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This paper presents an application of new discrete path integral solutions recently introduced for Fokker-
Planck dynamics with the aim to compare their relative efficacy in giving precise numerical results. The basic
idea used in the derivation of these solutions is to model a complex Fokker-Planck equation with a general drift
coefficient by a lineatOrnstein-Uhlenbecdkprocess, which is solved exactly, and to then employ an iterative
technique to quantify what is missing from the reference description. We reexamine and analyze two different
approaches to realize the above strategy. These are an operator decoupling technique and a power series
expansion method. Both approaches allow one to construct higher-order propagators valid to any desired
precision in a time increment. Their use in a path integral means thanyfewer time stepqN are required
to achieve a given accuracy for a given net incremenN7. Our comparison also includes results from
standard path integral representations. The relative efficacy of the various different methods is illustrated by
means of two problems, namely, the dynamics of an overdamped Brownian particle in a potential field and the
Kramers model of chemical reaction. The former process can be modeled by a one-dimensional Fokker-Planck
equation for the position coordinate only, while the latter is governed by a two-dimensional Fokker-Planck
equation where the relaxation over velocity is taken into account. The numerical applications clearly demon-
strate that the new representations are superior in the sense that they yield muclcenoageresults withless
computational effort than the best alternative path integral method now i $6@63-651%98)02001-1

PACS numbegs): 05.40:+j, 02.50.Ey

[. INTRODUCTION point of view, an appealing feature of the Fokker-Planck

equation is that it provides a very useful statistical model for
There is a wide variety of phenomena in physics, chemunderstanding various dynamical processes in realistic sys-
istry, and biology whose dynamics is accurately described items driven by noise and friction. Some theoretical aspects
terms of a Fokker-Planck equation. It is a mesoscopic kinetiof the Fokker-Planck equation are still under intensive study.
equation for the distribution functioR(q,t) involving a de- Many challenges have a single origin: analytical solutions to
terministic drift vectorG and a diffusion tensoD. The the Fokker-Planck equation are available for a few simple
former describes the deterministic path of the system, whil€ases, and virtually all nontrivial problems cannot be solved
the latter incorporates fluctuations away from this path. Theexactly with presently known mathematical techniques. This

equation typically has the form situation has led to the search for approximate methods to
analyze such problems either analytically or numerically. All
4:P(q,t)=LP(q,t)=[—9,G;(q)+ %Dijaﬁ-]P(q,t), these methods are efficient in treating one-dimensional prob-

(1.)  lems. Some of them remain efficient in two dimensions, and
just a few methods can be applied to systems with more than

where the standard summation convention over repeated imwo degrees of freedom.
dexes is implied,g={q, ....,q,}, and L is the Fokker- In this context, it is difficult to overemphasize the useful-
Planck operator defined by E@L.1). In the study of time ness of the path integral approach to Fokker-Planck dynam-
evolution of the processes governed by Bql) much infor-  ics. Being formally exact, it provides a global solutifinte-
mation can be found from the investigation of the propagagral formulatior) of the problem in question, which is, in
tor, which is the fundamental solution of the equation satisprinciple, amenable to approximations. Several approximate

fying the initial condition schemes could be efficient in analytically treating this solu-
tion in arbitrary dimensions, provided that the specific as-
P(q,00°)=5(q—q°). (1.2 sumptions on which they are based are satisfied. Numerical

applications have also increased enormously over the past
Specific examples of Fokker-Planck equations can be drawdecade, yielding important new insights into the behavior of
from a vast amount of different fields ranging from nuclearcomplex physical systems. From a computational point of
physics to communication theof§,2]. The flexibility of the  view, one of the great advantages of the path integral formu-
above description makes E@L.1) very attractive both for Ilation is that it reduces the problem of solving the Fokker-
theoreticians and for experimentalists. From an experimentablanck equation to the evaluation of an integral whose di-
mension growdinearly with the number of coupled degrees
of freedom. The starting point for its derivation is the fact
*Permanent address: Institute for High Temperatures, 13/1%hat the propagator for a finite tintecan be factored into a
Izhorskaya Street, 127412 Moscow, Russia. product ofN propagators, each of them describing the evo-
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lution of the system for a shorter time intervakt/N,

1
, F’u)(q,rlq")=[(2w)mdeD]‘1’2exp[ —5-la—q°
P(a,t|q°)

:f qu—l,_,J'dqlp(q,ﬂqN—l)...P(q1’7.|q0)_ —TG(QO)]'Dl[q—qo_TG(qo)]]-

(1.3 (1.6
P .|t is obtained by replacing in Eq1.1) the true drift vector
Clearly, the above equation is exact for any number of tlméG(q) by a constant vecto6(q?) or, in other words, by

slicesN. The only thing that requireld to be large is that the mapping the solution of a difficult problem onto a simpler

approximation used for the short time, or single step propa;, " . L
gator in the right-hand side of E¢L.3), zero-order” free-particle reference system, which is solved

exactly. This derivation reflects the fact that only the first
P(q*L,7q) = P<k)(qi+1'7_|qi)+o(7_k+1)’ (1.4) two cumulants, namely, the means

— 0 0 2
be sufficiently accurate. Herebly,is the order of approxima- (@) =a"+7G(q") +O() 1.7
tion. With the replacement given by E@..4), the problemis  gnd the covariances
reduced to the calculation of a multidimensional integral

(also referred to as a discrete path integral {(;q;))=7Dj; +0(7?) 1.8
0 N_1 1 N_1 contribute to the Fokker-Planck equation to ordefr),
P(a.t/q ):j do f dg*Pgo(a,7la" ) - - - Py while higher-order cumulant@s well as higher-order terms
Lo L contain information of decreasing significance and, there-
X(g*,719°) + O(t“"H/NY). (1.5  fore, can be neglected in the limit—0. However, the error

) _ o ) ‘made by using the primitive propagaidr.6) is of order 1N
trary timet in terms of the known short time propagator. AS accordingly, the dimension of the resulting integral, Eq.
there exists no unique way to determine the short time propa1 5) can be very high if the required propagation time is
gator, many different path integral representations correfong [6],
sponding to various different approximate schemes have re- The above observations have inspired the search for more
sulted [3] (for a recent review see also Re#]). In the efficient short time propagators, which would provide a
continuous time limitN— o, 7—0, these representations be- given precision with a smaller value ¢f. A great deal of
come exact, but they are, in general, unsolvable. Both congork has been recently devoted to resolving this problem,
tinuous and discrete path integral representations are relnd a number of new theoretical approaches have been de-
evant. The former yield a new conceptual basis foryeloped[7—9]. The most appealing feature of these ap-
understanding the physics described by the Fokker-Planckroaches is perhaps that they allow onesistematically
equation, and the latter provide a powerful tool for obtainingconstruct path integral representations of Fokker-Planck dy-
curate. Unlike other methods, the path integral solution renere to demonstrate the computational utility of the higher-
mains stable for rather large time stepsand permits the order representations in concrete realistic models, and com-
efficient treatment of multidimensional systems without in-pare it with the efficacy of standard path integral methods
troducing uncontrolled approximations. This is achievable byhow in use. Finally, to conclude this introduction we note
taking advantage of Monte Carlo techniques, which avoidhat there are many impressive reviews on path integrations
explicit reference to distribution functions and thus circum-in quantum statistics and mechanjt§]. However, the same
vent storing large dimensional matrices. In studying low di-analysis of path integral methods for stochastic processes
mensional systems, when storage requirements are not §gys rare up to recent times.
dramatic yet, the iterative evaluation of EG.5) is prefer- The remainder of the paper is organized as follows. In
able. It yields numerical results free of statistical errors.  gec. |1 two higher-order path integral methods are outlined

