the delayed self-controlling BY using the Bellman-Gronwall inequality lemnjad1], un-
method[4] and time delay coordinates strate@y-7] can not ~ der some structural assumptions in the nonlinearity, the ex-
only be applied without knowinga priori the dynamical —Ponential stability of the open-loop estimate error dynamics
equations but also be used for some rapid systems. can be inferred. By such an observer scheme, the linear feed-
In addition, several methods known from standard controPack control law based on such estimates is derived to sta-
engineering have also been successfully applied to chaotiilize this class of systems. By again using the Bellman-
systems, e.g., entrainment and migration coriigo®], con- ~ Gronwall inequality, in the case of the observer-based
ventional engineering contrgll0—12, advanced nonlinear control law, the exponential stability of the subsequent
linearization techniqué13], Lyapunov-based method.4], closed-loop system can be inferred. Moreover, the proposed
variable structure control methdd5], and adaptive control control scheme is applied to control two well-known chaotic
theory [16]. The most common feature of these different Systems: Rssler chaos and Lorenz chaos. Numerical simu-
control strategies is that the internal state variables are a$ations demonstrate the effectiveness of the proposed control
sumed to be available to construct the control forces; in adStrategy.
dition, the controller structure is extremely complicated.
However, under many circumstances, limited state informa-!l. OBSERVER-BASED LINEAR CONTROLLER DESIGN
tion may be available and only the process output can be FOR NONLINEAR SYSTEMS
measured. Under such circumstances, a parallel state recon-
struction, e.g., by means of a Kalman filter or a Luenberger- ) . ) ) ]
like type of observer, must be used to implement the control Consider a class of single-input single-output nonlinear
laws. systems described by the following form:
Recently, synchronization of chaotic systems has been
linked to the concept of an observer in a control theoretical

A. Problem definition

x=Ax+f(x,y)+B(u+d),

y=C'x, (1)
*Fax number: 886-6-276-6549. whereu, ye R denote the control input and system output,
Electronic address: tehlu@tehlu.es.ncku.edu.tw respectively x e R" represents the state vectare R is the
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dc bias of the controlled system, ad B, andC denote BecauseA—LC' is an exponentially stable matrix, positive
constant matrices with appropriate dimensions, anl de-  constantsm, and «; exist such that|exg(A—LCNt]|

notes the vector transpose. Furthermofg B) represents a <my exp(—a4t) for all t=0. Therefore the inequality
stabilizable pair andG',A) is a detectable paif. denotes a

real analytic vector field oiR" with f(0,y)=0. Moreover, R N t
f(x,y) satisfies the Lipschitz condition ix, i.e., there [et)|<myle(0)lexp(— ast)+m, 0 exf —ay(t=1)]
exists y>0 such that ||f(xq,y)—f(X2,Y)||<yl[x1— X, .
for x;, x,R", and for allye R, where||(-)| denotes the X[ILfx(7),y(7)—F(x(7),y()]ldT
appropriate norm of vectof-) and vy is the Lipschitz con- A
approp o) andy P <my[&(0) lexp— at) + myy expl(— ast)
The class of nonlinear systems includes a wide variety of t R
chaotic systems such as $&ter chaos and Lorenz chaos. X fo expla;y7)|e(7)|dr (6)

For stabilization purposes, a state feedback control law

is designed herein to asymptotically stabilize the system . s .
(1) to ?he origin. In pracgcep this cyontrol law is ofythe is satisfied for alk=0. Multiplying both sides of Eq(6) by

