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Dynamical tunneling in mixed systems
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We study quantum-mechanical tunneling in mixed dynamical systems between symmetry-related phase
space tori separated by a chaotic layer. Considering, e.g., the annular billiard we decompose tunneling-related
energy splittings and shifts into sums over paths in phase space. We show that tunneling transport is dominated
by chaos-assisted pathhat tunnel into and out of the chaotic layer via the “beach” regions sandwiched
between the regular islands and the chaotic sea. Level splittings are shown to fluctuate on two scales as
functions of energy or an external parameter: they display a dense sequence of peaks due to resonances with
states supported by the chaotic sea, overlaid on top of slow modulations arising from resonances with states
supported by the “beaches.” We obtain analytic expressions that enable us to assess the relative importance of
tunneling amplitudes into the chaotic sea versus its internal transport properties. Finally, we average over the
statistics of the chaotic region, and derive the asymptotic tail of the splitting distribution function under rather
general assumptions concerning the fluctuation properties of chaotic $&1663-651X%97)10312-9

PACS numbes): 05.45+b, 03.65.Sq

[. INTRODUCTION appropriate random matrix models showed very good agree-
ment[1,8,9. However, the lack of a semiclassical descrip-
A detailed understanding of how the coexistence of clastion of the tunneling processes remained as a gap between
sically regular and chaotic phase space areas is reflected the quantum and the classical picture, and — more impor-
the corresponding quantum dynamics poses one of the chalntly — the size of the tunneling amplitudes was unknown
lenging problems in the field of “quantum chao§®]. Even in the systems under study, which maddigect and quan-
though semiclassical theories exist for the two limiting casegitative treatment of the phenomenon impossible.
of fully integrable[2], or fully chaotic classical dynamics Both of these problems were addressed in an earlier pub-
[3], the quantum mechanical properties of systems witHication by the authors of this woikl0] in which a semiclas-
“mixed” classical dynamics have to date not been amenablesical analysis of tunneling processes in the annular billiard
to a semiclassical formulation. The quest for such a theory isvas performed, and a formula for the contribution of chaos-
highlighted by the fact that mixed systems comprise the maassisted paths to the energy splitting was derived. Here, we
jority of dynamical systems found in nature. give a detailed account of our findings. Particular emphasis
Out of the wealth of phenomena reported in mixed syswill lie on the description of how the tunneling rate is af-
tems, a particularly interesting one is genuinely quantum mefected by phase-space structures within the chaotic region,
chanical in nature: tunneling. A situation that has receivechamely, the existence of an intermediate “beach” region
much attention is the one in which tunneling takes placesandwiched between classically regular islands and the cha-
between distinct, but symmetry-related regular phase spacgic sea.
regions separated by a chaotic layer. Interest surged when it The structure of this paper is as follows. In Sec. Il, we
was discovered that energy splittings can increase dramatieview the basic ideas underlying this work. Also, we intro-
cally with chaos of the intervening chaotic layd—6]. This  duce the model system under consideration, the annular bil-
was attributed to a suggested mechanisnchdos-assisted liard. In Sec. lll, we introduce the method of our analysis,
tunneling [5,7,8] in which tunneling takes place not in a the scattering approach to the quantization of closed systems,
single tunneling transition, but in a multistep process con-and explicitly construct the “scattering matrix$ for the
taining tunneling transitions between regular tori and theannular billiard. We then show in Sec. IV how the scattering
chaotic region, as well as chaotic diffusion inside the chaotignatrix approach can, under rather general assumptions, be
sea. Since a large part of the phase space distance is thimsplemented to the study of tunneling in phase space. We
traversed via classically allowed transitions, indirect pathsxplain howS can be approximated by a five-block matrix
can be expected to carry considerably more tunneling fluxnodel with different blocks representing regular dynamics
than direct ones. on either of the islands, beach motion close to each island,
Additional evidence was given by the observation that,and chaotic dynamics in the center of the chaotic sea. We
apart from an overall enhancement, the tunneling splittingslerive formulas foiS-matrix eigenphase shifts and splittings
vary rapidly over many orders of magnitude as a function ofin terms of paths passing through different combinations of
energy, Planck’s constarit, or other system parameters. blocks, laying emphasis on the effects arising from the inclu-
This was attributed to the occurrence of avoided crossingsion of the beach blocks. Additionally, we track how tunnel-
between regular doublets and chaotic st@féswhich made ing flux spreads in phase space and give a detailed discussion
it possible to further establish chaos-assisted tunneling bpf the interplay of tunneling probabilities into, and transport
studying its effect on statistical properties such as the splitproperties within the chaotic layer. Finally, in Sec. V we
ting distribution function. Comparison with predictions of calculate statistical quantities — such as the splitting distri-
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bution function and median values for the splitting — by assume that, in the semiclassical limit, each of.thg sup-
averaging over the properties of the chaotic block. We conports a set of states primarily localized on it. Let us, for the

