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Intermingled fractal Arnold tongues
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We present a pattern of multiply interwoven Arnold tongues in the case of the single-well Duffing oscillator
at low dissipation and weak forcing: Strips éfArnoId tongues form a truncated fractal structure and the
tonguelike regions in between are filled by finely intermingled fractal-{ilemd%Arnold tongues, which are
fat fractals characterized by the uncertainty exporenD.7. The truncated fractal Arnold tongues are present
in the case of high dissipation as well, while the intermingled fractal pattern gradually disappears with increas-
ing dissipation][S1063-651X98)04002-1

PACS numbd(s): 05.45+b, 47.53+n, 47.54+r

I. INTRODUCTION has been investigated previously in the limits of strong dis-
sipation[15—-23 and in the Hamiltonian cade4].

During the past decade much attention has been paid to On the other hand, it should be noted that, in general,
the investigation of a sensitive dependence, associated withvestigations of low-dimensional dynamical systems at low
the chaotic behavior of nonlinear dynamical systems, irdissipation have been scarce. It was shown recently that a
phase space and in parameter space. The chaotic behaviorpsfriodically kicked mechanical rotor at small damping pos-
nonlinear dynamical systems is characterized in the phasgesses a large number of coexisting periodic attractors and
space by two types of sensitive dependence on initial condielosely interwoven basins of attracti¢®5]. For a nonlinear
tions. The first type is characterized by a positive Lyapunovoscillator with dry friction it was shown that a complex pat-
exponent, i.e., by exponential separation of trajectories origitern of Arnold tongues at smaller and smaller scales appears
nating from neighboring initial conditions. The second typefor weak dissipatio26].
of sensitive dependence was found by Grebogi, McDonald, The Duffing oscillator(1) is characterized by the interplay
Ott, and Yorke[1]: a sensitive dependence of asymptoticof two frequencies: the dressed intrinsic frequergy and
attractors for systems with fractal basin boundafies5].  the forcing frequency [16,17). At low forcing f and weak
Systems with multiple attractors can also exhibit an extremelissipationy, considered in this paper, we have periodic
type of fat fractals: the riddled basifi—11]; in such cases transients with entrainment of the forcing frequency to the
the chaotic attractor is riddled with holes that belong to thedressed intrinsic frequency or quasiperiodic transients asso-
basins of other attractors. ciated with irrational winding numbew=w/w;. All these

On the other hand, a sensitive dependence in parametgansients asymptotically approach the periodic attractors,
space was investigated by Farni¢®] using a logistic map. which are characterized by a rational winding numbéts
It was shown that the chaotic parameter set, i.e., the set ot p/q (p,q are prime numbejs It is standard to refer to

control parameter values generating chaotic attractors, is asarameter regions op/q entrainment as Arnold tongues
example of a fat fractal, i.e., a fractal set with positive Le-[27],

besgue measure and box-counting dimension[@2¢e13. In The classic pattern of Arnold tongues in the forcing
a further development, Lai and Winsldw4] found riddled  amplitude—forcing frequency parameter plane is associated
chaotic parameter sets in spatiotemporal dynamical systemgjth the sine circle map. In that case th&g Arnold tongues
implying an extreme sensitive dependence on parameters. are ordered through the Farey construction, where to each

In this paper we investigate in parameter space and iRational winding numberp/q corresponds to one simple
phase space a sensitive dependence associated with periofligmiike Arnold tongug28].

attractors in the absence of chaotic behavior. To this end we

study first a single-well Duffing oscillator at weak forcing

and low dissipation. In that region of parameter space there |; FRACTAL AND TRUNCATED FRACTAL ARNOLD

are no chaotic tongues. However, we find an interesting pat- TONGUES AT LOW DISSIPATION

tern of multiply intermingled Arnold tongues that are fat

fractals associated with a weak dependence on parameters. ItLet us first calculate Armnold tongues for the Duffing os-

should be pointed out that this pattern is not related to theillator (1) at very low dissipationry=0.001 and for fixed

appearance of sustained chaos. initial conditionsx,=0, X,=0. In the first step each point on
Extending the investigation to higher dissipation, we finda 150< 150 grid, with forcing frequency and forcing am-

that the pattern of truncated fractal Arnold tongues is presenjlitude f given by the horizontal and vertical axes, respec-

even at high dissipation, while the pattern of intermingledtively, was followed numerically to determine the asymptotic
fractal Arnold tongues gradually disappears with increasingttractor.

