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Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori
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We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a
combination of Kolmogorov-Arnold-MoséKAM ) theory and renormalization-group techniques. We consider
a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transforma-
tions, following the approach of Thirring. The numerical implementation of the transformation shows that the
KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration
with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain
a more efficient method that allows one to determine the critical coupling with high accuracy. This transfor-
mation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface
of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its
universality propertied.S1063-651X98)02502-1

PACS numbd(s): 05.45+hb, 64.60.Ak

. INTRODUCTION sidered frequency and the iteration Bf diverges. The do-
main of convergence tH and the domain of divergence are
The existence of invariant tori plays a significant role for separated by a surface invariant under the actioR ofrhe
the long-time stability of Hamiltonian systems. The main hypothesis of the renormalization-group approach is
Kolmogrov-Arnold-Moser(KAM ) theorem[1-3] states that  that there should be another nontrivial fixed point on this
the tori with frequency vectors that satisfy diophantine con—ritical surface that is attractive for Hamiltonians on that sur-
ditions are stable under small perturbations. Conversely, iface. Its existence has strong implications concerning univer-
has been showj¥] that for large perturbations these tori no sal properties in the mechanism of the breakup of invariant
longer exist. For two-dimensional systems, Gre¢he7]  tori. The analysis of the renormalization for area-preserving
formulated a criterion that allows one to determine the exismaps[15] gives support to the validity of this general pic-
tence of a KAM torus by analyzing the properties of a se-ture. The aim of the present work is to give similar support to
quence of nearby periodic orbits, namely, the resonancegis picture for Hamiltonian flows. The main ideas were an-
whose winding ratios are the continued fraction approXi-nounced in Ref[20].
mants of the winding ratio of the considered torus. When the The transformation we defingKAM-RG) has two main
amplitude of the perturbation is at its critical value, theseparts: a KAM iteration, which is a change of coordinates that
resonances open gaps in the torus and it breaks up intoraduces the size of the perturbation framto £2, and a
Cantor sefAubry-Mather set[8-11]. renormalization transformation which is a combination of a
In order to study the self-similar scaling properties ob-shift of the resonances and a rescaling of momentum and
served for the breakup of invariant tor{12-14,  enpergy. It acts within a space of Hamiltonian systems with
renormalization-groufRG) ideas were proposed for two- two degrees of freedom, quadratic in the action variables. An
dimensional area-preserving mgd$,16. For Hamiltonian  essential aspect of the present approach, based on a formu-
systems with 1.5 degrees of freedom, Escande and Dovelition of the KAM theorem by Thirring21], is that the
[17,18 set up an approximate renormalization scheme thakAM and renormalization transformations we use map this
combines KAM transformations with a rescaling of phasespace into itself. In order to analyze the strong coupling re-
space. gime and to reach the critical coupling, the KAM-RG trans-
The idea of renormalization-group analysis for Hamil- formation has to converge at least up to the critical surface at
tonian systems is to construct a transformatidoras a gen-  which the torus breaks up. In fact, we show that the KAM
eralized canonical change of coordinates acting on somigeration as well as the KAM-RG transformation converge all
space of Hamiltonians such that the iteratiorfdtonverges the way to the critical coupling. Numerically, the KAM-RG
to a fixed point. If the perturbation is smaller than the criticaltransformation is a much more efficient method to determine
one,R must converge to some Hamiltoniaty for which the  the critical coupling. The analysis of the KAM-RG transfor-
equations of motion show trivially the existence of a torus ofmation shows that the critical surface is the stable manifold
a given frequency vector. All Hamiltonians attracted by thisof codimension one of a nontrivial fixed point.
trivial fixed point have an invariant torus of that frequency: We construct the KAM transformation by two alternative
this statement can be considered as an alternative version ofethods: by Lie transformations and by transformations de-
the KAM theorem[19]. If the perturbation is larger than fined by a generating function. The motivation to use two
critical, the system does not have a KAM torus of the con-different transformations is twofold. First we verify that both
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approaches lead to the same results, and the Lie transformahere T?=[0,2r]X[0,27]. In the following sections, we
tion is more efficient for numerical implementation. Further,will use the notationdf =df/d¢ for any function of the
although the two transformations lead to quantitatively dif-angles.