: exp(ast) and definingm; = maxmy||&0)|,m, v}, as well as ap-
orm X )
plying the Bellman-Gronwall lemma yield
u=KTx—d, 2 . _ _
@ &<y exd —(ay-mt], ™
whereK e R" is chosen such thaA+BKT' is an exponen-

tially stable matrix, which is possible since the pak,B) which implies that the error dynamics exponentially con-

can be stabilized. Therefore the control law in E2).asymp- verge to zero p_rowdeo_l that, >m, . Consequ_ently, a suffi-
cient condition is provided for the exponential convergence

totically stabilizes the linear part of E¢l). If the state vari- S ; !
ables are unavailable, the conventional practice is to coan the state error dynamics in the case of the Lipschitz con-

struct a state observer. Throughout this paper, an observe(ijlt'_On in nonlinearity and a proper choice of the observer
based linear state feedback control scheme is derived sudf:

that the subsequent closed-loop system is exponentially

stable. Some basic definitions and results used for develop- C. Observer-based control law

ing the state feedback control scheme are summarized in the |, this subsection, we consider the case in which the con-

Appendix. trol law (2) is implemented by observer state estimates:

B. Nonlinear state observer u=K'x—d, (8

For estimating the state of Eq. (1), we use a nonlinear

where measured state variablesire replaced by the corre-
state observer of the form

sponding estimates, as supplied by the proposed observer
given in Eq.(3). The extended system describing the closed-
loop 2n-dimensional system constituted by E¢B, (3), and

(8) can be represented as follows:

X=AX+f(X,y)+B(u+d)+L(y-9),

y=C'x, 3
- - Ta

with X denoting the dynamic estimate of the stateand X=(A+BKOX=BKe+f(xy),

f(X,y) representing the estimated vectorf¢k,y) based on N R R

the estimated state. The constant vector € R" is chosen e=(A-LChHe+f(xy)—f(x—8&y). )

such thatA—LCT is an exponentially stable matrix, which is ] )

also possible since the pai€{,A) is detectable. By allow- The separation theoref2] for the linear systems reveals

ing the state erroe=x—X, the subsequent error dynamics that the eigenvalues of the linear part of systnare the
can be written as follows: union of the eigenvalues df+BK"™ andA—LC".

By defining the augmented matrix; as
e=XTX A+BKT —BKT

0 A—LCT

=Ax+f(x,y)+B(u+d)—Ax—f(X,y)—B(u+d) Ac=
—L(C™x—C™x)=(A-LChHe+f(x,y)—f(X,y).

we can obtain the solution of the closed-loop systépwith
(4)  the given initial conditions<(0) and&(0) as follows:

Given an initial conditione(0), the solution of the error (1) x(0) t
dynamics(4) is as follows: &(t) =exp(Act) &(0) +f0eX[{Ac(t—r)]
t
e(t)=exd (A—LCNHt]e(0)+ | exd(A—LCT)(t—7)] fx(7),y(m)
fo [ty ()~ Fx(r) — () y() 0T

X[ (x(7),y(7)—F(X(7),y(7)]dT. (5 (10
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BecauseA+BK™ andA—LCT are exponentially stable ma- where b?2—4ac>0. These parameters are selected in this
trices, positive constant® and a exist such thafiexp@d)|| study asa=0.2,b=5.7,c=0.2. By defining the state vector
=mexp(—at) for all t=0. Therefore the inequality x'=[X; X, Xs] and the system outpyt=x,, the system
(13) can be represented by using Eiy) as follows:

X(t) x(0) t
é(t)sm &(0) exp(—at)erf0 exg —a(t—17)] 0 -1 -1 0 0
f(x(7),y(7)) x=|1 02 0 |x+| O |+|0[(u+0.2
| tox(r),y(m)— fx(7)—&(m),y(7)] 97 0 o -57] Lxx l1

x(0 t =Ax+f(x,y)+B(u+d),
m A( ) exp(—at)+mj exgd —a(t—1)] x+1(xy)+Bu+d)
e(0) 0
=[1 0 O0]x=C'x, (15)
ey -toye | =i oo
f(x(7),y(7)—f(x(7) —e(7),y(7)) with f(0y) =0, and the systerfl5) has a bounded, globally
x(0) t attracting set. Therefore state trajectongs), y(t) are al-
=Mla0) exp(—at)+my exp(—at)f explar) ways bounded and continuously differentiable. Conse-
0 quently, f(xs3,y) satisfies the Lipschitz condition for a
X(7) bounded outpuy. The Lipschitz constant can be selected as
Xla(r) dr (1) y=sup-gy(t). Also, the linear part of the system described

in Eq. (15) is verified in the Appendix as being controllable
is satisfied for allt=0. Multiplying both sides by exp(t)  and observable and, moreover, being stabilizable and detect-
and definingm=maxm||(&(0),x(0))"|,my}, as well as ap- able.
plying the Bellman-Gronwall lemma, yield While considering the state observer of E8), a nonlin-
ear observer for the syste(h5) is given as follows:
X(t)

t
e(t)

