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Intermingled fractal Arnold tongues
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Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia

~Received 6 March 1997; revised manuscript received 5 September 1997!

We present a pattern of multiply interwoven Arnold tongues in the case of the single-well Duffing oscillator
at low dissipation and weak forcing: Strips of2

2 Arnold tongues form a truncated fractal structure and the
tonguelike regions in between are filled by finely intermingled fractal-like1

1 and 3
3 Arnold tongues, which are

fat fractals characterized by the uncertainty exponenta'0.7. The truncated fractal Arnold tongues are present
in the case of high dissipation as well, while the intermingled fractal pattern gradually disappears with increas-
ing dissipation.@S1063-651X~98!04002-1#

PACS number~s!: 05.45.1b, 47.53.1n, 47.54.1r
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I. INTRODUCTION

During the past decade much attention has been pai
the investigation of a sensitive dependence, associated
the chaotic behavior of nonlinear dynamical systems,
phase space and in parameter space. The chaotic behav
nonlinear dynamical systems is characterized in the ph
space by two types of sensitive dependence on initial co
tions. The first type is characterized by a positive Lyapun
exponent, i.e., by exponential separation of trajectories or
nating from neighboring initial conditions. The second ty
of sensitive dependence was found by Grebogi, McDon
Ott, and Yorke@1#: a sensitive dependence of asympto
attractors for systems with fractal basin boundaries@1–5#.
Systems with multiple attractors can also exhibit an extre
type of fat fractals: the riddled basins@6–11#; in such cases
the chaotic attractor is riddled with holes that belong to
basins of other attractors.

On the other hand, a sensitive dependence in param
space was investigated by Farmer@12# using a logistic map.
It was shown that the chaotic parameter set, i.e., the se
control parameter values generating chaotic attractors, i
example of a fat fractal, i.e., a fractal set with positive L
besgue measure and box-counting dimension one@12,13#. In
a further development, Lai and Winslow@14# found riddled
chaotic parameter sets in spatiotemporal dynamical syste
implying an extreme sensitive dependence on paramete

In this paper we investigate in parameter space and
phase space a sensitive dependence associated with pe
attractors in the absence of chaotic behavior. To this end
study first a single-well Duffing oscillator at weak forcin
and low dissipation. In that region of parameter space th
are no chaotic tongues. However, we find an interesting
tern of multiply intermingled Arnold tongues that are f
fractals associated with a weak dependence on paramete
should be pointed out that this pattern is not related to
appearance of sustained chaos.

Extending the investigation to higher dissipation, we fi
that the pattern of truncated fractal Arnold tongues is pres
even at high dissipation, while the pattern of intermingl
fractal Arnold tongues gradually disappears with increas
dissipation. The single-well Duffing oscillator

ẍ1g ẋ1x1x35 f cosvt ~1!
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has been investigated previously in the limits of strong d
sipation@15–23# and in the Hamiltonian case@24#.

On the other hand, it should be noted that, in gene
investigations of low-dimensional dynamical systems at l
dissipation have been scarce. It was shown recently th
periodically kicked mechanical rotor at small damping po
sesses a large number of coexisting periodic attractors
closely interwoven basins of attraction@25#. For a nonlinear
oscillator with dry friction it was shown that a complex pa
tern of Arnold tongues at smaller and smaller scales app
for weak dissipation@26#.

The Duffing oscillator~1! is characterized by the interpla
of two frequencies: the dressed intrinsic frequencyv08 and
the forcing frequencyv @16,17#. At low forcing f and weak
dissipationg, considered in this paper, we have period
transients with entrainment of the forcing frequency to t
dressed intrinsic frequency or quasiperiodic transients a
ciated with irrational winding numberW5v/v08 . All these
transients asymptotically approach the periodic attract
which are characterized by a rational winding numbersW
5p/q (p,q are prime numbers!. It is standard to refer to
parameter regions ofp/q entrainment as Arnold tongue
@27#.