clude with a discussion. sake of definiteness, consider the case when.hg are
EBK-quantized tori. On each of the tori, one can construct
Il. DYNAMICAL TUNNELING quasimodesy{(q) and y{?(q)= ‘Y (7q) that obey the

Schralinger equation to any order df [17]. The corre-
sponding EBK energy eigenvalugs are then degenerate to

1. Correspondence of wave functions with classical structures any order inz. However, exact quantum states are con-
strained to be symmetric or antisymmetric under

A. Classical and quantum mechanics of mixed systems

Systems with classically mixed dynamics display both
regular and chaotic behavior, depending on the starting con- 1
ditions of the traje.ctory considered. The structure of phase (@~ —=[¢M () + 4P (g)], (1)
space can conveniently be probed by use Bb@caresur- V2
face of sectiop (PSO$)1], a phase space ciit giving rise

to the Poincaremap and the energy degeneracy is lifted by tunneling processes by
an amountSE, , giving rise to tunneling oscillations with
(Q.P)i=(Q.P)s,  (Q,P)iys=(Q(xin), P(Xi)), period 2mi/ OE, .

The best-known example of quantum-mechanical tunnel-

where Q,P) is a set of canonically conjugate variables, anding oscillations is the one-dimensional symmetric double
x;s e are connected by the system dynamics. If one startguantum well, ~where the phase-space symmetry
out with highly localized distributions and plots iterates of Z(X;P)=(—X,—p) connects regular tori in each of the wells
the Poincarecell C»={(Q(X),P(x)):xe I'}, then chaotic ar- (for a careful discussion along the above. line Qf argument,
eas show up as areas that quickly become more or less urfi€€[8]). In systems of more than two-dimensional phase
formly covered, while regular motion remains confined toSPace, symmetries can give rise to more intricate situations.
lower-dimensional manifolds ofi». In a mixed system, both  The tori.A; and.A, must not necessarily be separated by an
types of structures appear, and one arrives at plofsstich ~ energy barrier in configuration spazee, e.g.18]), but the

as the one presented in Fig(&e below transition fromA; to A, can also be forbidden bydynami-

In order to associate a system’s quantum eigenstates cal law. In th.IS case, there is a dyn_amlcal varl.able othe_r than
with classical features—such as chaotic regions or regula@nergy that is conserved by classical dynamics, but violated
tori—one often uses th@igner transformatiorf12] of the ~ PY quantum dynamicgl9,20). The case of quantum doublets
projector | #)(¢|. By smoothing over minimal-uncertainty connected by f[unnellng processes of this type was first re-
wave packets one obtains thusimi distribution[13] that ~ Ported by Davis and Hellef21] who also coined the term
defines a real, non-negative probability density in phasélynamical tunneling A particularly clear example of dy-
space. We will tacitly invoke the Wigner-Husimi concept in Namical tunneling will be presented in Sec. Il C in the dis-
the following when referring to the correspondence of quancussion of the annular billiard. As in the case of energy bar-
tum states with phase-space structures. rier tunneling, splittings due _to dynaml_cal tunneling can be

To our knowledge, no general theory for the quantization€XPected to be very small, since classical transport from
of mixed systems has been available until now. However, thé& Az is forbidden. _ _ _
understanding has emerged that, in the semiclassical limit, Note that the formation of doublets is determined by the
quantum states can unambiguously be classified as “reguthase-spactopologyof the supporting region, not its regu-
lar” and “chaotic” (for a review, se¢5]). Regular states are larity or chaos. The occurrence of doublets has also been
supported by classical tori obeying Einstein-Brillouin-Keller observed in situations in which the localizing mechanism
(EBK) quantization rule$2], whereas chaotic states are as-Was due to dynamical localizati¢d6,6,23 or scarring 23].
sociated with chaotic phase-space regi¢mssubsets of it Conversely, a phase-space structre75 mapped onto it-
[14]). The structure of chaotic states is to date not fully un-Self supports states that do not form doublets, regardless of
derstood and is presently the subject of intensive researcHS dynamical nature.