= — —

=m exd — (a—m)t]. (12 0 -1 -1 0 0
The above equation implies thatdf>m, then(x(t),e(t))" x=(1 02 0 |x+| 0+ 0/(u+0.29+L(y-y)
exponentially converges to origin with the exponential rate 0O 0 -57 X3y 1
a—m and the closed-loop system is exponentially stable as
well. Consequently, a sufficient condition is provided for the
exponential convergence of the subsequent closed-loop sys-

=AX+f(X,y)+B(u+d)+L(y—Y),

tem in the case of the Lipschitz condition in nonlinearity and y=[1 0 O0QJx (16)
a proper choice of both the observer ghiand the feedback
gainK. and the gain vectorl is chosen asL=[l; I, I5]"

It can be easily verified that a class of chaotic systems_rgg —0.16 —0.014" such thatA—LCT is an asymp-

including the driven Rssler chaos and driven Lorenz chaos, yotically stable matrix. By regulating the state trajectory of

belong to the class nonlinear systems mentioned above. Iysiem(15) to the origin, the observer-based state feedback
the following section, the observer-based feedback contralonirol Jaw(8) can be expressed as

approach proposed herein is applied to control this class of
chaotic systems. U=KTX—d=KT%—0.2 17)
ll. APPLICATION TO CHAQTIC SYSTEMS
and the state feedback gain iK=[k, k, ks]"
A. Rossler system with control =[3.0 —0.2 0.9". Figure 1 displays the numerical simu-
This system is described by the following differential 12tion results of the closed-loop system. The control was
equations: switched on att=0sec with the initial states(x;(0)
=0.7, x,(0)=0.4, x3(0)=—0.8 and the initial estimated
)-(l:_XZ_X31 X2:X1+aX2, X3=C+X3(X1—b)+u, Sta.tes(;(j_(o)=04l 5\(2(0)2_011 5\(3(0)212)
13

wherea, b, andc denote positive parameters. By assuming B. Lorenz system with control

thatu=0 in the above equation, the Bzler system is ob- This system is described by the differential equations
tained. This system has two equilibrium points: . .
Xl:_O'X1+O'X2, X2=I’X1—X2—X1X3+U,

)’ X3=X1Xp— BX3, (18)

N - - =
Xe = (Xel 1Xe2 1Xe3

b++b?Z—4ac b=+b?—4ac b=b’—4ac\’
a - ) I

2a ' 2a 2a

whereo, r, and 8 denote positive parameters. By assuming
thatu=0 in the above equation, we obtain the Lorenz sys-
(14)  tem. Forr>1, this system has three equilibrium points:
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FIG. 1. System responses of the controllecs8ter chaos(a)
the actual stat®, and the estimated stakg; (b) the actual stats,
and the estimated stakg; (c) the actual state; and the estimated
stateXs; (d) the control inputu.
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FIG. 2. Two-dimensional image of Lorenz chaos trajectory.

Xg=(xVB(r—1),=B(r—1),r—1), x%=(0,0,0.

(19
These parameters are selected hereingasl0, r=28,
B=%. Figure 2 depicts the chaos trajectory of the system
(18) with the parameters given as above ar0. By defin-
ing the state vectax"=[x; X, X3] and the system output
y=X,, the systen(18) can be represented by using Eif)
as follows:

—-10 10 O 0 0
x=| 28 -1 0 |x+ —X1X3|+| 1|u
0 0 _% X1Xo 0
=Ax+f(x,y)+Bu,
y=[1 0 0]x, (20)

with f(0,y)=0, and the systert0) has a bounded, globally
attracting set. Therefore state trajectonds), y(t) are al-
ways bounded and continuously differentiable. Conse-
quently, f(xs,y) satisfies the Lipschitz condition for a
bounded outpuy. The Lipschitz constant can be selected as
v=suUp=oYy(t). Also pointed out in the Appendix, the linear
part of the systen(20) is easily found to be both stabilizable
and detectable.