The classic pattern of Arnold tongues in the forcin
amplitude–forcing frequency parameter plane is associa
with the sine circle map. In that case thep/q Arnold tongues
are ordered through the Farey construction, where to e
rational winding numberp/q corresponds to one simpl
hornlike Arnold tongue@28#.

II. FRACTAL AND TRUNCATED FRACTAL ARNOLD
TONGUES AT LOW DISSIPATION

Let us first calculate Arnold tongues for the Duffing o
cillator ~1! at very low dissipationg50.001 and for fixed
initial conditionsx050, ẋ050. In the first step each point o
a 1503150 grid, with forcing frequencyv and forcing am-
plitude f given by the horizontal and vertical axes, respe
tively, was followed numerically to determine the asympto
attractor.

In this way we obtain the diagram shown in Fig. 1. Wi
increasing forcing there appear consecutive narrow tong
of period 2, 3, 5, 7, etc. At the point in parameter space w
1544 © 1998 The American Physical Society
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57 1545INTERMINGLED FRACTAL ARNOLD TONGUES
v'0.55, f '0.7 there is a tip of a broad period-3 tongu
~closed triangles!; above it, atv'0.6, f '1.5, there is a tip
of a period-2 tongue~open circles!. These two tongues inter
twine abovev'0.65, f '1.7. On the other hand, each o
these tongues has holes that correspond to period 1. Thu
the region aroundv'0.7, f '2.5 we have an intertwining o
three tongues corresponding to the periods 1–3.

Let us now investigate in more details this region ofv, f
parameter space. In particular we focus our attention o
small region of parameter plane defined by 0.7198,v
,0.7203 and 2.846, f ,2.854. The 2

2 , 3
3, and 1

1 Arnold
tongues calculated in this parameter region on a 4003250
grid are displayed in Figs. 2~a!, 2~b!, and 2~c!, respectively.
Here a black dot was plotted on each grid point leading to
asymptote having a certain value of the winding numberW
5p/q, while no dot was plotted for grid points leading
attractors with other values of the winding number. The
results show that a fine-scale intermingled structure
present in the parameter space, with two types of Arn
tongue pattern.

On a small scale, the22 Arnold tongue consists of man
narrow black and blank parallel strips. However, a magn
cation of a portion of parameter space shows that this frac
like pattern is truncated at some scale@Fig. 2~a!#, so that
further magnification displays smooth boundaries of this
ear striated structure, without a repeated birth of new st
tions. We note that in Fig. 1~a! one strip of the2

2 Arnold
tongue splits into two strips, which belong to the same win
ing number2

2 and to the same attractor.@All the strips in Fig.
1~a! belong to two existing asymptotic attractors of peri
2.#

On the other hand, quite a different fractal pattern is o
tained in the blank regions between the strips of the2

2 Arnold

FIG. 1. Values of parametersf and v that lead to periodic
attractors of period 1~blank!, 2 (s), 3 (m), 4 (L), 5 (*), 6 (,),
and 7 (3) in the parameter region 0.5<v<1 and 0< f <5
~sampled over a uniform grid of 1503150 for the Duffing oscilla-
tor! ~1! at low dissipationg50.001. Fixed initial conditionsx0

50, ẋ050 are used.
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tongues in Fig. 2~a!; in these regions we obtain the inte
mingled fractal Arnold tongues having winding numbers3

3

@Fig. 2~b!# and 1
1 @Fig. 2~c!#. In these cases the fine-sca

structure is present on all scales~within computer precision!,
as revealed by illustrative magnifications of successiv
smaller and smaller regions of parameter space, which c
tain fine scale structure near the opening of the abo
mentioned segment of the11 Arnold tongue at the place o
splitting of the 2

2 Arnold tongue@Figs. 2~d! and 2~e!#. Thus
the1

1 Arnold tongues have a fractal-like structure, which ge
metrically resembles a form of classic chaotic strange att
tor. Moreover, such fractal structures of the1