ferent nontrivial fixed points, they have the same critical ex-
ponents, in accord with the general ideas of the IIl. RENORMALIZATION TRANSFORMATION

renormalization-group approach. _ We construct the KAM-RG transformation combining
In Sec. Il, we describe the renormalization transformation. Inyo ~ parts:  a KAM  transformation nf,g,f,a)

Secs. lll and |V, we define the KAM iteration of the trans- H(m’,g’,f’,a) and a renormalization Consisting of a shift
formation by the two methods. In Sec. V, we give our nu-of the resonances and a rescaling of the actions and of time
merical results, and in particular, we show evidence of thgm’ g’ f' a)—(m",g",f",a’). The renormalization
existence of an even nontrivial fixed point. In Sec. VI, we scheme described in this section is for a torus of frequency
describe the behavior of the KAM-RG transformation wheng,=(1/y,—1) wherey=(1+ \/3)/2, but this scheme can be
odd perturbations are included. adapted to quadratic irrationals.

We consider the following class of Hamiltonians with two ~ The KAM-RG transformation is composed of four steps:
degrees of freedom, quadratic in the action variabdes (1) a KAM transformation, which is a change of coordinates
=(A;,A,) and described by three scalar functions of thethat eliminates terms of ord€d(e), wheree is the size of

anglese=(¢1,¢,) the perturbation,; this transformation produces terms of order
O(&?) and does not chang®=(1,a) (see Secs. Il and 1)/
H(A, @) =3m(¢)(Q-A)?+[wy+g(@)Q]-A+f(e), (2) a shift of the resonances: a canonical change of coordi-

(1.1 nates that maps the next pair of daughter resonances of the

sequence of rational approximants into the two main reso-
whereawy is the frequency vector of the considered torus, anchances;(3) a rescaling of energyor equivalently of timg
Q=(1,a) is some other constant vector, not parallelsg (4) a rescaling of the action variabléshich is a generalized
This class of Hamiltonians has been considered by Thirringanonical transformationThe aim of this transformation is
[21] in its nondegenerate version to treat one scale at the time. The stéps (3), and(4) are

implemented as follows: the two main resonances (1,0) and

H(A, @) =3A-M(@)A+[wy+0(e)]-A+T(e), (1.2 (1,1) are replaced by the next pair of daugh-
ter resonances (2,1) and (3,2), i.e., we require that

whereM is a 2X2 matrix such that d& #0, andg a vec- co0g(2,1)- ¢’ ]=c0g(1,0)- ¢"] and co§(3,2)- ¢’ |
tor. The Hamiltonian(1.1) is such that =co0g(1,1)- ¢"]. This change is done via a canonical trans-
, formation (A’,¢')—(N"2A’ ,N2¢’) with
d°H
S 21
detaAﬁA 0, (1.3 sz(l 1>'

i.e., it does not SatiSfy the twist Condition, but the KAM This linear transformation mu|t|p||%0 by 7_2 (Sincewo is
theorem is also valid under this conditiégeee[22]). The  an eigenvector oN); therefore we rescale the energy by a
advantage of the family of Hamiltoniari.1) in the present  factor 42 in order to keep the frequency fixed a}. A con-
context is that they are characterized by three scalar fungsequence of the shift of the resonances is fas changed
tions of the angles and a constantinstead of six functions into Q'=(1,a'), wherea’'=(a+1)/(a+2).

for Hamiltonians(1.2). This allows a more precise numerical  Then we perform a rescaling of the action variables:
treatment of the problem. The essential features are alreadye change the Hamiltoniad' into

contained in the space of Hamiltoniatik1). In particular, .