dissipation. The single-well Duffing oscillator In this way we obtain the diagram shown in Fig. 1. With
o increasing forcing there appear consecutive narrow tongues
X+ yx+x+x3= fcoswt (1) of period 2, 3, 5, 7, etc. At the point in parameter space with
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tongues in Fig. @&); in these regions we obtain the inter-
mingled fractal Arnold tongues having winding numbérs
[Fig. 2(b)] and 1 [Fig. 2c)]. In these cases the fine-scale
structure is present on all scal@gthin computer precision
as revealed by illustrative magnifications of successively
smaller and smaller regions of parameter space, which con-
tain fine scale structure near the opening of the above-
mentioned segment of the Arnold tongue at the place of
splitting of the3 Arnold tongue[Figs. 2d) and 2e)]. Thus
thet Arnold tongues have a fractal-like structure, which geo-
metrically resembles a form of classic chaotic strange attrac-
tor. Moreover, such fractal structures of theind 2 Arnold
tongues are intermingled at all scales, i.e., the fractal regions
belonging to these two Arnold tongues are finely interwoven.
The appearance of a fractal pattern is usually considered
as a strong indicator of chaotic motiph6] or of nonchaotic
strange attractorf2], while here it appears for low-period
Arnold tongues. We note that it was shown previously that
for Duffing oscillators at rather low forcing amplitude and
strong dissipation fractal basin boundaries apgéd#2Q.
On the other hand, a pattern with repeated births of striations
FIG. 1. Values of parameters and o that lead to periodic under transformation of scale was previously found for basin