1 and 3
3 Arnold

tongues are intermingled at all scales, i.e., the fractal reg
belonging to these two Arnold tongues are finely interwov

The appearance of a fractal pattern is usually conside
as a strong indicator of chaotic motion@16# or of nonchaotic
strange attractors@2#, while here it appears for low-period
Arnold tongues. We note that it was shown previously th
for Duffing oscillators at rather low forcing amplitude an
strong dissipation fractal basin boundaries appear@16,20#.
On the other hand, a pattern with repeated births of striati
under transformation of scale was previously found for ba
boundaries in a transiently driven pendulum system@4#.

Let us now investigate the sensitivity of Arnold tongu
in Fig. 2 on parameters. In the previous investigations
sensitive dependence of chaotic parameter sets was qu
fied by the uncertainty exponenta @1,2#. In an analogous
way we quantify the sensitive parameter dependence for
intermingled Arnold tongues in Fig. 2. To this end we pr
ceed as follows. A set of values of forcing amplitude
drawn from a uniform distribution along a line of fixed fre
quency in Fig. 2~a!. Consider only thoseNt points from this
distribution that lie on a2

2 Arnold tongue and denote each o
the corresponding values of the forcing amplitude byf . In
each case definef 85 f 1e, wheree is a small perturbation.
Determine whetherf 8 asymptotically approaches to an A
nold tongue having a winding number different from22; in
such a case this value of the parameterf is uncertain. This
process is repeated for allNt values off , while holding the
magnitude of perturbatione unchanged. Assume that amon
theseNt values there areNu uncertain parameter values. Th
fraction of uncertain parameter values of the forcing amp
tude at perturbatione for the 2

2 Arnold tongues is then
P( 2

2 ,e)5Nu /Nt . By increasinge the value ofNt increases
until Nu reaches 400.

This process is then repeated at different values of
perturbatione. Obviously, in analogy to@2#, a small errore
in the system parameterf might alter the location of the
basin boundary so that fixed initial conditionsx050, ẋ050
cause a shift from one basin to another. In a similar way
determine the fractionsP( 3

3 ,e) andP( 1
1 ,e) corresponding to

Figs. 2~b! and 2~c!, respectively.
In analogy to the chaotic case@1,2#, one may expect that

if the basin boundary dimension is approximately constan
the region of parameter space being examined, the scalin
P(p/q,e) is the same as the scaling of uncertainty fraction
the phase space, i.e.,

PS p

q
,e D;ea~p/q!, ~2!
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FIG. 2. Blowup of Fig. 1 over the parameter region 0.7198,v,0.7203 and 2.845, f ,2.855 for~a! 2
2 Arnold tongues~black dots!, ~b!

3
3 Arnold tongues~black dots!, and ~c! 1

1 Arnold tongues~black dots!. ~d! and ~e! Two successively expanded views of a detail of the1
1

Arnold tongues. No other Arnold tongues were found in the above parameter region.
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where a(p/q) is the uncertainty exponent associated w
the p/q Arnold tongue. Calculatinga at the frequencyv
50.719 989 5, i.e., which is a sweep through the opening
the above intermingled11 and 3

3 Arnold tongue fractal struc-
tures, we obtain the uncertainty exponenta'0.7 for the 1

1

and 3
3 Arnold tongues. As expected, for the2

2 Arnold tongue
the uncertainty exponent is close to 1,a'1.0.

Calculating the uncertainty exponenta for different sub-
sets of (v, f ) parameter space in Fig. 2 we have found th
roughly the same valuea'0.7 corresponds to the11 and 3

3

Arnold tongues everywhere in the parameter space of Fi
and the other valuea'1.0 to the 2

2 Arnold tongue. This
result can be compared to the previous results obtained
the chaotic basin structure of the kicked double rotor that
f

t

2

or
e

uncertainty coefficienta takes one value in the subregio
that is fractal and the other~integer! in the subregion that is
not fractal, with both subregions being intertwined@3#.