the nontrivial fixed point one obtains starting with Ed.2) H'(A", ¢")=NH'(A'IN,¢')

is of the for”.‘(l-l)- . _with \ such that the mean valgyen”) is equal to 1. Since the
The functionsm, g, f are represented by their Fourier \eqcqjing of energy and the shi transform the quadratic

seres, e.g., term of the Hamiltonian intg/?(2+ a)?m’ (¢')(Q'-A")?/2,
this condition leads to\=y?(2+a)?m’). This condition

flo)= >, fere. (1.4  has the following geometric interpretation in terms of self-

ve7? similarity of the resonances close to the invariant torus: the

rescaling magnifies the size of the daughter resonances, and
The numerical implementation of the transformation require%ﬂaces them approxima’[e|y at the location of the 0rigina|
a truncation of the Fourier series. We will approximétey  main resonances. This can be seen by the following heuristic

argument: in order to estimate the position of the resonances,

flstig)= S fere (1.5  Weassume that is small and thain’~(m’). The equations
vee, of motion forH’ are
where C ={ve 7?||v,|<L,|v,|]<L}. We define (f), the A’~const, 2.1
mean value of, by .
o' ~(MH(Q-A")Q+ wy. (2.2
<f>:J d’e f() (1.6 The position of the resonanceis given by the condition
12(27)2 v-¢' =0, i.e., it is located af’ such that
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QA~——— .
(m') Qv

. 1
2.3 ¢ =e M=o {S e+ 5{S{Sel}... (B3

The linear change of coordinatd& gives the new position generated by functiorS linear in the action variables, of the
of the resonance : form

S(AQ)=Y(p)Q-A+Z(p)+al-¢ , (3.4
1 O
Q' -A~— . (2.9 i )
(MYy?(2+a)2 Q' -v characterized by two scalar functio$ Z, and a constard.
The expression of the Hamiltonian in these new variables is
Thus, the rescaling of the actiods'—A"=A’/N with \ obtained by the following equatidi23,24:

=y2(2+a)*m’) places the resonances at the location of

the original resonances. H ’(A’,go’):e*é(A"P)H(A,go)hA,@,)
In summary, the renormalization rescahasg, f and Q 1
=(1l,) into _
=H+{SH}+5{S{SH}}... . (39
v _M(N"2g)
m' (@)= ————, (25 A consequence of the linearity & in A is that the Hamil-
(m’) tonianH’ is again quadratic in the actions, and of the form
9"(¢)=y*(2+a)g' (N2¢), (2.6 H' (A @)= im'(¢')(Q-A")2+[wo+g' (¢ ) Q] A
f"(@)=7*2+a)Xm")f' (N"?¢), 2.7 +1'(¢). (3.6
1+« We notice thatQ) is unchanged by this transformation. Fol-
o’ 2t a (2.9 lowing the approach of Thirrinf21], we consider the scalar

functionsg and f of orderO(e), andm of order one. We
The iteration of the transformatiof2.8) converges tow, ~ determineS such thag’ andf’ are of ordeiO(s?). Thenth
=y~ L. It means that) converges under successive itera- |terat!10n of this transformation will produagandf of order
tions to Q, = (1,1/y), which is orthogonal taw, and is the O(e®) andm of order one. The idea is that(¢) does not
unstable eigenvector &i? with the largest eigenvalug?. need to be eliminated. In order to show the existence of a
We remark that this renormalization scheme can also b&rus of frequencyw, that is located aA=0, it suffices that
implemented on a more general class of Hamiltonians quathe iteration reduces the Hamiltonidh.1) into one withf

dratic in the action variables considered by Thirr[24]: =0, g=0 but m(¢)#0. This is an immediate conse-
guence of the equations of motion associated Ho
H(A©)=3A-M(@)A+[wo+g(@)]-A+f(e), (29  =m(¢)(Q-A)%2+ wy-A. The fact tham(¢) does not need

. ) ) to be eliminated is what allows one to work with canonical
where M is a 2<2 matrix andg a vector. This class of transformations that are linear in the actions. This has the
Hamiltonians is also invariant under KAM transformations jmportant practical advantage that the KAM transformation
(see Secs. lll and I/ The renormalization described above |gayes invariant the subspace of Hamiltonians quadratic in
changes the direction @f andM. The vectorg is renormal-  the actiondEq. (1.1) or Eq. (1.2)].
ized intoR(g) = y’N*g. The iteration ofR converges to the  The expressions aj’ andf’ up to the ordeO(¢?) are
unstable eigenvector oN?: g—g€Q, . The matrix M is

renormalized intdR(M)=N?MN?%(N?MN?)y;. This trans-  g’(¢')=g(¢')+ @y IY +m(¢’ )(Q- dZ+a0?)+0(2),

formation has only one stable fixed poikt, =Q,®Q, . 3.7

Thus the iteration of the renormalization transformation on

Hamiltonians of the form2.9) (which can satisfy the twist (@ )=1(¢)+wy dZ+awy- Q+0(e?). (3.9

condition or not converges to a twistless Hamiltonigh.1)

with Q=Q, . Thus in order to eliminate the terms of orde(s), we de-
termine: (1) Z(¢) such that the term independent of the ac-