Classification of states as regular and chaotic can become

problematic at intermediate enerdyr %), since EBK-like B. Chaos-assisted tunneling

guantization rules can apply also to states residing on chaotic
phase-space regions lying in close proximity to the regula{
island[15,16,8. Loosely speaking, the regularity of classical
islands can quantum mechanically extend into the chaoti
sea, and states of an intermediate nature emerge.

Apart from the possibility of dynamical tunneling, tunnel-
ng processes in systems of more than one degree of freedom
can have an additional aspect of interest: the appearance of
€haos in the region of phase space traversed by the tunneling
flux. As an early paradigm of such a system, Lin and Bal-
lentine[4] proposed the periodically driven double well po-
tential, where chaos can gradually be introduced by increas-
To discuss the effect of phase-space symmetries on thiag the driving strength. Lin and Ballentine performed a
structure of quantum states, we consider a system with aumerical study of tunneling oscillations between states as-
discrete twofold phase space symmeiryWe suppose that sociated with regular tori corresponding to classical motion
there are two disjoint phase-space objegts,and.A,, each  confined to either bottom of the well. They observed that, as
of which is invariant under the classical dynamics, mappedhe separating phase-space layer grows more chaotic with
onto another by the symmetry operatiof,=7.4,. We also  increasing driving strength, tunneling rates are enhanced by

2. Effect of phase-space symmetries
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orders of magnitude over the rate in the undriven sygtbm
integrable one-dimensiondllD) double well. In a later
study of the same system, Utermaanal. [6] established
that the tunneling rate of a wave packet initially localized on
one regular island is determined not by the wave packet's
overlap with the other island, but by its overlap with the
chaotic sea, pointing at a role for classically chaotic diffusion
as a mediator of quantum tunneling flux.

In a parallel and simultaneous line, Bohigas, Tomsovic, ' ;
and Ullmo advocated the interpretation that the enhancemequ”ates L) arenot the Birkhoff coordinates ¢,L.) usually em-
of tunneling was a case aBsonanttunneling due to the pgyed in billiards. Ihe two coordinate sets are related by
occurrence of avoided crossings of the tunneling doubler$ = ¥* &~ ™ Wherea=arcsint/R).
eigenenergies with the eigenenergy of a state residing on thgarameter with respect © (see Fig. 1 (vy,L) are canoni-
intervening phase-space laylé]. For obvious reasons, the cally conjugate with respect to threducedaction[20], and
phenomenon was nametiaos-assisted tunnelinghe inter-  the Poincaresell is given byCr=[0,27]x]—1,1. The bil-
pretation of tunneling enhancement in terms of a three-levdiard’s mirror symmetryy— —y translates into an invariance
process was derived from the observation that splittings o0bf Cp under the mappingy,L)— (27— vy,—L).
regular doublets are rapidly fluctuating quantities as func- In Fig. 2 we present a Poincamot of C, at parameter
tions of parameters such as energy, Planck’s condtapt  valuesa=0.4 andé=0.2. Rays ofL|>a+ & do not hit the
other model parameters. inner circle, but forever encircle the inner disk at constant

Since a semiclassical description of tunneling matrix elefilling horizontal strips(or subsets of horizontal stripsn
ments was lacking, Bohigas and co-workers focused on théhe Poincareplot. Each of thesavhispering gallery(WG)
statistical fingerprints of chaos-assisted tunneling, with emtori [7], specified by its impact parameter, is associated
phasis on the consequences of resonance denominators WHN @ partner torus-L by the mirror symmetry. These WG
the splitting distribution. To this end, the interaction of regu-tori will be the tunneling tori under consideration in this
lar doublets with chaotic states was formulated in terms of &OrK. _ o _
block matrix mode[5], in which properties of states residing ~ Rays of intermediate impact parametéd <a+ & will
on the chaotic sea were approximated by use of random mg_ventually hit the inner C|rcl.e, a'nd since ang_ular momentum
trix theory [24]. This model was subsequently refined by IS then not preserved, motion is no longer integrable. ThIS
Tomsovic and UlImd8] to take into account the effect of ¢an give rise to the whole range of phenomena associated
additional time scales in the chaotic dynamics that can ap%ith nonintegrable systems of mixed phase space: regular
pear when residual phase-space structures, such as cantéflands and island chains, chaotic regions, partial transport
are present in the chaotic sea acting as imperfect transpdp@tiers(cantory and the like. The structure of the phase
barriers. Predictions made using these block-matrix modelgPace layer |[L[<a+é& is, at parameter values
showed good agreement with numerically calculated split9=0-2, a=0.4, primarily organized by two fixed points of
ting distributions. Along these lines, Ullmo and Leyvif@] the Poincarenap:(i) an unstable fixed point at4L)=(0,0)
were also able to derive analytic expressions for the splittingnd its stable and unstable manifolds, along which a chaotic
distributions in the case of structureless chaotic dynamics, d§9ion spreads out, arti) a stable orbit f,L) = (,0) at the
well as for a structured chaotic sea. Again, theoretical precenter of a regular island of “libration” trajectories. The