Obviously, the fractal Arnold tongues discussed above
flect the fractal-like structure of basin boundaries in pha
space. To show this we have constructed a relevant sec
of phase space around the fixed initial conditionsx050, ẋ0
50, performing the calculation for parameter valuesf
52.850 92,v50.719 99, which correspond to a point in p
rameter space near the tip of the1

1 Arnold tongue in Figs.
2~d! and 2~e!. We take a grid of initial conditions20.05
,x0,0.05, 20.05, ẋ0,0.05 around the initial point
x050, ẋ050 used in the calculations from Fig. 2. In th
way we obtain the basins of attraction of periods 1–3, sho
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57 1547INTERMINGLED FRACTAL ARNOLD TONGUES
in Fig. 3. These basins of attraction are associated with
asymptotic attractors, two of period 1, two of period 2, a
one of period 3~Fig. 4!. We were not able to find any othe
attractor in the phase space. Because of the rather small
ing amplitude in the present calculations, the number of
tractors is rather small~5! in the region being closely inves
tigated, although the dissipation is low. It is well known th
in general, the number of asymptotic attractors in dissipa
systems increases with lowering dissipation, approaching
finity in the Hamiltonian limit@2,25#. This trend is also seen
for the Duffing oscillator~1! by further decreasing the valu
of dissipation strengthg below 0.001.

As seen from Fig. 3, the basins of attraction of period 1

FIG. 3. Basins of attraction for the single-well Duffing oscillat
~1! at low dissipationg50.001 in the initial condition region

20.05<x0<0.05 and 20.05< ẋ0<0.05 for the parametersv
50.719 99 andf 52.850 92:~a! period-2 basins,~b! period-3 ba-
sins, and~c! period-1 basins.
e
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t-

,
e
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and 3 correspond to the11,
2
2, and 3

3 Arnold tongues in Fig. 1,
respectively. Consequently, the values of the uncertainty
ponent area'0.7 for the intermingled period-1 and period-
basins anda'1.0 for the period-2 basin with a truncate
fractal boundary. These values are practically the same a
the corresponding Arnold tongues in Fig. 2. This is in acc
dance with the general expectation that the uncertainty ex
nents computed in phase space and parameter spac
equivalent, in analogy to the previous study of chaotic s
tiotemporal systems@14#.

III. TRUNCATED FRACTAL ARNOLD TONGUES
AT HIGH DISSIPATION

Let us now investigate the question whether the int
mingled Arnold tongues appear at high dissipation. To t
end we perform a sequence of calculations in the region
overlap of the major22 and 3

3 Arnold tongues with increasing
dissipation strength. In general, we find that with increas

FIG. 4. Attractors of the Duffing oscillator~1! for the parameter
valuesg50.001, v50.719 99, andf 52.850 92 of period 1~de-
noted 1 and 1’!, 2 ~denoted 2 and 2’!, and 3~denoted 3!. No other
attractors were found.

FIG. 5. Values of the parametersf andv that lead to periodic
attractors~denoted the same way as in Fig. 1! and to chaotic attrac-
tors ~j! for the Duffing oscillator~1! at high dissipationg50.2.
Fixed initial conditionsx050 andẋ050 are used.
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FIG. 6. Blowup of Fig. 5 over the parameter region 0.58<v<0.61 and 28< f <30 for ~a! 2
2 Arnold tongues~black dots!, ~b! 3

3 Arnold
tongues~black dots!, and~c! 1

1 Arnold tongues~black dots!. ~d! and~e! Two successively expanded views of a detail of the3
3 Arnold tongues.
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dissipation the uncertainty exponenta in the overlap region
gradually increases towards 1 and for a high dissipatiog
50.2 we obtaina'1.0 for 2

2 and 3
3 Arnold tongues.