The practical applicability of the numerical schemesyith some improvements and their limitations are discussed.
available for both global and iterative evaluation of the dis-Numerical examples illustrating the power of various differ-
crete path integral depends critically on the dimension of thent path integral techniques are presented in Sec. Ill. They
latter. Therefore, higher-order short time propagators, acCyncjude the dynamics of Brownian motion in a single well
rate for as long a time as possible, are generally desirable. potential and in a double well. Section IV ends the paper
The obvious reason for this is that the higher the rate ofyith final remarks. In order to make our article self-
convergence of a path integral, the smaller the number ofontained, a brief description of the standard methods used
integration variablegand therefore the execution timthat  for comparison is given in the Appendix.
are required to evaluate it to a given accuracy. Until recently,
however, the only requirement usually made on the short
time propagator was that it satisfies Efj.1) to orderO(7).
For example, one of the commonly used path integral repre-
sentations is based on the primitive first-order propagator For notational simplicity, we consider a one-dimensional
reading Fokker-Planck equation

Il. HHIGHER-ORDER PROPAGATORS
WITH A LINEAR REFERENCE SYSTEM
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P (X, 1) =LP(x,t)=[ — 3,G(x) + (D/2) 92,]P(x,1), as does the exact propagator, ekp(Acting by Eq.(2.7) on
(2.1)  a delta function, we arrive at a second-order approximation
for the short time propagator whose explicit form depends on

which describes the motion of an overdamped Brownian parpartitioning the original Fokker-Planck operato= A+ B. A

ticle in a potential field small sample of that work can be found in REf]. Except
for some rigorous inequalitigd 1], little is known about the

N nature of the Trotter product formula, E42.6) and(2.7). Its
Ux)= f dyG(y). 22 convergence as a function &f must be studied for each

particular cas¢12]. However, the neglect of the commutator

The drift coefficientG(x) is assumed to be such that the petweenA andB is often quite severe, and thus use of the
Fokker-Planck operatdr is bounded on a finite-dimensional Trotter approximation requires rather fine discretizatios.,
Hilbert space. Moreover, we restrict the discussion to th@argeN) of the path integral.
case of “natural” or “inaccessible” boundari¢2]. From a Until recently, two general approaches were used to over-
mathematical point of view, diffusion problems of such acome the above problem. Various higher-order decomposi-
type are easier to solve since eaternalboundary condi-  tions were constructed either by explicitly including compos-
tions are required for the determination of the short timejte operators of the forn{A,[A,B]] into the factorized
propagator. Then, the corresponding equilibrium distributionproduct[13,14 or by using recursive properties of the Trot-
function reads ter splitting, Eq.(2.7), in order to exclude commutators from

B 4 considerationg15]. Each approach has its own advantages

Pe(X)=P(x,t—o)=Z""ex{ —2U(X)/D], (2.3 and drawbacks. Although there has been some recent success

ith Z bei lizati Inf | in path integral calculations with a composite operator fac-
wit eing a normalization constant. In fact, actual use ol 4tign [14], the utility of this approach is generally re-

the me(’;hods (_Jlescntt))ed belo";_ '?1 ndo_t more c?_mplzjcated Rtricted to a certain class of Fokker-Planck equations for
many dimensions because high dimensionality does NQlyich evaluating the composite operators involved in the

present special conceptual problems. We also point out thal, -tqrized product is not a major problem. Otherwise these
the diffusion coefficienD need not be constant and can be a.qmmutators complicate the expression in such a way that
function of x as well. Besides, with minor modifications t0 the calculation of the single step propagator may be out of
what appears below the Fokker-Planck operator can be timg,q question even for simple one-dimensional systems. In
dependent and even exhibit an explicit dependence on th&hrast, multisplit operator factorizations with no commuta-

distribution function. tors are readily determined from the recurrefitg]

A. Operator decoupling technique Q2k)(7) = Qak—2)(Ck7) Q(2k—2)[ (1= 2€) T]Q(2k—2)(Ck7),
The most common procedure of approximating the propa- (2.9
ator by a discrete path integral relies on the operator repre- - , _
gentatign P g P P where the coefficients are defined by Cﬁ? Lt
—2¢,)*1=0 with k>1. The recursive derivation @,
P(X,t|xo) =€ 8(x—Xy), (2.4  starts with the Trotter splittin@,), Eq. (2.7), and can be
carried out to arbitrarily high orders. The resulting factoriza-
which allows one to rewrite Eq1.3) as tion can then be written in the explicit form
elb=(e™)N. (2.5
Q(2k)( T) = H eai TAebi TB, (21@
|

Sincel is a sum of noncommuting operators, an operator

decoupling technique must be used to approximate the expo-. - . .
nential operator exp{) for short time r by a product of \;V(':tchuﬁgsﬁ'cl_"%rxz\?e‘r’b{%ggehr;ns'ns:egyntgil{;?;“rte?oogdelr Otfhis
functions involving each of these operators Y. ' P pply

approach to Fokker-Planck processes. The reason is that, be-

et =Q (1) +0(** 1) yond second order, any finite-order factorization of the form
® ’ (2.10 must produce some negative coefficieatsandb; .
Q(k)(T)N:etL+ O(tk+ 1/NK). (2.6) When applied to the Fokker-Planck equation, this means that

negative times appear at some diffusion operators, making
A simple way to achieve this is to divide the Fokker-Planckth€se approximants of no practical relevance for stochastic

operator into two parts, = A+ B, and employ the symmetric PrOC€sSes. .
Trotter splitting Here we employ an alternative method to construct

higher-order approximations, which has been put forward in
Q(Z)(T):efA/ZeTBeTA/Z_ (2.7 Refs.[16,17. The method combines the principal advan-
tages of the above two approaches, being free of their draw-
The advantage of this breakup is that it is time reversiblebacks. Its basic idea is to exploit the error structure of Eq.
The approximate propagator so constructed satisfies the cof.7) to remove time slices errors in Trotter-approximated
dition propagators. An attractive feature of the symmetric Trotter
splitting is that an approximate propagator constructetl of
Quo(—1)Quy(t)=1, (2.8 products, each of which satisfies £g8.8), has an asymptotic
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error expansion irevenpowers of 1IN [18]. In such a case, The second-order short time propagator is then obtained in
standard extrapolation methods can be applied tqZf.to  terms of Eq.(2.7) to yield [7]

successively eliminate the low-order errors resulting from

time discretization. In particular, a Romberg-type approxi-  P@(X:7|X0) = (X, 7/2) P, [H(x,7/2),7|H(Xo, — 7/2)].