By considering the state observer of Eg), we obtain

-10 10 O 0 0
28 -1
0 0

O [RX+| —yXs|+| L{u+rL(y—y)
yXo 0

X=

8
-3
=AX+f(X,y)+B(u+d)+L(y—y),

(21)

by selecting the gain vectoL as L=[l; |, I5]'=
[-10 30 0O such thatA—LCT is an exponentially
stable matrix. By stabilizing the state trajectory of the system
(20) to the equilibrium pointx?, the observer-based state

feedback contro(8) is given by

y=[1 0 0lx,
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u=KT(x—x9), (22

where the state feedback gain K=[k; k, ks]'=
[-15.5 —13.5 0]". Figure 3 summarizes the numerical
simulation results of the closed-loop system with the initial
states(x;(0)=0.3,x,(0)=0.4,x3(0)=—0.8) and the initial
estimated state,;(0)=0.1,X,(0)=—0.1,X3(0)=—0.2).
Simulation results of these chaotic systems demonstrate
that (i) the estimated state converges exponentially to the
actual state andi) an observer-based linear state feedback
control scheme can adequately control the chaos problem.

IV. CONCLUSIONS

This work presents a nonlinear state observer for a class
of nonlinear systems with some structural assumptions. An
observer-based linear state feedback control approach is also
derived to stabilize this class of nonlinear systems. The con-
trol strategy is relatively simple and clearer than other either
linear methods or nonlinear state feedback methods that re-
quire full state information. Analysis results confirm the ex-
ponential stability of the closed-loop system. The control
scheme is also successfully applied to the controlling chaos
problem. Moreover, numerical simulation results demon-
strate the effectiveness of the proposed control scheme.

APPENDIX

For developing the observer-based controller of a class of
nonlinear systems with its application to the problem of con-
trolling chaos, some basic definitions and results of linear
time-invariant control systems are briefly reviewed. The ma-
terial is adopted from control system theof1-23. A
reader who is unfamiliar with the results might find this in-
formation helpful.

Consider the following linear time-invariant system:

x=Ax+Bu, (Ala)
y=C'x, (Alb)

wherex e R" represents the-dimensional state vector, and
u,y e R denote the control input and system output, respec-
tively. In addition, A, B, and C denote constant matrices
with appropriate dimensions.

With a certain control inputi=u, there exists a unique
solution (or trajectory of Eq. (Ala),

X(t)=x(t;0x(0),u), (A2)
which satisfies Eq(Ala) under the initial conditions
X(0; 0x(0),u)=x(0). (A3)

In many engineering applications, a need arises not only
to drive the state trajectory to the equilibrium poixt 0
asymptotically but also to estimate how rapidly the trajectory
approaches 0. This concept can be viewed as exponential
stability of dynamical systems.
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FIG. 3. System responses of the controlled Lorenz chat®:

Definition 1 (exponential stability)The equilibrium point  the actual stat&, and the estimated stake; (b) the actual state,
x=0 of Eq.(Ala) is exponentially stable with a convergence and the estimated stakg; (c) the actual stat&, and the estimated
rate « if there exist constants, a>0 such that statexs; (d) the control inputu.
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[x(t)|<m]x(0)|exp(— at), Vt=0. (A4)  [or, in short, the pairC",A)] is said to bedetectablef there
. . .. exists an output injection gaibh e R" such that the closed-
The. problem of cont'rollab|llty is related to the possibility loop state equation=(A—LCT)x is exponentially stable.
of driving the state trajectory(t) of the dynamical system  Remark.A completely controllable pair can always be
given by Eq.(Ala) by means of the control input(t) in a  stabilized. Nevertheless, the opposite is not true. Intuitively,
finite interval of time. stabilizability can be viewed as stability of uncontrollable
Definition 2 (controllability). The system described by states. An equivalent interpretation of stabilizability is that
Eg. (A1) [or, in short, the pair A4,B)] is said to becom-  all uncontrollable modes are exponentially stable. Similarly,
pletely controllable if there exists a control inpui(-) that an observable pair is also always detectable, and the con-
can drive the system from any initial stat€0) to any de- verse is not true. Intuitively, detectability can be viewed as