IIl. LIE APPROACH TO THE KAM TRANSFORMATION tion variables is of the 0|’de®(82). The functionZ must

satisfy the equation
The Poisson bracket of two functions @fandA is given

by f+ wy- dZ=const, (3.9
of 99 of g which has the solution
{f,g}—xp' A A dp (3.0 .
i .
— lv-

We will work with Lie transformations(s:(¢,A)— (¢’ ,A’): ()= ;0 wq- vf”e " (310
e 1 The mean value oZ is not determined by Eq3.9). W

—a~SAQ A=A _ Y 3.9. We
Al=e A=A—{SA}+ E{S’{S’A}} e (32 choose it equal to zer@2) Next, we determine& and Y (¢)
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such that the linear term in the action variables becomes of F(A,@)=(A'"+aQ)- o+ Y(@)Q-A'+Z(¢), (4.0
the form[ wy+ O(£?)Q]-A’. This leads to the condition

leading to
g+ wp- Y +mQ- §Z+maN?=0, (3.1 e
which has the solution A= @:A' +Q-A'dY+aQ+dz, (4.2)
(g)+{(mQ- dJZ) IF
a=-——————, (3.12 '=— =+ Y(p)Q. 4.3
0%(m) o= f (¢) 4.3
and Inserting Eq.(4.2) into Eq.(1.1), we obtain the expression of
. the Hamiltonian in the mixed representation of new action
Y(g)= 2 ! [g9,+(MQ-dZ),+m,a02]el” ¢ variables and old angle variables
V#:O wo. v 14 14 14 : _ _ _ _
(.13 H(A,@)=3m(¢)(Q-A")+[wo+ g(¢) Q]-A'+ T (q?), )
4.4
The transformed Hamiltonia(8.6) is constructed by defin-
ing HO=H andH® fori=1,2, ... by therecursive rela- With
tion m=(1+Q-aY)2m, (4.5
HO" V(A @) ={S(A @), HV(A,¢) -
t . s g=g+wy- dY+mb+Q-dY(g+mb), (4.6
=3m D (g)(Q- A)? ~
f=f+wy dZ+imb*+gb, 4.7

+9" (@) Q-A+fF D (g), (3.14
whereb(¢)=a0?+ Q- dZ. We notice that the KAM trans-
formation does not chand@.

We determine the generating functiéfh.1l) such thatH

which leads to

|
H' = i) (3.19 oUr vanishes to the first order in. This leads to the condi-
i=o i! tions
This can be expressed in terms of the image of the three @y dZ+f=const, (4.8
scalar functionsrh,g,f) given by the following equations:
wy- IY+g+m(aQ?+Q-§2)=0. 4.9
* i * i *° i
m’,g',fH)=> _()2 £2 g , (3.1  Werecall that the functiong andf are of ordetO(¢) andm
i=o I =0 il o ! is of order one; as a consequen¢gZ, anda are of order
O(e). We notice that these equations are the same as Egs.
(m©@,g@ £9)=(m,g,f), (3.17 (3.9 and(3.11), which determine the generator of the Lie
transformation. The present transformation and the Lie trans-
mt=2mQ- Y- YQ- dm, (3.18  formation described in Sec. Ill are canonical transformations
with an identical linear parfi.e., O(e) part] but different
gM'=gQ-dY-YQ- dg+mQ- JZ+maQ?+ wy- Y, nonlinear termgof the higher order ir). The main practical