mation for the time evolution operator without théN%/error (2.16

IS Hereby, P,(x,t|x,) is the propagator of the reference

Q(4)(t):%[4Q(2)(t/2N)2N_Q(z)(t/N)N]_ (2.11) Ornstein-Uhlenbeck process, H§.14),

The process can always be continued to remove all terms in Pr(X,t]Xo) =[2ma(t)]exd — (x—e™"'x0)*/20(1)],

the error series up to but not includit@(1/N2¥). Although (2.17
this technique(also referred to as Richardson’s deferred apyith the variance given by

proach to the limit has been known for some tinmi&9], its

effective application to path integrals has been fully realized o(t)y=D(1—e 2Y/2r, (2.18
only recently. Schmidt and Lgd.6] developed a method for _ . o . _
calculating finite temperature properties of quantum systemd](X.t) is a solution of a deterministic equation of motion
which involves the successive evaluation of the density ma- . ~

trix by a Trotter product formula of the form exp3H) x()=G[x(1)], x(0)=H, (2.19
%Q(Z)(,B/N)N. The calculation is performed forN

=2,4,6,8,12,16.... A polynomial extrapolation is then reading

used to fit the result to a low-order polynomial ilNE/and to Hix.t)=exd —tC(x)aIx=F " E(x)—t

predict the exact density matrix corresponding to infinitely (x.t) 1 ()0 [FOo=t], (2.20
fine substeps. However, the utility of the above procedure is x

restricted to one-dimensional systems. Only in that case is it F(x)=f dy/G(y),

possible to generate and store a large number of successive

approximations to the true propagator, whereas the efficient;y, -1 being the inverse function, i.eE~F(x)]=x,
treatment with this technique of multidimensional dynamicalyg the quantity stands for

processes is obviously beyond the computational powers of

even the fastest computers. . J(x,H)=a,H(x,t)=G[H(x,t)]/C(x). (2.21)
An alternative procedure that allows one to overcome this
problem has been suggested in Héf7]. Its key idea is to The resulting path integral representation converges very
apply Richardson’s extrapolation to the average of dynamirapidly and takesnuchless single step iterations than either
cal variables of the standard numerical routines described in the Appen-
dix. One drawback of the method,;Eowever, is that obtaining
— numerical results valid to order N requires much larger
(g(@rt) J daglaP(a.). 213 computation than the corresponditaf the same ordempath

rather than to the propagator itself. The time evolution Oflntegral based on an analytic single step propagator. It may

(g(q)[t]) is represented by a scalar function of one variablez:(s)gsbforﬂtﬁ? tt)haltiklz rlggm(lzdzlrger;srleon;\}aci‘llggfed ff;)rrTl ?;(\E)vres—
for arbitrary dimension of the system. Therefore, no prob- Vo L

. : . . : . models and therefore approximate evaluation of the deter-
!ems_ of storing and tregtlng large d|men5|ona_l matrices alSHinistic solution is generally required. For short times, this
e o fok ey ey 1%, 7 can be doe rther accuralely by EXpanGH@,0 i a Tav
so that each time the number of points is doublbg, lor series about=0 [7]. When applied to the present prob-

=2N, while the error is reduced by a factor bP. The lem, the expansion reads
latter is achieved by making use of the combination

Qak+2)(1) = (22— 1) T 22KQ 510 (1/2N) 2N = Q1) (t/N)N],
(2.13

which is a straightforward extension of E(.11) to arbi- Hereby, the prime denotes differentiation with respect.tt
trary k. The procedure is carried out until a prescribed erroiis clear that the use of approximations like E2.22 spoils
tolerance is met. the time reversibility of the single-step propagator, E49).

The symmetric Trotter splitting we employ here is the This brings up an interesting question, which will be ad-
same as in earlier workg,17]. It is based on partitioning the dressed in Sec. lll: Does the use of ER.22 also spoil the
Fokker-Planck operatdr into a linear contribution, enhanced error reduction?

—v_1& 2E N\ C 3
H(x,t)=x—tG(x) +t°G(x)G' (x)/2+ O(t>), (2.22

J(x,t)y=exg —tG’(x) +t2G(x)G"(x)/2]+ O(t3).

— 2
B=raox+(D/2)dy, (2.14 B. Exponential power series expansion method
with the as yet unknown factar, which is assumed to be As we already noted, numerical higher-order propagators,
independent ok, and an anharmonic correction, although accurate, require larger computational effort than
_ _ analytic propagators of the same order. For this reason, there
A=-9,G(x), G(X)=G(X)+rx. (2.15 has long been a desire to work out a simple computational
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tool for generating analytic expressions for the propagator b,=r"(2n—3)!!/n!.
accurate to an order im as high as possible. Only very
recently has such a theory been developed in terms of apnfortunately, the recursive evaluation of the expansion co-
exponential power series expansion formaligBl. The efficients does not allow us to expre®s,(x,x,) in closed
theory differs from other perturbation techniques in that theform and thus study general convergence properties for Eq.
time evolution operator is approximated by a global polyno-(2.24). Establishing these properties is a quite difficult task,
mial expansion valid not only for short times, but also in thewhich lies anyway outside the scope of the present paper,
intermediate- and long-time domain. This is achieved by repthough experience with similar problerfi0] suggests that
resenting the full propagator as a product of the referenceéhe series in Eq(2.24 is in general a divergent asymptotic
propagatorP, with the configuration function one.
The above power series representation of the propagator
is exact in the sense that no approximations have been made
H’n order to derive it. The recursive evaluation of the expan-
sion coefficients is carried owlystematicallyto any desired
order in £(t) and allows one taanalytically calculate the
W(X,Xo: )= W, (X, %), n=1. (2.24 dynamics in thewholetime domain[8]. Computer algebra
manipulators can be used to do this very efficiently. One may
Here, we restrict the discussion to the functigt) given by  thus expect that a truncation of the series in E424 at
some low ordem=k+ 1 will provide us with a single step