dictions showed good agreement with exact numerical datdixed points correspond to rays along the symmetry axis on
the left hand side and on the right hand side of the inner

circle, respectively(Note that the stability of these orbits can

) - ) ~ change for varyings anda.)
We now introduce the specific system under consideration

FIG. 1. Parametrization of classical trajectories. Note that coor-

C. The annular billiard

in this work, the annular billiard. It was proposed by Bohigas L e . . . B e S
et al. [7] and consists of the area trapped between two non-
concentric circles of radiR anda<R centered atX,y) co- Yy m—

ordinatesO=(0,0) andO’'= (- §,0), respectively. We con-
sider the case of<a and seR=1, unless otherwise stated.
Note that the billiard is symmetric under reflections at the
axis. ~

1. Classical dynamics

Classical motion in a billiard is given as free flight be- -06
tween specular reflections at the boundaries. We select the
PSOST" as a circle of radiusg concentric with the outer e e e B
circle and choose to be infinitesimally smaller than one. "0 0.5 1.0 15 2.0
Upon in-bound passage throudh—or, equivalently, after N/

reflection from the outer circle—we record the trajectory’s
coordinates §,L), wherey denotes the angle of the velocity  FIG. 2. Poincarelot of classical motion in the annular billiard
vector with thex axis andL=sin« is the classical impact ata=0.4 and5=0.2.
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It will turn out to be of great importance that there is a (a) 2
region of chaotic, but relatively stable motion surrounding
each regular island. In the strip ff|<a+ § this stability is
easy to understand, as trajectories typically encircle the inner
disk many times until a hit occurs, and at each hit the change
in impact parameter is small. The “stickiness” of this beach
region is increased by the presence of regular island chains
and of cantori that are the remains of broken WG tori.

%
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Y

2. Quantum mechanics

Quantum mechanics of the annular billiard with Dirichlet
boundary conditions is given by the Helmholtz equation

(A+K*)y(q)=0

and the requirement of vanishing wave function on the two
circles. The wave numbek is related to energy by
E=%2k?/2m. (We note that there exists an analogy between
guantum billiards and quasi-two-dimensional microwave
resonator, which has proven instrumental in many experi-
mental realizations of billiard system25].)

We give here only a qualitative picture of the quantum FIG. 3. Comparison of classical dynamics and quantum states of
states, deferring a full solution to Sec. Il B. It is most ap- the annular billiard(a)—(c) classical motion{a),(c) regular trajec-
propriate to decompose the wave function into angular motories of =L, [L|>a+ 6, (b) chaotic trajectory oflL|<a+ 4.

mentum components by writing (a—(c) eigenmodesi(a),(c) doublet of “regular” eigenstates at
k~54.434, andb) “chaotic” eigenstate ak~60.252.
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[ o)= iMa HA(kr) + B.HY(kr)Jeme, (2 Note that each of the quasimodeisn) corresponds to clas-
vir.e) n:Z—oc LanHy (k) + BaHiy (k) @ sical motion on the WG torus:L.
We present plots of a “regular” doublet quantized at

where ¢,¢) are polar coordinates with respect @ and ![(h% 55tan0: a “Ph?‘:;ti‘?" s;[at_e d‘”_t?]o itn 'i_ig- 3 ang_t?omp_ar?h
12 - : em to classical trajectories with starting conditions in the
H(9(x) denote Hankel functions of the first and second | 9

kind, respectively, of ordean. We recall that angular momen- chaotic sea and on WG tori, respectively. The correspon-
tum quantum numberns are in the semiclassical limit related dence _betyveen quantum states and the nature of classical
to classical impact parametdrs= n/k. dynamics is clearly visible.