(3.19 difference with the Lie transformation is that E¢.3),
which determines the new angles, has to be inverted. Equa-
tions (4.8) and(4.9) are solved by representing them in Fou-
rier space. They define the generating functioas

fU=—-YQ.df+gQ- dZ+gaQ?+ wy- dZ, (3.20

mi*Y=2mVQ. gy-YQ-am, (3.21
i _
gi*V=g"Q.gy-YQ dg"+mP Q. 9z+mia0?, Z(¢)=§0 wo.vf,,e'”"", (4.10
(3.22
fI+D= _vQ. gt + g0 Q- gz+gVa0?  (3.23 e (G H(ma-d2) 4.1
0%(m)
fori=1.
| )
— - . 2741V @
IV. GENERATING FUNCTION APPROACH Y(e) ,;o wy- V[g,,+(mﬂ 92),+m,a0]ers.
TO THE KAM TRANSFORMATION (4.12

In this section we describe another construction of therps the scalar functions & become
KAM transformation. The transformation is now taken as a
canonical transformatiotyr : (¢,A)—(¢',A") defined by a m=(1+Q-dY)?m, (4.13
generating functiorj25] characterized by two scalar func-
tionsY,Z, of the angles, and a constamtof the form 9=—wy IYQ- Y, (4.149



1540 C. CHANDRE, M. GOVIN, AND H. R. JAUSLIN 57

T=3g-wp dY)(a0?+Q-92). (419 42

We notice tham, g, andf are given by products and sums
of functions whose Fourier coefficients are explicitly known.

We expand these functions in Fourier series, eny¢)
=3,m,e"” ¢. The expression of the Hamiltonian in the new

angle variables requires the inversion of E4.3). The Jaco- \j:
bian of this transformation is =
Iek
def ——|| =|1+Q-av]. (4.16
i 7 KAM-RG
The scalar functionsn’, g’, andf’ are respectivelyn, g,
= . . 2.6 ‘ ‘
and f expressed in the new angle variables, eng.(¢') 5 L 36

=m[¢(¢')]. The Fourier coefficients ah’ are determined

by the following integrals: FIG. 1. Critical couplinge.(L) as a function ofL, the size of

the cell ¢, containing (2.+1)? Fourier coefficients. The upper
2¢, curve corresponds to the KAM transformation, and the lower one to
m’:f 2 )Zm’(qo’)e_i”“”'. (4.17 the KAM-RG transformation.

1227

. _ , . instance, this algorithm witk=5 gives an accurate approxi-
With the change of variableg'— ¢, we can write mation of the exact transformation and allows one to com-

, ute all its properties.
, J~ d2¢ (&(Pk p p p
m, = det —
12(277)? e

Thereforem,,, g;,, andf, can be expressed in the following ~ We start with the same initial Hamiltonian as in Refs.
way: [18,24:

’rﬁ(go)efi et Y(e)Q]

V. DETERMINATION OF THE CRITICAL COUPLING:
(4.19 FIXED POINT OF THE KAM-RG TRANSFORMATION

—~ ~ :i . 2 .
m=3 7.Cr. 9= GuCos H(A 0)=3(Q-A)+ wg-A+ef(e) , (5.9

whereQ=(1,0), wo=(1/y,— 1), y=(1+5)/2, and a per-

f,V:E T.Co.. 4.19 turbation
’ f(¢)=cogw;- @) +cogw, @), (5.2
where
wherer;=(1,0) andr,=(1,1). We perform an iteration of
d?¢ o 0 the KAM transformation described in Sec. Ill or in Sec. IV.
vy = LZ(Z )2|1+9'¢9Y|e'(v TrheeTin YY), The two methods give qualitatively the same results. The
T

4.2 algorithm using the Lie transformation is numerically more
(4.20 efficient. The following results are those obtained by the Lie

In order to computeC,,, we choose the Gauss quadraturetransformation. We represent all the functions by their Fou-
v v

that approximates an integral as a sum over a lattice of corfier series truncated by retaining only the coefficients in the
squareC, , which contains (2+1)? Fourier coefficients.