&t)=(1-e *Y/ar, (2.29  propagator

though a generalization to an arbitrary dependehoét is k+1

also possiblg8]. This particular time dependence has been P(k)(x,r|x0)= P,(x,r|x0)exp{ 2 E N WH(X,X0) |
chosen as it is associated with the width of the reference n=1

propagator, Eq(2.18), and so it is expected to give a reason- (2.30
able time scale in a general case. Then, inserting €983 )

and(2.24 into Eq. (2.1) and equating like powers af, we which would be rather accurate not only for very short, but

arrive at a hierarchy of linear inhomogeneous first-order dif-2/S0 for relatively large time steps Its use in a path integral
ferential equations for the expansion coefficients. These ar@€ans that it will take considerably fewer integrations than

solved analytically to yield the following explicit expressions the corresponding numerical propagator described in Sec.
for the first few coefficients: Il A, to say nothing about the standard low-order propagators

discussed in the Appendix. It may also be pointed out that

P(X,t|Xg) =P, (X,t|Xg)exd W(X,Xq;t)], (2.23

and expanding the exponent of the configuration function i
a power series in a given function tf

X the most commonly used approximation for the short time
Wi(X,X0) = L dyG(y)/D, propagator, Eq(B6), follows from Eq.(2.30 for k=1 and
0 r=0 if one approximates the integral determinig, Eq.
1 (2.26), by
Wz(X-Xo):_f duVa[Xe+Uu(X—Xo)],
0 1
(2.29 Wa(X, o) = - f duVy[Xo+U(x=x0)]
Wi3(X,X0) = r'Wa(X,Xg) — D[2Wa(X,Xg) +V2(X) 0
+Vo(Xo) 120X —X0)?, ~3[Va(xo) +V2(X)].
with We note, however, that the above approach is not appli-

cable to equations with singular diffusion matrices. Although
V,o(X)=3[G%(x)/ID+ G’ (X)—r>x?/D+r]. (2.27 there has been some recent success in describing the average
of dynamical variables of these equations by expanding them
The rest of the expansion coefficier¥, with n=4 are in a power series i(t) [8], an analogous extension of the

obtained recursively by means of formalism on the propagator level is still lacking. Yet an-
L other disadvantage of the series representation is that the

W, (X,Xo) = _f AU’ 2V, [ Xo+ U(X—Xg),Xo], efficient eygluation of the propagator is feasib!e if and only if

0 the coefficients of the Fokker-Planck equation are simple

(2.28  enough(polynomials or a finite sum of exponentialdn
_ ) ) _ such a case, the various integrals involved in the expansion
whereV,(x,Xo) is a known function determined in terms of coefficients are to perform analytically. Otherwise, numerical

lower-order terms guadratures are required, making E230 unsuited for path
N integral calculations.
Vip=rVp_1—r(n=2)W,_;—(D/2)W;_,
n-2 C. Determination of the free parameter
B ,Zz [(D/2)Wq—;=bn—Xo] W}, (229 Now it remains to determine the free parameteppear-

ing in the reference propagator, E@.17), so that the dy-
with b,, given by namics of the reference system resembles as closely as pos-
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sible that of the full system. This is attainable if one (2.1). This problem is simple enough to enable us to compare
minimizes in a least-squares sense the anharmonic correaith numerically exact results obtained by other means. For

tion, i.e., instance, on the order of 100 basis functions are already suf-
_ ficient to achieve machine accuracy in the basis set evalua-
3 (G?(x)[t])=0, (2.3) tion of the propagator almost in the whole time domain. As a
o ] ) second and more challenging example, we tackle the Kram-
which immediately yields ers model of chemical reactions. The model is governed by a
r(t)= —(xG(x)[t]}/(xz[tD. (2.3 two-dimensional Fokker-Planck equation, whose diffusion

matrix does not possess an inverse. In this case, obtaining

The above approach is very simple to implement and a|5351umer_ically exact no_nstationary solutions _is in general a far
general in the sense that it can be applied to any quasilinediom simple task, while closed-form analytic results are only
single step propagator. The averagpsre easily evaluated ava[lgb[e in the long time limit when the system approaches
by Eq.(2.12 before the solutiorP(x,t) is advanced to the €quilibrium.

next time level. One can still further simplify the determina-

tion of r by averaging over the equilibrium distribution, Eq. A. Overdamped Brownian motion

(2.3, In order to show that the present path integral solutions

__ 2 are efficient for any system regardless of whether the poten-
fe= = (XG())e/(xDe. (233 tial can be represented as a sum of harmonic and anharmonic

With Eq. (2.33 we arrive at a reference propagator that re-t€rms, we first consider a one-dimensional model, @),
produces well the long-time dynamics of the full system. AWith @ pure quartic potential given by
possible explanation for this is that E(R.33 is a good 1.4

e - ; U(x)=zx" (3.1
approximation to the least nonvanishing eigenvalue of the

Fokker-Planck operator We shall apply the various approximations discussed above

No~T.. (2.34 for the short time propagator to the path integral evaluation
e of the second cumular¥,(t) ={(x3(t))). This quantity is
The disadvantage of the approach is that the free parametéigtermined by the first two moments of the Fokker-Planck
so determined is independent of the particular form of theequation, Eq(C3), and characterizes the width of the distri-
short time propagator used, whereas our calculations peRution functionP(x,t). The calculations are performed for
formed on model systems show that each short time approxP =1 andx,=1, with 7=0.1. The method used to numeri-
mation P, has its own optimal value of that may be a cally evaluate Eq(1.5) is described in Ref9]. A grid of 64
function of r andt (see Sec. Ill of the present article as well Points in the interva[ —2.7,2.7 was found to be sufficient
as Ref.[8]). for the quadrature. Finally, we compare with numerically
Before closing we note that the variational approach teXact results that are obtained by a basis set methdid

path integrals is not new. It was developed first by Feynman T0 begin with, we illustrate the efficacy of the time-
as early as 197221]. In the last decade, a considerable im-independent criterion for determinimgsuggested in Sec. Il
provement of Feynman’s original technique has been put forEd. (2.33. According to that criterion, an optimal value of
ward[22]. The basic idea of the refined treatment is to mapthe free parameter is,=1.04. Our calculations, performed
a physical system described by a general potential energyith the second-order Trotter-approximated propagtaey.
function V(q) onto a harmonic-oscillator reference system(2.16], reveal that the best choice ofis very close to the
and to use the affiliated frequency as a variational parametepbove estimation. This is evidenced by Fig. 1, which shows
This treatment can yield realistic finite temperature properthe relative error
ties of quantum systems and it also requires much less com- )
puter time. The reader can easily verify that the methods &= [(approximatg— (exac}]/(exac) 3.2

outlined in Secs. Il A and 1l B further improve the varia- . ) )
tional approach, while retaining its principal advantages. " the_path integral evaluatlon.of the second cumulant made
by using Eq.(2.16 as a function oft. The most accurate

results are attained for=0.95, which is nearly the first non-
zero eigenvalue of the Fokker-Planck operatgrs= 0.967.