To understand the nature of quantum states supported by
the annular billiard, it is instructive to first consider the con-
centric billiard and then to “turn on” the eccentricity. If Let us discuss the high-angular momentum doublets in
8=0, then angular momentum is conserved, and states argore detail. As explained above, the energy splittiFgy,
paired in energetically degenerate doublets composed of abetween|a{™)) and|al™)) gives rise to tunneling oscilla-
gular momentum components and —n. In the eccentric tions between quasimodés-n) associated with WG tori
system ¢+0), the degeneracy is lifted by the breaking of =L==*=n/k (L>a+ ). A quantum particle prepared in
rotational invariance. However, angular momentum doubletstate |n) will therefore change its sense of rotation from
are affected to different degrees—depending on the size of counterclockwise to clockwise and back to counterclockwise
relative tok(a+ 8). The symmetry breaking has large effect with period 27#/JE,. Note that this tunneling process
on doublets of small angular momentym <k(a+ 8) cor-  serves as a particularly clear example of dynamical tunnel-
responding to classical motion that can hit the inner circleing. It occurs inphase spaceather than configuration space,
For lown doublets, the doublet pairing disappears quicklyas the corresponding tori are identical in configuration space.
with increasingd and ‘“chaotic” eigenstates appear that Also, the tunneling process does not pass under a potential
spread out in angular momentum components roughly bedarrier in configuration space. In fact, energy does not play
tween —k(a+ 8) and k(a+ 8). High-angular momentum any role in the tunneling, as energy is related only to the
doublets with|n|>k(a+ &) are affected only little by the absolute value of the momentum vector and not to its direc-
symmetry breaking. The doublet pairing persists, and energtjon. Rather, the tunneling process violates thaamical
degeneracy is only slightly lifted. States are primarily com-law of classical angular momentum conservation for rays of
posed of symmetric and antisymmetric combinationsnof large impact parameter.
and —n angular momentum components, The concept of chaos-assisted tunneling can be nicely vi-

sualized for the case of tunneling between WG modes in the
annular billiard. In fact, the annular billiard was proposed as
1 . . .
la)~ —(|n)=|—n)). 3) a pgrad|gm for chaos—asas;ed tunneling in R&f. In chaos-
2 assisted processes, tunneling tari. are connected not by

3. Tunneling between whispering gallery tori
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direct transitions between— —n, but by multistep transi- The quantization condition is equivalent to the requirement

tions n—~/-.-—/"——n. A particle tunnels fromn to  of single-valuedness of the wave functionldnand so to the

some/<k(a+ ), traverses the chaotic phase-space layeequivalence of the two scattering conditions. The system

by classically allowed transitions to reach the opposite sidsupports an eigenstate whenever the product matrix

of the chaotic sea—/'=—k(a+ ), and finally tunnels

from there to—n. To establish this notion, Bohigas al.[7]

checked the behavior of splittings as the eccentricity is S(E)=S_(E)S.(E)

changed to make the intervening phase-space layer more

chaotic. In a numerical study, they compared the splittings OLas an eigenvalue of unity, hence the quantization condition

regular doublets with the rate of classical transport across the 9 Y, q

chaotic layer. The findings showed that the splittings in_reads

crease dramatically over many orders of magnitude as cha-

otic transport becomes quicker. de{S(E)—1]=0. (6)
However, without a quantitative—possibly

semiclassical—theory, it is impossible to separately analyze

the importance of tunneling amplitudes and transport propAt a quantized energy, the wave function can be recon-

erties of the intervening chaotic layer. Usually, the parametestructed from the corresponding eigenveatoof S via Egs.

governing symmetry breaking in a mixed system changes4) (5). In principle, S is an infinite-dimensional matrix.

bothtunneling amplitudes from and/or into the regular torusHowever, in many cases of interest one can choose the

and chaos in the intermediate layer. In order to separate thg(1*) 42 gg that in the region of classically allowed mo-

relatl\{e importance qf these effects, a quantitative underﬁon, the contributior| fﬁﬁl’t)(%” is exponentially small for

standing of the tunneling processes must be obtained. Suchaﬂ but a finite number of indiceghe so-called “open chan-

quantitative - description ‘of chaos-assisted tunneling Waﬁels”). This allows the truncation d to a finite dimension

given in Ref.[10] and will be developed in full detail in the say|n|<A, with an error that is exponentially small. Boith

following. scattering matriceS. can be constructed in a representation
such that they are unitary in the space of open modes and, if
. QUANTIZATION BY SCATTERING the system is time-reversal invariant, symmetficon the
other hand is unitary, but not necessarily symmetric. In spite

. _ . of this, we will in this paper also refer t8 as a scattering
In this work, we will employ a scattering approach to matrix.