stant step: ! \ ;
For fixedL we take successively larger couplingsand de-
d2e 1 termine whether the KAM iteration converges to a Hamil-
fz 2G(¢>)= lim > tonian withf =0, g=0, or whether it divergesf(g— ). By
T5(27) M—e(M+1) a bisection procedure, we determine the critical coupling

es(L). We repeat the calculation with larger numbers of
Fourier coefficients to obtain a more accurate approximation.
In Fig. 1, we showe (L), i.e., the dependence of the critical
(4.20) coupling on the number of Fourier coefficients retained. We
observe that (L) decreases with in a stepwise manner. It
This quadrature is exact if all the nonzero Fourier modes oftays essentially constant except at the valuels afhere a
the considered functio® are insideCy, . For instance, in the new rational approximant of the frequeney, is included,
case of the computation &, for the identity transforma- corresponding to a resonance at the next smaller scale. The
tion (Y=0), sincev’' —ve(C, , one needs to takbl=2L. size of the jumps diminishes approximately geometrically,
For the general case, if we expand the function to be inteand we can extrapolate to obtain the vakél)—0.0276.
grated as a power series of we notice that the algorithm This value is close to the critical coupling.=0.027 5856
with M= (k+ 1)L gives an approximation up 1©(e*). For  obtained by the Greene criteri¢®,26], which is surmised to
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FIG. 2. Critical couplings.(L) of the KAM-RG transformation
as a function ofL, the size of the cell’, containing (2 +1)2

. . FIG. 3. Weight of the Fourier coefficients d¢f indicated by
Fourier coefficients.

gray levels:(a) white: <10 1°, (b) [10 %%10 7], (c) [10 7,10 ®],
(d) [1075,107%], (e) black:[1073,1072].
yield the exact value. This gives a numerical evidence that

the KAM iteration can be expected to converge in the wholelthe scaling factor at the trivial fixed pojntThis value can
domain of existence of the torus. be compared with the one given for area-preserving maps

In Figs. 1 and 2, we show the values of the critical cou-M+ = 18:827 obtained in Ref$12,13,15. .
pling (L), calculated by the KAM-RG transformation, We remark that if we consider the more general starting

S S . . Hamiltonian of the form(1.2) H=A-MA/2+ wy- A+ f with
which is a c_omplnatlon of a L|e_transformat|()Sec. III)_ and the twist condition dedl =0, the KAM-RG iteration has the
a renormalization transformatio(Sec. I). We obtain e,

e[0.027 585,0.027 595 which is in very good agreement stn%?ltgggcrr:;/(lilf;xed point as we have found for twistless

with the valuee .= 0.027 5856 obtained with the Greene cri-  \ye have also performed this analysis using the KAM

terion. We observe that the KAM-RG transformation givesyansformation constructed with a generating function as de-

very high precision already with few Fourier coefficients, g¢riped in Sec. IV. The result@sing fewer Fourier coeffi-

e.g.,e¢(L=5)=0.027 6633. o cients than the Lie transformatipare qualitatively similar.
The improvement with respect to the KAM iteration is not The nontrivial fixed point is quantitatively different, but the

only quantitative; the disappearance of the steps is strongitical exponents are the same. This is what is usually ex-
evidence that the KAM-RG transformation we have CON-pected in a renormalization-group approach.

structed captures the essential physical mechanism of the

breakup of the tori. VI. SYMMETRIES OF THE TRANSFORMATION:
By iterating the KAM-RG transformation starting from a  GENERALIZATION TO NONEVEN PERTURBATIONS

point on the critical surface, we observe that the process

converges to a nontrivial critical poifd, , which we char- In the previous section, we found numerically the exis-
acterize by the Fourier coefficients of the three functiond®nce of a nontrivial fixed point for the KAM-RG transfor-
f..0,,m, andQ, =(1,y 1). Figure 3 shows the weight of 308