It is now our aim to test the relative efficacy of the new For demonstrating the efficacy of Richardson’s extrapola-
discrete path integral solutions and compare it with that otion technique, we fix =1 and repeat the calculation with
standard path integral representations. The latter are briefly=0.1, 0.05, and 0.025. Then Eq®.13 are employed to
outlined in the Appendix and include the histogram represensuccessively eliminate M? and 1N* errors. Figure 2 shows
tation by Wehner and Wolfdi5], the Trotter splitting of the the resulting errors obtained with the Trotter single step
standard type as in quantum statisti@8,24], and higher- propagator, Eq(2.16), using the true deterministic solution,
order approximations derived from the cumulant expansioriEg. (2.20, and its Taylor series approximation, EQ.22.
for the short time propagatd®]. To simplify our compari- The logarithmic plot clearly illustrates that each removal of
son we shall employ below the free parameténdependent an additional power of N? increases accuracy by nearly
of time, though the use of the time-dependent criterion fortwo orders of magnitude. An interestifigerhaps surprising
determining (t), Eq.(2.32), is also feasible. As a test model, finding revealed in our calculations is that the time revers-
we first consider a one-dimensional process governed by Edpility, Eq. (2.8), does not play the decisive role that has been

Ill. NUMERICAL RESULTS
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FIG. 1. Logarithm of the relative error lege|, Eq.(3.2), in the
path integral evaluation, witk=0.1, of the second cumulant for a
quartic potentialEq. (3.1)] and forx,=1 andD=1 made by the
quasilinear Trotter-approximated propagator, E8.16 with r

=0, 1, and 2.

attributed to it by Schmidt and Lg&6]. The enhanced error
reduction is seen to occur even though the single step propa-
gator[Egs. (2.16 and (2.22] fails to satisfy Eq.(2.8) ex-
actly. This is because the violations of the time reversibility
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FIG. 2. Successive error reduction made by E@s13. The
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FIG. 3. Same as in Fig. 1, but for the short time propagator
given by the power series, E.30 with (a) k=2 and(b) k=3.

are of the same order as the error. Our finding is particularly
important for multidimensional systems, as there is no
closed-form expression fdt(q,t) in this case.

Next, we apply the short time propagators obtained by
truncating the power series after tke1, 2, 3, and 4 term,
Eq. (2.30, to the path integral evaluation of the same quan-
tity. In order to see the efficacy of these approximations as a
function of the free parameter, we performed calculations
over a wide range af. We have found that for each value of
the truncation number there is its own optimal valuer of
This optimal value varies drastically froknto k+1 and, in
contrast to that given by E@2.33, can become even nega-
tive. The latter is evidenced by Fig. 3, which shows errors
obtained fork=2 and 3. The bottom curves in the figure
correspond to the best choice iofdetermined by computa-
tion. We have also found that for all considerk the
choicer =1 [according to Eq(2.33], although good, is not
the best. It should be stressed, however, that even with this
(far from bes} choice ofr we are able to attain acceptable
accuracy withouainy increase of computational effort solely
by increasing the number of terms involved in the sum of Eq.
(2.30. As is seen from Fig. 4, a precision of 1¥°is already
achieved fork=4. This is in contrast to the fourth-order
Trotter-approximated propagator, which requires for compa-

dashed, dot-dashed, and solid lines are, respectively, for errors &fble accuracy a computation that is three times as lafge

orderN™2, N™* andN~®. The results are obtained for1 using
the Trotter-approximated propagator, Eg.16) with (a) the true
deterministic solutiofiEq. (2.20], and(b) its Taylor series approxi-

mation[Eq. (2.22)].

Fig. 2. Finally, we note that in a wide range of results
obtained withk=2 turn out to be very close to those kf
= 3. One might thus expect that the extrapolation formula of
Eqg. (2.11) could also be very efficient in this case. Indeed,
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FIG. 4. Successive error reduction made by the power series FIG. 6. Errors made by using various short time approximations.
short time propagator, Eq2.30 with r=1 andk=1, 2, 3, and 4. The parameters are the same as in Fig. 1. Open circles: propagator
The parameters are the same as in Fig. 1. of Wehner and Wolfer, Eq(1.6); solid circles: standard Trotter

formula, Eq.(B6); dashed line: quasilinear Trotter approximation,
our calculations reveal that the use of E8.11) may in-  Eq. (2.16 with r=0.95; dot-dashed line: cumulant expansion, Eq.
crease accuracy by two and even three orders of magnitudé:4) with k=2 andr =1.5; solid line: power series expansion, Eq.
But this is not generally the case for higher-order extrapola{2.30 with k=2 andr=1.55.
tions of Eqs(2.13. Figure 5 shows errors made by using Eq.
(2.30 for r=1.5 andk=2, and with an initial value ofr r=0. Being truncated &t=2 for r=1.5, the cumulant ex-
=0.1. The solid curve in the figure clearly illustrates thatpansion of the short time propagator reduces the error by
application of Eqs(2.13 to eliminate 1N* errors consider- nearly one order of magnitude. But the error still remains
ably decreases accuracy rather than to further incredsg it rather large in the initial time regime. Although no linear
Fig. 2. This is because the propagator formedNoproducts  reference system is used in the standard Trotter forfitda
of the power series approximatioRg,,, though more accu- (B6)], the effect of preserving time reversibility is also the
rate than the Trotter-approximated propagator, does not gemeduction of the error by one order of magnitude. The present
erally have errors proportional to only powers oN3/ quasilinear second-order propagators are seen to further re-

Finally, in Fig. 6 we plot the errors made by the variousduce the error roughly by a factor of 14. It should be pointed
second-order quasilinear approximations for the short tim@ut that the more accurate description is achieved without
propagator, Eqs(2.16), (2.30, and(C4). Each of these ap- extracomputational effort solely due to the proper choice of
proximations is taken with its own best choice ofdeter-  the reference system. In contrast, a precision of five signifi-
mined by computation. Also shown are the errors made bgant digits is attainable with the standard Trotter-formula
the standard short time propagators based on a free-particteethod, Eq.(B6), just for 7=0.03. While the method of
reference system, Eqél.6) and(B6). As seen in the figure, Wehner and Wolfer fails to reach this level of accuracy even
the primitive short time approximation of Wehner and though7=0.001.