quantization[26,2ﬂ that, in essence, is Constructgd as the It is clear by construction thatS is the quantum_
quantum'mechanical analogue of the classical Poinsare mechanical ana'ogue of the Po|n'cmpp|ng[28] Its Nth
face of section method. For the sake of self-containednesgerate SN constitutes a time-domain-like propagator. Note
we give a brief review of the scattering method. that the iteration counl of the Poincarenap does not cor-
Let us consider the case of a billiagand introduce a respond to a stroboscopic discretization of time, but rather to

Poincarecut I' in configuration space, thereby dividig g fictitious discrete time, since generally the time elapsed
into two partsG.. andg_ . We suppose thdt can be chosen petween passages Bfcan vary.

along a coordinate axi@he g, axis, say and that the wave
problem is separable on an infinitesimal strip arolindit a

A. General description of the method

given energy, one chooses a complete set of functions B. Scattering matrix of the annular billiard
¢r'(qz) alongI” and writes the wave function on an infini- |t is fajrly straightforward to implement the scattering ap-
tesimal strip around’ as proach to the case of the annular billiard. As discussed in

Sec. IIC, we choosd” as a circle of radius, where
NOEDD [and Y (a1) + Bad' M (a1)162(qp). (4) a+d<r=1. Since a classical impact parameter is con-
n served by motion on the WG tori, we choosp=¢

- 1 ] ] . ~and ¢§12)=exp@n<p) onI'. Waves traversind’ are given by
¢ and ¢{7) are functions that, in the semiclassical outgoing and ingoing  cylinder  waves (")
n

limit, gorresppnd _to waves trgversid@; in the positive and :ianl)(kr)’ ¢§11")=i“H§12)(kr), and we obtain the de-
negativeq, direction, respectively. We assume that the set. omposition in Ea(2
) ) position in Eq(2),

¢n’(0,) is chosen such that quantum numbersorrespond

to valuesk® of longitudinal wave number. Thek{? and I " .

transverse wave numberk) are related by E, lﬂ(f,@):n;w I"LanHy(kr)+ BaHG  (kr) €. (7)

=22 (kM)2+ (k?)2]/2m. Note that orthogonality of the

modes orl" is ensured by the choice of thi?) . Each of the

domains G. constitutes a scattering system that scatterdn the present example, outgoing waves are scattered to in-

waveso(' ) 2 into wavesg( ) (2 andvice versaAs-  going waves by the interior of the outer circle—giving rise to

sociated with these scattering systefhsare scattering ma- the scattering conditiore=S(°)(k) B—and ingoing waves

trices S..(E) that relate the coefficient vectors are reflected off the exterior of the inner circle, which leads
to the relation B=S"(k)a. The product matrix

B=S_(E)a and a=S,(E)B. (5)  S(k)=S©(k)S(k) then read$10]

©
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FIG. 4. Gray-scale plot of the quantugmatrix |S,,m| (arbi-
trary gray scale The dashed line indicates the region of classical F|G. 5. Absolute values of tunneling matrix elemefss .| for
angular momentum mixingn|<k(a+ ). n=70 andm= — 100, . . .,100(logarithmic scalg Inset: first quad-
rant of S, showing the tunneling ridge¢Taken from Ref[10].)

e H(KR) &
Shm(k)=i" m)T > 3, (ko) tions in|S, | that resemble the Airy oscillations well known
Hy(kR)/=== in diffraction theory[29]. It is interesting to note that the
H?(ka) beha_vior of the tunneling probabilities 1ot a mqnotonic
XJm—/(k5)(/1)—- function of [n—m|, that is, of the phase-space distance tra-
H, " (ka) versed. A meradistancein phase space can therefore not
. , (n—m) serve to estimate the behavior of tunneling probabilities.
[Note that this formula foiS(k) differs by a factori We finally mention that the tunneling transitions consid-

from the one given i110] due to a slightly different choice greq here can be given a semi-classical interpretation in
of basis in Eq(7). Consequently, the matrix symmetries are (orms of complex rays that interact with the analytical con-

different now] L L . tinuation of the inner circle to complex configuration space
Using the relatiord ,2(x) = (—)"H{"?(x) for integern, 10,30,31. These rays can either scatter off the inner com-
one verifies that the spatial symmetry of the annular billiardpjex circle by a generalization of specular reflection, or they
translates into th&matrix symmetry can creep along a complexified inner cir¢t# complex ra-
_ dius determined by the poles of the internal scattering ma-
Son-m=Shm- (8) trix) by a mechanism similar to that proposed by FrE3@]

and Keller[33]. Every tunneling pain; ,n; is connected by

at least one complex reflection trajectory with real initial
511)’ (9) (final) impact parametek;=n;/k (L;=n;/k) and complex

initial (final) angle y; (y;), as well as complex creeping
where o e {+1}. Whenever the system supports an eigentrajectories of same initial and final conditions. The relative

state o; determines the symmetry of the corresponding wavdmportance of the two contributions depends larthe bil-
function with respect to th& axis. liard geometry, and the initial and final angular momenta