attractors of period 1blank), 2 (O), 3 (A), 4 (), 5 (*), 6 (V), boundaries in a transjently driven p.e.n.dulum sysfdiin
and 7 () in the parameter region OSw<1 and O<f<5 _ Lgt us now investigate the sensitivity of Arnolld tongues
(sampled over a uniform grid of 150150 for the Duffing oscilla- 1N Fig. 2 on parameters. In the previous investigations the
tor) (1) at low dissipationy=0.001. Fixed initial conditons,  Sensitive dependence of chaotic parameter sets was quanti-
=0, %,=0 are used. fied by the uncertainty exponent [1,2]. In an analogous
way we quantify the sensitive parameter dependence for the
w~0.55, f~0.7 there is a tip of a broad period-3 tongue intermingled Arnold tongues in Fig. 2. To this end we pro-
(closed triangles above it, atw~0.6, f~1.5, there is a tip ceed as follows._ A set of_ va!ues of forC|_ng amphtude is
of a period-2 tonguéopen circles These two tongues inter- drawn from a uniform distribution along a line of fixed fre-
twine abovew~0.65, f~1.7. On the other hand, each of quency in Fig. 2a). Consider only thos&l; points from this
these tongues has holes that correspond to period 1. Thus, istribution that lie on & Arnold tongue and denote each of
the region around~0.7, f~2.5 we have an intertwining of the corresponding values of the forcing amplitude foyn
three tongues Corresponding to the periods 1-3. eaCh CE}SE deﬁné’ =f+ €, Wher§e IS a Sma” perturbat|0n.
Let us now investigate in more details this regionsgf ~ Determine whethef’ asymptotically approaches to an Ar-
parameter space. In particular we focus our attention on ROld tongue having a winding number different frofnin
small region of parameter plane defined by 0.74@8 such a case this value of the paramdtes L.mcerta[n. This
<0.7203 and 2.846f<2.854. TheZ, £ and ! Arnold  Processis repeated for all; values off, while holding the
tongues calculated in this parameter region on ax4PE0 magnitude of perturbatioa unchanged. Assume that among
grid are displayed in Figs.(d), 2(b), and Zc), respectively. theseN; values there arBl, uncertain parameter values. The
Here a black dot was plotted on each grid point leading to afraction of uncertain parameter values of the forcing ampli-
asymptote having a certain value of the winding numiaer tude at perturbatiore for the § Amold tongues is then
—p/q, while no dot was plotted for grid points leading to P(3,€)=Ny/N;. By increasinge the value ofN, increases
attractors with other values of the winding number. Theseuntil N, reaches 400.
results show that a fine-scale intermingled structure is This process is then repeated at different values of the
present in the parameter space, with two types of Arnoldperturbatione. Obviously, in analogy t¢2], a small errore
tongue pattern. in the system parametdr might alter the location of the
On a small scale, thé Arnold tongue consists of many basin boundary so that fixed initial conditiorg=0, Xx,=0
narrow black and blank parallel strips. However, a magnifi-cause a shift from one basin to another. In a similar way we
cation of a portion of parameter space shows that this fractadetermine the fractionB(%,¢) andP(3,e€) corresponding to
like pattern is truncated at some sc@kig. 2@], so that Figs. 2b) and c), respectively.
further magnification displays smooth boundaries of this lin- In analogy to the chaotic ca$#,2], one may expect that,
ear striated structure, without a repeated birth of new striaif the basin boundary dimension is approximately constant in
tions. We note that in Fig. (&) one strip of the Arnold  the region of parameter space being examined, the scaling of
tongue splits into two strips, which belong to the same wind-P(p/q,€) is the same as the scaling of uncertainty fraction in
ing number3 and to the same attractdAll the strips in Fig.  the phase space, i.e.,
1(a) belong to two existing asymptotic attractors of period
2]
On the other hand, quite a different fractal pattern is ob- P(E 6) ~ e(pla) @)
tained in the blank regions between the strips of3iAenold ' '




1546 V. PAAR AND N. PAVIN 57

(@ % 0 3
«© ©
ol ol
o o
- B - 8
Qi ol
© ©
3 &
0.71980 0.72000 0.72020 0.71980 0.72000 0.72020
® o
by <«
o
Te}
o |
Q «©
D ol
— o0 —
Y]
o
© g o |
< i 10
0.71980 0.72000 0.72020 0.71999 0.72001 0.72003
[0} 1))
(e)
N~
o
o
B 1
0
ol
Y]
»
o
B 1
©
i

0.7199900  0.7199920
Q)]

FIG. 2. Blowup of Fig. 1 over the parameter region 0.7428<0.7203 and 2.845 f <2.855 for(a) %Arnold tonguegblack dot$, (b)
% Arnold tongues(black dot3, and(c) % Arnold tongues(black dot3. (d) and (e) Two successively expanded views of a detail of %he
Arnold tongues. No other Arnold tongues were found in the above parameter region.

where a(p/q) is the uncertainty exponent associated withuncertainty coefficienix takes one value in the subregion
the p/q Arnold tongue. Calculatingr at the frequencyw  that is fractal and the othémtege) in the subregion that is
=0.719 989 5, i.e., which is a sweep through the opening ofiot fractal, with both subregions being intertwine].
the above intermingled and 2 Arnold tongue fractal struc- Obviously, the fractal Arnold tongues discussed above re-
tures, we obtain the uncertainty exponent 0.7 for thei  flect the fractal-like structure of basin boundaries in phase
and$ Arnold tongues. As expected, for teArnold tongue  space. To show this we have constructed a relevant section
the uncertainty exponent is close tods=1.0. of phase space around the fixed initial conditioggs-0, Xg
Calculating the uncertainty exponeatfor different sub- =0, performing the calculation for parameter valués
sets of @,f) parameter space in Fig. 2 we have found that=2.850 92,0=0.719 99, which correspond to a point in pa-
roughly the same value~0.7 corresponds to théand$  rameter space near the tip of theArnold tongue in Figs.
Arnold tongues everywhere in the parameter space of Fig. 2(d) and 2e). We take a grid of initial conditions-0.05
and the other valuer~1.0 to the3 Arnold tongue. This <X(<0.05, —0.05<x(<0.05 around the initial point
result can be compared to the previous results obtained fofp=0, xo=0 used in the calculations from Fig. 2. In this
the chaotic basin structure of the kicked double rotor that thevay we obtain the basins of attraction of periods 1-3, shown