Wolfer [Eqg. (1.6)] can at best reduce the error to a few per- Next, we apply the same techniques to the dynamics of a
cent, being thus the worst of the considered propagatordistable system given by
This is not surprising, as E@1.6) follows from the cumulant

expansion for the propagator, E§4), truncated ak=1 for U(x)=—$x?+ x4 (3.3
-3 This example is more challenging in that fbr<1 the first
Y nonzero eigenvalue of the Fokker-Planck operator becomes
---------------- exponentially small
AN
N
s U ] \1=O(e VD). (3.4
e s
g \‘\.\ Consequently, simulations over very long times are required
-7 - e — to describe all regimes of interest, reaching from fast in-
RN trawell relaxation (>)\2_1~1) to slow interwell equilibra-
vl tion (t>)\1_1). In such a case, the standard way of reducing
9 errors of time discretization by decreasimgwill substan-
0 5 tially increase the necessary computational effort and, there-
t fore, higher-order propagators are generally desirable. To be

specific, we restrict our discussion to a moderately small

FIG. 5. Same as in Fig. 2, but for the short time propagatorvalue of the diffusion coefficienD =0.1. The calculation is
given by the power series, E(R.30 with k=2 andr=1.5. performed forr=0.2 andxy=—1 on a grid of 64 points in
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o P(x,0)=Z"texqd — Bv?2— BU(X)]. (3.6)
o 00000
3 C I 00 7] After integration overv it reduces to Eq.2.3) with D
R Oo =2pB"1. The above model, although simple, is of enormous
_ 3 _0';\ _ utility in understanding and evaluating the influence of the
w ® " e00000 medium on dynamical processes. It is commonly used in
5,? i 5\" studies of superionic conductors, Josephson tunneling junc-
2 4 - e N - tions, nonlinear optics, nucleation, and escape rate theories
e Tsil [27]. The essential features of many of these processes
[N ol mimic the dynamics of potential barrier crossing, a problem
-5 -‘ :,’ S that was first treated by Kramers in his seminal pd2éi.
!K N/ To be specific we choose a symmetric bistable potential
0 ot 5 of the form
1
U(x)=E(x*—1)?, (3.7

FIG. 7. Same as in Fig. 6, but for a double well, £8.3), and
for D=0.1, with 7=0.2. Open circles: propagator of Wehner and with E being the height of the potential barrier. This example
Wolfer, Eq.(1.6); solid circles: standard Trotter formula, E®6); s particularly challenging for several reasons. First, the least
dashed line: fourth-order Trotter-approximated propagator, Edsnonvanishing eigenvalue of the Fokker-Planck operator is
(2.11) and.(2.l6) with r=0; dot-dashgd I.ine: cumulant .expansion, exponentially small\;=0(e™#F). But this is not the only
Eq. (C4) with k=4 andr = —0.35; solid line: power series expan- reason that may require simulations over very long times.
sion, Eq.(2.30 with k=3 andr=—0.25. Long time length simulations are also necessary in the weak

the interval[ —1.7,1.7. Equation(2.33 gives in this case damping limit, y>1, even though the potential barrier is
r.=0.05, which is close enough to the least nonvanishind@ther small,BE=<1. In such a case, the energy of the par-
eigenvalue ;= 0.00277. icle is an aImost c_onserved quantity, and the partlcle_ gnder—
We again performed calculations with the two methods3®€S many oscillations between the stable states untll_ it ther-
described in Sec. Il for different values of the free param-Malizes in one of them. Second, E§.5) cannot be cast into
etersr. Since the conclusions drawn in this case are esseljjl Hermitian form, as its diffusion matrix is singular. The
tially the same as for the pure quartic oscillator we do no atter property Is an ObSt‘?‘C'e for employlng the efficient se-
present these results. We only compare in Fig. 7 the accurad{fS representation technique, outlined in Sec. 1l B, and also
of the various approximations discussed above for the singld2révents us from making use of powerful nonperturbative
step propagator. As expected, the power series expansiéﬁhemes of quantum mechanics. Standard numerical meth-

turns out to be the most efficient method. The error made b?dS Such as basis set expansions could be efficient in study-
Eq. (2.30 for k=3 is seen to be even lower than that of the ng dynamical properties of E@3.5) in the intermediate and

fourth-order Trotter-approximated propagator that is Con_!ong time regimes provided that the desired level of accuracy

structed with Eq(2.16 using the extrapolation of E¢2.11) is jus_t a few percgnt. Otherwise, on the order of_ 4_0—59 basis
to eliminate quadratic errors. The latter in turn is more accufUnctions per variable are necessary for a precision 0’10

rate than the fourth-order cumulant expansion. It is also seeﬁnd this limits the practical applicability of the approach to

that the error made by the standard Trotter formula,(Bg), ~ VerY long times, i.e., to the cases where the first two eigen-
is nearly two orders of magnitude larger than the errors madgalue_s form the main contribution to the trar_lsmon probabil-
by the present methods. It may be noted here that a precisidly- Finally, the second cumulant of the variabletends to

of 107° is achievable in calculations with E¢B6) only for ~ 2€M0 ad9)]
7~0.05, i.e., with substantial increase of computational ef-

fort. The error made by the method of Wehner and Wolfer is

again much larger than those of the other techniques.

((EN=5yp 13+ 0(7%), (3.8

rather than linearly as is the case for processes with invert-
B. Kramers model ible diffusion matrices, Ec(.1.8).. This means that witr—0
) L the propagator of Eq3.5 rapidly degenerates into a delta
As a second example, we consider the original Kramerg,ntion, requiring very fine spatial discretization. In such a
model, which consists of a unit mass particle in a potentialase the standard way of reducing errors by decreasing
U(x), driven both by linear friction with coefficientand by ij| sypstantially increase the storage requirements and ex-

. _1 . .
thermal noise of temperatufe” " [26]. The dynamics is gov-  gcytion time necessary to get good resolution in path integral
erned by the two-dimensional Fokker-Planck equation fol.5iculations.

the probability density of finding the particle at time moment  1he gpove observations are in drastic contrast to the
t at positionx with velocity v Trotter-formula method outlined in Sec. Il A, which allows
_r_ , -1 one to get very accurate results without using large dimen-
HPOGU,D=[=va kU (X)d,+ yd,(u+ B0, IP(GU, D). sional matrices. It is an approach that can be applied to
(3.9  simple and complex systems and singularity of the diffusion
It is not hard to check by direct substitution that the station-matrix does not present special problems. In particular, when
ary solution of Eg. (3.5 has the standard Maxwell- applied to Eq.(3.5), it yields a second-order propagator of
Boltzmann form the form[7]
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P(z)(X,U,T|X0,U0):Pou[X,U_TG(X)/Z,T|Xo,UO -1 T T i
————————— ~< ! Y
+7G(x)/2], (3.9 2k N/
- [
where G(x)=rx—U’(x), while the reference propagator _ B rF - LA ,'l 7]
P.(x,v,7]Xq,v) is defined by ® T NN
2 Af v/
B=—vdy+rxd,+ yd,(v+pB139,). (3.10 2 sl |
An explicit expression folP, can be found in Refl2]. An 6 _ﬁ/\ n
accurate description of dynamical properties is attainable
with Eq. (3.9) in all regimes of practical interest with rela- 7 I 1
tively large time steps thanks to the numerical efficiency of 0 0.5 1 1.5
the enhanced error reduction techniques. In order to illustrate (a) X
this statement, we have calculated the stationary solution 0 | | ;
P.(x) for different values ofB, vy, X, andvy on a 64 b __ /
X 64 (x,v) grid in the intervals|x|<2 and |v|<6. The IR /
guadrature of Eq(1.5 are evaluated iteratively by taking 1 NN // ]
advantage of the fast Fourier transfofRFT). Although path _ \\\ ;T /
integral representations of stochastic dynamics are, in gen- % \\,/ /
eral, not suited to the FFT, a way for overcoming this prob- S 2 ! I
lem has been developed in a previous papEr]. The L2 N “ /"
method employs the Stirling interpolation to dynamically re- -3 _‘\ P "\.\ /.’ Voo
adjust the distribution function every time step with a mild A v
increase in cost and with no loss of precision.
Since except for the Trotter-formula meth¢8ec. 11 A -4 1 ]
and the cumulant expansig@ppendix O, the rest of the 0 0.5 1 1.5
discussed path integral approaches are not applicable to Eq. (b) X
(3.5), results of only these two methods are presented in Fig.
8. The figure is a plot of the relative errors obtainedPix) FIG. 8. Successive error reduction in the path integral evalua-