In Fig. 5 we present for high dissipationg50.2 the state
diagram in parameter space, in analogy to Fig. 1. In
frequency interval 0.5<v<1 there are three major tongue
In comparison to Fig. 1 the tips of these tongues are shi
towards higher forcing strengths. The second feature is
the chaotic tongues~closed squares! are closer to the tips o
Arnold tongues than in the case of weak dissipation.

In analogy to our previous considerations of the low d
sipation case~Fig. 2!, let us now focus our attention on
small region of parameter plane defined by 0.58<v<0.61
and 28< f <30, where the2

2 and 3
3 Arnold tongues overlap

~the tongue in the middle of Fig. 5!. The 2
2,

3
3, and 1

1 Arnold
e

d
at

-

tongues in that region of parameter plane are displayed
Figs. 6~a!, 6~b!, and 6~c!, respectively. Two successively ex
panded views of a detail of the33 Arnold tongues are shown in
Figs. 6~d! and 6~e!. We find that the pattern of truncate
fractal Arnold tongues is present in the case of high dissi
tion as well, but not the pattern of intermingled fractal A
nold tongues.

IV. CONCLUSION

In this paper we investigate the fractal pattern of Arno
tongues associated with the single-well Duffing oscillator
the parameter region without sustained chaotic behavior
particular we study the overlapping region of the2

2 and 3
3

Arnold tongues in the case of weak dissipation and we fi
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57 1549INTERMINGLED FRACTAL ARNOLD TONGUES
an exotic parameter space structure of Arnold tongues of
types: the truncated fractal type~for the 2

2 Arnold tongues!
and the intermingled fractal type~for the 1

1 and 3
3 Arnold

tongues!. These structures exhibit a weak type of sensit
dependence of asymptotic attractors on parameters that
tinguish between Arnold tongues having different windi
numbers. Namely, for the11 and 3

3 Arnold tongues the uncer
tainty exponent isa'0.7, implying the exterior dimension
dex5D2a51.3. Assuming, for example, that the parame
f can be determined to a precision of 10214, then P(e)
;(10214)0.7;10210 and hence the probability of error in th
numerical prediction of the final-state Arnold tongue
roughly 1 in 1010. This means that in the case consider
here, in spite of an exotic fractal-like structure, the compu
simulations are quite reliable, i.e., the dependence
asymptotic attractors on system parameters is very w
weaker than in the case of the chaotic parameter set as
ated with the logistic map havinga'0.4 @1,12#. However,
by a further reduction of dissipation, a more and more s
sitive dependence of asymptotic attractors on system pa
eters will appear, leading to a pattern of Arnold tongues w
an extremely sensitive dependence.

One might speculate on a possible origin of fractal Arno
tongue structure in the parameter region that is far remo
from the regions with chaotic behavior. We note that su
behavior might be related to the appearance of transient
s
,
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ci-
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h
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h
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otic behavior of the system before it settles down in one
the periodic attractors. Namely, the sensitive dependenc
the lifetime of the chaotic transient on initial conditions a
parametrization may be associated with the appearanc
fractal boundaries. Thus the fractal Arnold tongues might
considered as identifying characteristics of transient chao

On the other hand, with an increase of dissipation stren
the uncertainty exponent associated with Arnold tong
gradually approaches unity, i.e., the intermingled pattern
fractal Arnold tongues dissapears. However, the trunca
fractal Arnold tongues appear even in the case of high di
pation.

As for the generality of our results on intermingled frac
Arnold tongues, it seems that they appear as a general pa
associated with weak dissipation. The appearance of in
mingled fractal Arnold tongues is not restricted only to
segment of the parameter space being considered, but i
sociated with other regions of the parameter space too.
example, we find a similar pattern for the intermingled A
nold tongues of periods 4 and 7 aroundv'6.61, f '37.6,
and g5531024. Furthermore, in preliminary calculation
we have found that this pattern is not restricted to the Ham
tonian ~1!, but is of a more general character. For examp
we find a similar pattern for oscillators with different type
of dissipation, including week quadratic and Coulom
damping.
rac-
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