57 INTERMINGLED FRACTAL ARNOLD TONGUES 1547

g- 1 2.
o 1 A
\ §' 3
f 0 2, 1"3
o 8 ! 3
> S .
De
< -1 0 1 2
Q
S .
-0.04 0.00 0.04 FIG. 4. Attractors of the Duffing oscillatdd) for the parameter
(a) X, values y=0.001, »=0.719 99, andf=2.850 92 of period 1(de-
noted 1 and 1) 2 (denoted 2 and 2, and 3(denoted 3 No other
< attractors were found.
S
e and 3 correspond to thg 4, and$ Arnold tongues in Fig. 1,
respectively. Consequently, the values of the uncertainty ex-
o ponent arex~ 0.7 for the intermingled period-1 and period-3
> 9 basins ande~1.0 for the period-2 basin with a truncated
© fractal boundary. These values are practically the same as for
the corresponding Arnold tongues in Fig. 2. This is in accor-
< dance with the general expectation that the uncertainty expo-
Q nents computed in phase space and parameter space are
< equivalent, in analogy to the previous study of chaotic spa-
tiotemporal systemgl4].
(b)
IIl. TRUNCATED FRACTAL ARNOLD TONGUES
< AT HIGH DISSIPATION
o
o Let us now investigate the question whether the inter-
mingled Arnold tongues appear at high dissipation. To this
end we perform a sequence of calculations in the region of
o 8 overlap of the majos and 2 Arnold tongues with increasing
> o dissipation strength. In general, we find that with increasing
< 40
Q
? 35
(©) X, 30
FIG. 3. Basins of attraction for the single-well Duffing oscillator 25 4
(1) at low dissipationy=0.001 in the initial condition region
—0.05<x¢<0.05 and —0.0Eﬁkos0.0S for the parameterso f 20 -

=0.719 99 andf=2.850 92:(a) period-2 basins(b) period-3 ba-

sins, and(c) period-1 basins. 15 4

in Fig. 3. These basins of attraction are associated with five

asymptotic attractors, two of period 1, two of period 2, and 10 -

one of period 3Fig. 4. We were not able to find any other

attractor in the phase space. Because of the rather small forc- 5 -

ing amplitude in the present calculations, the number of at-

tractors is rather smalb) in the region being closely inves- 0 —

tigated, although the dissipation is low. It is well known that, 0.5 0.6 0.7 0.8 0.9 1.0

in general, the number of asymptotic attractors in dissipative »

systems increases with lowering dissipation, approaching in-

finity in the Hamiltonian limit[2,25]. This trend is also seen FIG. 5. Values of the parametefsand o that lead to periodic

for the Duffing oscillator(1) by further decreasing the value attractors/denoted the same way as in Fig.ahd to chaotic attrac-

of dissipation strengthy below 0.001. tors (M) for the Duffing oscillator(1) at high dissipationy=0.2.
As seen from Fig. 3, the basins of attraction of period 1, 2 Fixed initial conditionsx,=0 andx,=0 are used.
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FIG. 6. Blowup of Fig. 5 over the parameter region Gs58<0.61 and 28& f=<30 for (a) %Arnold tonguegblack dots, (b) %Arnold
tonguegblack dot3, and(c) %Arnold tonguegblack dots$. (d) and(e) Two successively expanded views of a detail of%hﬁanold tongues.