the Fourier coefficients of, . We observe that the nonzero
coefficients are strongly concentrated on a band around the
directionD, perpendicular to the line of resonance€s. is
the expansive direction of the map—N~2y, i.e., the direc-
tion of the frequency vectow,. The decrease of the size of
the coefficients alond, is quite slow. The Fourier coeffi-
cients ofg, andm, have a similar overall behavior, but they 20
decay faster in théD, direction (see Figs. 4 and)5 By
linearizing the KAM-RG transformation around the fixed
pointH, , we calculate the critical exponents. There is only
one with modulus greater than one, denotedsbyhis im-
plies that the critical surface, which is the stable manifold of
H, , is of codimension one. The value we obtain for the
relevant critical exponent i$e[2.67,2.68, which is quite
close to the one obtained by MacKay for area-preserving
maps[15] (6=2.65), and to the one obtained by Escande
et al. with the approximate scheme&+ 2.75) [27]. FIG. 4. Weight of the Fourier coefficients of, indicated by
For the scaling factor at the nontrivial fixed point, we gray levels:(a) white: <10~%°, (b) [107%°,1077], (c) [10™ 7,107 5],
obtain numericallyx, =17.944, which is very close t9®  (d) [1075,10 %], (e) black:[1073,10 2].
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where R denotes the KAM-RG transformation. Applying
this relation to the fixed poinH, (¢), we haveRH, (¢
+ 6)=H, (¢+N?86). The following map(which is Arnold’s
cat map[30]),

30 H

0—N?0 mod 2, (6.5

20 gives the nature of the orbit to which the transformation

converges starting with the initial perturbatio®.2) on the
critical surface. For instance, if we start wiélx 7, which
corresponds to the perturbatiai.l) with M,P<0, the
transformation converges to a cycle of period three because
N®@= 0 mod 2. More precisely this 3-cycle is the periodic
sequence

-30 hl L
v {Hy (@t mvy) H, (ot m(v1—1,)),H, (ot 71}
(6.9

FIG. 5. Weight of the Fourier coefficients ofi, indicated by ) ) ]
gray levels:(a) white: <1072, (b) [1071°107 7], (c) [10 7,10°5], For any orbit of the maj§6.5), there is a fixed set that plays
(d) [1075,107%], (e) black:[10 3 1]. the same role as the nontrivial fixed point for the even per-
turbation(6.1). These invariant sets belong to the same uni-

mation starting with an even initial perturbation on the criti- versality class as the fixed point, and in particular, they have

cal surface the same critical exponents.
We can define a modified renormalization transformation
fo(@)=—Mcogw;- @) —Pcogw,- ¢), (6.  such that the KAM-RG transformation converges to the fixed

hereM P=0 and dto th . pointH, for all initial perturbations of the forn(6.2) on the
whereM,P=0 andw,, », correspond to the two main reso- ¢ isical surface, by adding an initial shift of the angl&s, .
nances. For a perturbation containing also odd terms

sin(wy- ¢) and sing,- ¢), the KAM-RG transformation, act-

ing on the critical surface, does not necessarily converge to a VIl. CONCLUSION

fixed point but to a periodic or even a nonperiodic ofbie The results show that the KAM-RG transformation is a
shall see that these attracting orbits are those of the Arnc’ld’ﬁowerful tool to describe the breakup of invariant tori. In
cat map. Already if we start with the even perturbati®.l)  particular, the transformation describes with high accuracy
with M,P<0, we obtain a cycle of period three as it has alsOine critical surface, which is the stable manifold of a non-
been encountered in area-preserving ma@a. This can be  iyia| fixed point(or more generally, of a nontrivial fixed set
understood by the symmetries of the transformal29.  g|ated to this nontrivial fixed point by symmetrieaVe
Starting with the two main resonances, »,, the most gen-  paye implemented the KAM-RG transformation for the torus
eral perturbation can be written as with frequency vectorm,=(1/y,—1). The extension to
other frequencies that are quadratic irrationals is relatively

fo(@)==MecCodv1-¢) = PeCOS v, @) = MoSin(vy- ¢) clear. The case of a general irrational frequency will involve

—Posin(v,-¢)=—Mcog v, (¢+ 0)] qualitatively new features. The KAM-RG transformation we
described was for systems with two degrees of freedom, but
—Pcog ;- (¢t 0)], (6.2 the extension to thred31] or higher-dimensional systems

19] should be accessible.
where M=\/Mez+ M2, P=\/Pez+ PZ, and 6@ [19]
= (—arctanM,/M,),arctanM,/Mo) —arctanP,/P;)).  The
question is to analyze the effect of a shift of the angles on the ACKNOWLEDGMENTS
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