for B=1, E=5, withr=0. As anticipated, these results ap- tion of .the stationary solution of a Kramers model, _E(q_SS) and
pear to be independent of the initial conditions and friction(3-?) With SE=5. The dashed, dot-dashed, and solid lines are, re-
coefficient. We note the relatively easy way by which anSPEctively, for errors of order B, 1N and IN°. (a) Trotter-
acceptable accuracy of 10 is achieved in terms of the 2PProximated propagator, E¢&.9) and(2.13; (b) cumulant ex-
present Trotter-approximated propagator with discretization§3"%'°™
7=0.1, 0.05, and 0.025 using E@.13 to remove quadratic
and quartic errors. It is also important that the accuracy ofelative efficacy of different path integral representations
the method is rather insensitive Joalmost in all regimes of available in the literature. Each of these representations has
physical interest ranging from the underdamped Browniarits own advantages and drawbacks. Specific advantages
motion, y<1, to the spatial diffusion regimey>1. The sought include having a rapid convergence rate, being easy
same, however, is not true for the cumulant expansiorio implement, and requiring a small amount of modification
method(a generalization of the method to many dimensiongvhen the Fokker-Planck coefficients are changed. From this
can be found in Ref9]). Although its accuracy, for=0.1,  point of view, the approach recently introduced by one of us
is seen to be comparable with that of the Trotter-formulal8,17] (A.N.D.) is particularly interesting. Its key idea is to
method, the utility of the propagator obtained by truncatingtreat a general Fokker-Planck process as a perturbation of a
the cumulant expansion turns out to be very restrictive witheference Ornstein-Uhlenbeck process, and to then use per-
respect to the friction coefficient. This is because any finiteturbation techniques to quantify what is missing from the
order truncation of the cumulant expansion fails to providereference description. We have shown that the representa-
the positivity of the second cumulants for all y, x,, and  tions so obtained are both theoretically and numerically ad-
vo at once. For each the latter become negative with in- vantageous with respect to other path integral representations
creasingy, and very short time steps are required to over-NOW in use in the sense that they give much more accurate
come this problem. results with a little computation. It is particularly pleasing
that high accuracy is achievable with the present technique
even though the time step is rather large. A substantial
reduction of errors is attained by appropriately choosing the
At present there exist several theoretical approaches ttsee parameter and/or by increasing the order of approxi-
constructing path integral representations for Fokker-Plancknation k. The examples discussed in Sec. Il are very en-
dynamics. Their mutual correspondence, however, is complicouraging in this regard. In contrast, the accuracy of the stan-
cated. This paper is an attempt to put the approaches in otlard path integral representations is controlled only by
der. We briefly summarize and review much of what hasincreasing the number of integration variabhs
been done before in this field with the aim to compare the As anticipated, the accuracy of the power series method,

IV. CONCLUDING REMARKS
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Eq. (2.30, appears to be more favorable than that of the APPENDIX B: FAST FOURIER TRANSFORM METHOD
other techniques, if the criterion is solely accuracy for a

given time stepr. We recognize, however, that this is not the A major step forward was the introduction of efficient

5 < . e(1:1rid methods, such as those based on the FEI. When
only aspect when discussing the power series propagator v applied to stochastic dynamics, high proficiency is usuall
sus, e.g., the standard Trotter formula, B8f). The latter is PP y » gh p y Y

more easily implemented due to its very simple structure"’wh'eved by making use of an apparent analogy between the

while the former involves the various integrals whose evalu—FOkker'Planck equation for the probability density function

: . : and the Bloch equation for the coordinate density matrix
ation may require a more analytical work. On the other hand; 1. This analogy always exists for one-dimensional sys-
both the power series expansion technique and the stand éﬁns but it is noq[ya engric case in manv dimensions Myul-
Trotter-formula method fail to treat processes with singular.” .~ ™~ 9¢ ; y >
diffusion matrices. In view of the above remark, the presen{'d'mens'gnal stochastic dynamics, Efj.1), can be cast into
Trotter-approximated propagatpgq. (2.16] seems prefer- he Hermitian form
able. Being structurally similar to the standard Trotter ap-
proximation, it_ nevert_h_eless s_hows a drama’_[ic improveme_ntgt(/,(q,ﬂqo): _H¢(q,t|q0)z[%Dij(9i2j —V()]¥(q,t|q%),
over the latter in that it is applicable to an arbitrary stochastic
process and requires considerably less integrations for (B1)

achieving a given precision. if and only if the Fokker-Planck operator obeys strict de-

tailed balance, i.d.2],
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for any smooth functiorf, whereL* denotes the backward
IrE)perator

+ __ 1 2
APPENDIX A: HISTOGRAM REPRESENTATION L7 =Gi(@di+ 2D 95, (B3)
OF WEHNER AND WOLFER
while P, is the equilibrium distribution satisfyingP,=0.
In such a case, the auxiliary quantipfq,t|q°) is associated

tg the propagatoP(q,t|q°) by means of the ansatz

Wehner and Wolfef5] developed their iterative path in-
tegral method using Eg$l1.5 and (1.6), and the Gaussian
nature of the postpoint variables. The method is based on
histogram representation of the distribution function and re-
duces the problem of numerically solving the Fokker-Planck P(a,t]°%) = VP(q)/Pe(q°) (q,t|q0), (B4)
equation to simple matrix vector multiplications,

o while the potentiaM(q) is determined in terms of the drift
Pi(t+7)=Ty(nPy(1), 1si, j<M, (A1) coefficientsG; and the inverse diffusion matrig! by

where P;(t) =P(x; ,t), and where the elements of the tran- irmii
sition matrix T;; are evaluated on a grid d¥l points, x; V()=z[D"Gi(a)G;(a) +4iGi(q)]-
=X, +(i—1)h, by numerical quadratures

(B5)