dissipation the uncertainty exponemtin the overlap region tongues in that region of parameter plane are displayed in
gradually increases towards 1 and for a high dissipation Figs. §a), 6(b), and 6c¢), respectively. Two successively ex-
=0.2 we obtaina~1.0 for 5 and§ Arnold tongues. panded views of a detail of thArnold tongues are shown in

In Fig. 5 we present for high dissipation=0.2 the state Figs. 6d) and Ge). We find that the pattern of truncated
diagram in parameter space, in analogy to Fig. 1. In thdractal Arnold tongues is present in the case of high dissipa-
frequency interval 0.5 w=<1 there are three major tongues. tion as well, but not the pattern of intermingled fractal Ar-
In comparison to Fig. 1 the tips of these tongues are shifte@old tongues.
towards higher forcing strengths. The second feature is that
the chaotic tongueS:Ic_Jsed squaresare close_r to th_e tips of V. CONCLUSION
Arnold tongues than in the case of weak dissipation.

In analogy to our previous considerations of the low dis- In this paper we investigate the fractal pattern of Arnold
sipation casdFig. 2), let us now focus our attention on a tongues associated with the single-well Duffing oscillator in
small region of parameter plane defined by Gs%8<0.61 the parameter region without sustained chaotic behavior. In
and 28<f<30, where the and £ Arnold tongues overlap particular we study the overlapping region of theand $
(the tongue in the middle of Fig.)5The 3, 2, and Arnold  Arnold tongues in the case of weak dissipation and we find
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an exotic parameter space structure of Arnold tongues of twotic behavior of the system before it settles down in one of
types: the truncated fractal tydéor the 5 Arnold tonguey  the periodic attractors. Namely, the sensitive dependence of
and the intermingled fractal typor the 1 and 2 Arnold  the lifetime of the chaotic transient on initial conditions and
tongues. These structures exhibit a weak type of sensitiveparametrization may be associated with the appearance of
dependence of asymptotic attractors on parameters that digactal boundaries. Thus the fractal Arnold tongues might be
tinguish between Arnold tongues having different winding considered as identifying characteristics of transient chaos.
numbers. Namely, for th¢ and 2 Arnold tongues the uncer- On the other hand, with an increase of dissipation strength
tainty exponent isu~0.7, implying the exterior dimension the uncertainty exponent associated with Arnold tongues
dey=D — a=1.3. Assuming, for example, that the parametergradually approaches unity, i.e., the intermingled pattern of
f can be determined to a precision of 16, then P(¢) fractal Arnold tongues dissapears. However, the truncated
~ (10" %97~ 10 1%and hence the probability of error in the fractal Arnold tongues appear even in the case of high dissi-
numerical prediction of the final-state Arnold tongue is pation.
roughly 1 in 18°% This means that in the case considered As for the generality of our results on intermingled fractal
here, in spite of an exotic fractal-like structure, the computeiArnold tongues, it seems that they appear as a general pattern
simulations are quite reliable, i.e., the dependence oéssociated with weak dissipation. The appearance of inter-
asymptotic attractors on system parameters is very weakningled fractal Arnold tongues is not restricted only to a
weaker than in the case of the chaotic parameter set assosiegment of the parameter space being considered, but is as-
ated with the logistic map having~0.4[1,12]. However, sociated with other regions of the parameter space too. For
by a further reduction of dissipation, a more and more senexample, we find a similar pattern for the intermingled Ar-
sitive dependence of asymptotic attractors on system paramold tongues of periods 4 and 7 around=6.61, f~37.6,
eters will appear, leading to a pattern of Arnold tongues withand y=5x10"“. Furthermore, in preliminary calculations
an extremely sensitive dependence. we have found that this pattern is not restricted to the Hamil-
One might speculate on a possible origin of fractal Arnoldtonian (1), but is of a more general character. For example,
tongue structure in the parameter region that is far removede find a similar pattern for oscillators with different types
from the regions with chaotic behavior. We note that suchof dissipation, including week quadratic and Coulomb
behavior might be related to the appearance of transient chaamping.
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