sired final statex(t;), ty<<ce. stability of unobservable states. An equivalent interpretation

As indicated previouslj22,23, the pair @,B) is control- ~ Of detectability is that all unobservable modes are exponen-
lable if and only if the rank condition tially stable ones.

Example 1.Consider a linear system described by Eq.
randB AB --- A" 'B]=n (A1) with the following triplicate matrices:

is satisfied. 0o -1 -1 0

Relatingu to the Eurrent stnat.e of the systefAl) in a A=|1 02 0|, B=|0|, c™=[1 0 o
feedback form,u=K'x, KeR" is a column vector, Eq. 1
(Ala) becomes 0 0 =57

x=(A+BKT)x. (A5) 'Ia':lwgn it can easily be verified that rdiik AB A’B]=3

The task for control theory involves designing a vedtor cT

such that the fixed point=0 is exponentially stable with a CTA |
convergence rater. Related investigations have also con- rang == =3.
firmed[22,23 that, if the pair @,B) is controllable, then for C'A

any given set of numbers Rgj<-—a, |'=1,. . .nT oneé can  Therefore the pair 4,B) is both controllable and stabiliz-
always find a vectoK so that the matrbA+BK' has this  gpjle and the pair CT,A) is also bothobservableanddetect-
set of numbers as its eigenvalues, i.e., all eigenvalues of gpje

+BKT can be arbitrarily assigned to the open left-half com-  Example 2.Consider a linear system described by Eq.
plex plane or the matriA+BKT is called an exponentially (A1) with the following triplicate matrices:

stable matrix.

The concept of observability closely resembles that of -10 10 O 0
controllability. More specifically, observability refers to the  A_| 28 —1 0 B=|1 c’=[1 0 0].
possibility of determining the initial state(0) by measuring 0 o _g/3 ' ol’

the inputu(t) and the outpuy(t) over a finite interval of

time. . _ Then it can easily be verified that rdiik AB AB]=2
Definition 3 (observability).The system given by Eq. gng

(A1) [or, in short, the pairC",A)] is said to becompletely

observableif, for any initial statex(0), there exists a finite c’
time 7 such thatx(0) can be determineduniquely from rank CTA [=2.
u(t) andy(t) for 0Ost<r. CTA?

Previous investigationf22,23 have also confirmed that

the pair C",A) is observable if and only if the rank condi- Moreover, —all eigenvalues of the matrixA are
tion {—22.8277,11.8277+-2.667% and there exists only one

uncontrollable and unobservable mdde2.667%, which is
cT stable. Hence the paiiA(B) is notcontrollablebut is stabi-
Cc'A lizable, and the pair CT,A) is not observablewhile it is
: =n detectable
cTan-1 The following lemma plays a prominent role in deriving
exponential stability of the closed loop in the observer-based
is satisfied. control system.
The following stabilizability condition is weaker than  Lemma 1.(Bellman-Gronwall inequality [21]. Assume
controllability. thatz(-):R,—R, is a continuous function and, 3>0 are
Definition 4 (stabilizability) The system described by Eq. 9given constants. Under these conditions, if
(A1) [or, in short, the pair4,B)] is said to bestabilizableif ¢
there exists a state feedback gKie R" such that the closed- z(H)<p+ J az(7)dr for all t=0, (AB)
loop state equatior=(A+BKT)x is exponentially stable. 0
The following detectability condition is weaker than the
observability condition.
Definition 5 (detectable)The system given by EqA1) z(t)<pB explat) for all t=0. (A7)

ran

then
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