In Fig. 4, we show a gray-scale plot|@&, | as a function considered. At the present parameter values, the contribution
of ingoing and outgoing angular momentum for the paramdue tq reflected rays usually dominates the one arising from
eter valuesa=0.4, 6=0.2, k=100. The overall struc- Creeping rays.
ture of S is governed by classically allowed transitions: itis ~ The semiclassical picture provides an intuitive explana-
mainly diagonal in the region of high angular momentumtion to the tunneling ridges mentioned above: they can be
In|,|m|>k(a+ 8), whereas the inner block reflects the dy- identified as combinations,m where one of the angles
namics given by the classical deflection function. Here, theyi,¥s is closest to reality. Also, the nearby oscillations can
main amplitude is delimited by two ridges that correspond td?€ understood as arising from a coalescence of two reflection

For eigenvectors!)) of S,

() =
ap=oja

classical rainbow scattering. saddle points.
The tunneling amplitudes relevant to the WG splitting are
contained inS as nondiagonal entries;, ,, with n>k(a+ d). IV. TREATMENT OF CHAOS-ASSISTED TUNNELING

Figure 5 depictyS, | for the above parameter values and
n=70[atk(a+ &) =60]. The tunneling amplitudes are larg-
est (~10*) aroundm= 63 and fall off faster than exponen- ~ We now discuss how the scattering approach can be
tially away from this maximum. As can be seen in the insetimplemented to the treatment of chaos-assisted tunneling.
of Fig. 5, the line of maximal tunneling amplitudes continuesLet us suppose that the system under consideration has a
the line of rainbow ridges into the regime of classically for- phase-space symmetry of typg,(p,)—>(—0,,—p,), and
bidden transitions. Close to these tunneling ridges, and in thtéhat theq, axis can be chosen as a PSDSNe assume that
direction away from the diagonal, one can observe oscillathe wave problem is locally separable arodhdwhich ren-

A. Implementation of the scattering approach
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ders the problem tractable by the scattering approach. Let iand expand the second exponential in Bd) to first order.
now pick two classical objectsl; and A,=7A,; and con- Considering upper signs in Eq13) and taking imaginary
sider quasimodei;/ﬁl/z)(q) supported byA,,,, as discussed parts we obtain

in Sec. Il. We assume that motion ofy and.A, corresponds

to conservation op, and— p,, respectively, and that p, is AR~ ilm{e—iN930><n| SNyl (15)
semiclassically related to the quantum numben. (Note " N

that in a general system, the choice of the PI0O8nd a o ) ) ) ]

proper basis for the scattering matrix can be a very difficulSimilarly, taking lower signs in E(13) gives

task. In this paper, we will not deal with the problem of 2

solving a general scattering problem — except for the annu- 56,~ —Im{e~N%(n|SN|— n)}. (16)
lar billiard — and assume the scattering mat8x,, to be N

known) By symmetry p,—>—p,, we find that S, o . .
~S_,_n. and by virtue of the classical conservation of It is instructive to rephrase E{L6) for the splitting: start-

P2, San is almost unimodular. The deviation ¢8| ing from Egs.(11),(13) one can also contract the exponen-

from unity will be due to classically forbiddefi.e., tunnel- 2lS to a sine and arrive at
ing) transitions, and so is expected to be small.