If Eq. (B2) does not hold, a mathematical obstacle exists to

1 (x+hi2 x; +h/2 applying by analogy the quantum principles because the
Tiy(=% de dyPa)(x,7ly).  (A2)  Fokker-Planck operator is generally non-Hermitian.
Xi—hiz Xj—h2 Path integral methods of the standard type as in quantum
o . statistics have been employed in special cases wheran
However, the primitive single step propagator used by Weyg yransformed to a Hermitian forf24]. The most common
hner and Wolfer, Eq(1.6), fails to treat processes with non- rqcedure of approximating the propagator for short time
invertible diffusion matrices and requires very short time in-4jjizes the symmetric Trotter splitting of the time evolution
crements for accuracy. Accordingly, the dimension of thegnerator, which is based on partitioning the Hamiltonian into
resulting integral and, therefore, the number of matrix vectof;etic and potential energy ternig0,24. When applied to
multiplications can be very high if the desired propagationyne._gimensional systems, this yields a second-order short

time is long. Moreover, the number of matrix elements t0 b&;me propagator with a free-particle reference system reading
stored as well as the execution time necessary for each ma-

trix vector multiplication grow exponentially with the dimen-

sionality of the system. This makes the above propagation  #(2)(X,7|Xo)=(2m7D) ™~ "%exp{— (x—X0)*/27D

scheme rather impractical for systems with more than one _

degree of freedom. Recent applications of the method in neu- V(X)+V(x0)1/2}. (B6)
roscience studies have shown how difficult it can be even in

two dimensions to get good resolution because of CPU conwith Eq. (B6), the expression for a single iteration becomes
straints[6]. well suited to the FFT,
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P(x,t+T)=(2w)—1exq—U(x)/D—TV(x)/z]f:dz Mi=%o*O(r),  Mz=0(r).  M,=0() (”>2)(¢5)

w The cumulants involved in EGC4) are to be evaluated up to
Xexp(—izx— TDZZ/Z)f dy and including terms of order. This can be done by expand-
m ing the formal solution for moments

Xexgizy+U(y)/D—7V(y)/2]P(y,1).

+
(x"(0)=[e" x"]

(B7) o
in a Taylor series int [9]. Here we outline an alternative

The resulting propagation scheme is obviously efficient in . .
. " - ~. . method which allows us to construct an expansion for cumu-
terms of storage requirements, as no transition matrix is in;

. . L . lants by treating a general Fokker-Planck process as a per-
volved in calculations. In addition, the favorable scaling Ofturbation of an Ornstein-Uhlenbeck process. To this end. we
the fast Fourier transform, which is almdstear with the b ) '

number of coupled degrees of freedptd], allows for much again split the fuIIErift coefficient into a' linear pa@(x)
more rapid evaluation of the integrals in B4.5) than ma- = — X and the resG(x) =G(x) +rx, and integrate the mo-
trix multiplication techniques. The main disadvantage of theMents equations of motion from=0 to t=r,

method is that it is based on the primiti(feee-particle, low-

orden short time propagator which cannot be applied to sys- (X"(7))=e"""x,+ nJTdSé’"’(S— 7)

tems without strict detailed balance. 0

-1~ 1 -2
APPENDIX C: CUMULANT GENERATING FUNCTION X({X"IG() +2(n—1)DX"7}(s)). (CH)

FORMALISM Explicit expressions for the moments can then be obtained

Yet another way to construct higher-order analytic ap-by expanding the integrand of E(C6) in a Taylor series
proximations for the propagator is to make use of the cumuabout the prepoink,. Repeated iteration of the resulting
lant generating function formalisf®]. The key points of the equations, while neglecting terms of order higher thdn
method are representing the propagator in the form gives the following expressions for the first few cumulants:

o0 — ~1 2 ”
P(X,t|XO)=(27T)_1J dzexr[—ixz—l— @(Z)], (Cl) Ml Xo+a1(T)Go+a2(T)G0Go+al(T)DGO/4

. +a5(7) GoBo2+ ag(7) (2G2+3DGY) Gl
222 expanding the generating functigiiz) in a power se- +ag( T)DGQG6,+aG(T)D2G6V,

e(2)=i"M,z"/n!, (C2) M,=D[}a,(27)+a2(7)Gj+as(7) Gy + 4as(7)GoGh

where the quantitieM,,, which are called the cumulants of +8ag(m)DGy ],
the variablex, are expressible in terms of moments
Ms=(1—6e 2 "+8e ¥"—3e “7\D2G}/4r3, (C7)
Mi=(x), My=(x?)—(x)?

(€3 whereF,=F(xq), F=G,G’, ..., and theexpansion coef-
M3=(x%)=3(x)(x)*+2(x)%, ... . ficients are
An explicit general formula for converting moments into cu- ay(n)=(1—e "ir,
mulants can be found in Rdfl]. It should be noted here that
both cumulants and moments are functions of the prepgint ap(m)=[1—(1+rr)e "7/r?,
and the time increment, but to keep the notation simple we
do not indicate this explicitly. When the cumulars, are ag(7)=[1—(1+r7+3r2r)e "7)/r3,
all determined, the Fourier inversion formui@l) gives the
propagatorP(x,t|x,) for an arbitrary net incremertt As, ay(7)=(1-2rre”""—e 2'")/4r3,

however, we are interested in the short time dynamics, a e otr ara s
truncated cumulant expansion can be used to determine the as(7)=[2—(3+2rr)e"""+2e “"—e *'"]/8r",

short time propagator
a6( T) — (3_ 8e T+ 66—2”_ 6_4”)/967‘3,

P(k)(x,r|x0)=(27r)‘lf dzexp{iz(Ml—x)—%Mzz2 az(7)=[3—4(1+r7r)e "+ (1+2rr)e 27)/2r3.
— 0 (C8)
k
: The method is rather simple to implement, but also general
nrnt
+r,§=:3 Ma(i2) /n.] (C4) and rigorous and allows for theystematiaerivation of the

short time propagator valid to any desired precision in time
In deriving the above expression we have used [kt incrementr. The calculations are doabémalytically regard-
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less ofthe specific form of the drift and diffusion coeffi- high enough ordek. With increasingr, however, the error
cients, thus permitting one to get accurate results with minibegins to grow very rapidly, and beyond somg, that is
mal computational effort. At first sight we arrive, with these noticeably smaller than unity, the method fails to produce
developments, at a powerful high-accuracy method that isorrect results. This is because the range of validity of Eq.
efficient in terms of speed and storage requirements, simulC4) is restricted by the inequalityl ,>0, which is satisfied
taneously. Indeed, the calculations we have performed oonly in the limit 7—0. It is not hard to prove that this is
model systems show that the method is accurate for vergenerally true for any finite-order truncation of the cumulant
short time steps if one truncates the series in E(@4) at  expansion, Eq(C4) [28].
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