Let the quantization energies of the doublet be denoted by
E, , and letja”(E;)) be the eigenvectors corresponding to

the two quantum states. We now make the approxmaﬂogvhich has the form of tunneling oscillations in time,

that thg properties (.)f these two vecto+rs are, 10 gopd IOreCi'sin(éEt/Zﬁ) =|(n|exp(—iHt/A)|—n)|, with iteration couniN
sion, given _by the e|genvef:tor douPla (E)) at oneﬁxe_d l[aking the lol¢=|3< o|f time and (leige>n|phase splitting taking the
energyE lying betvyeenEn and E, . The cor+respond|ng role of energy splitting. By considering E{.6) we therefore
(generally nonzefoeigenphases be denoted 8y(E). probe the onset of tunneling oscillations in the linear regime.
Dropping the energy variable, we decompose the eigen- ~ se of Eqs(15),(16) for low N will, however, necessitate
phasesd, in the form precise knowledge of the eigenmodesn) (see e.g.[34]
+ 0 R . cx (D)1 for a recent application of a similar formula fhi=1). How-
O =0§1 )+A051 )+'A0§1)i556“’ (10 ever, to exponential precision, eigenvectors may be just as
R1) o_ . difficult to obtain as the shift or the splitting itself. It is
whereA 6" are taken to be real, ar#f”=~iInS, ,. The  therefore important to realize that use of E¢ES),(16) for
quantitiesA 6,= A6 +iA 6 and 56, can be interpreted |arge N may allow one to extract the quantities of interest
as the shift and the splitting, respectively, of the exact eigenusing much less precise eigenvector information. Instead,
phases due to tunneling processes. These eigenphase quabtie then usesynamicalinformation—in the framework of
ties are trivially related to the energy shift and splitting, astime-domain-like propagation wits—which will eventually
will be explained below, and it is therefore sufficient to cal-allow the interpretation of tunneling processes in terms of
culateA 6, and 56, . Note that thed,, are real by unitarity of  sums over paths in phase space. To this end, let us reformu-
S, and therefore alsé{”)+ A 6, and 56, are real quantities. late Eq.(12) by writing
We also note that

NS6,
sin( ; )]=|<n|sN|—n>|, an

1
. e , N=—(|n)=|—-n)) + ~m), 18
[SM]. . =(a*|SN|a*) =N exp(iN[A = £ 50,]) @)= M El=m)+ 2 wlm) 18
11
where thex,, are expected to be small and =+ «,,
for any integer. according to the symmetry dfx). The right-hand side of

From the eigenvector doublgt™) we can now obtain the Eq. (13) then reads
vector equivalent of quasi-modes

2(n|SN|£n)=2[SN], Lp+CNT). (19)
1
|=n)=—(la")£|a™)). (120 Here,[SV], ., denotes a matrix element of thih iterate of
V2 S, andCc(M =) =cN ) + N7 with

It is clear that|n) and|—n) are localized atlor around (N.5) N e reN
componentstn, respectively. Using the symmetry 8fand =12 % (km[ S Inmt+ (k) *[S Imn)
|a™), we write

[SM. 4 =[SM]_ _=2(n|SN|=n). (13) ﬂ% (Km)* Ko [ S T (20)

In order to derive formulas foa 60 and 86, that relate  We see tha¢n|S"| = n) can be replaced bgn|S¥|+n) at the
these quantities to matrix elements ®f, we now combine price of correctiong)(«x) at most. However, since the left
Egs.(11) and(13). We choose a positivll, which satisfies hand side of Eq(19) is of size sinNA§,/2)~O(1) (consid-

ering the positive signfor largeN, the first term on the right
N<|A6,*56,/2] 71 (14 hand side must also grow witN and become o)(1). In
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particular, forN> «/|A 67|, the « corrections can be ne- unit circle with “velocity” 96:/JE~d6\®/JE given by the
glected. The same holds for the negative sign in(&§), but  energy dependence of tH?)(E). These quantities can be
then N> «/|86,| must hold. Therefore, whenever either of taken constant on the scale of the energy splittings, and
these lower bounds oN holds simultaneously with the up- ejgenenergy splittings are therefore trivially related to eigen-

per bound(14) we can write phase splitting. Consequently, we will in the following con-
1 sider shifts and splittings afigenphasesther than eigenen-
A0~ —Im{e~N 930)[8’\‘]“ ok (21  ergies. This has the numerical advantage that we can
N ' considerS(E) at anyE without having to worry about quan-
5 tization.
560,~ N|m{efiNeg°>[5N]nﬁn}_ (22) In order to extract the shift or the splitting of the doublet

peaked at indices n we therefore have to consider paths in
the S-matrix index space that lead from back ton or to

We note that the conditions dv necessary for Eq21) are —n, respectively. Let us briefly focus on the splitting. In

met if |A 6,|>|86,|, which, as we will find later, is always

the case. However, the conditions for E82) might not be principle, Fhere are two ty.pes of patheirect paths and
met simultaneously. In this case, one has to expand in Ed:_haos—a53|stednes[4,5,7]. Direct paths tunnel directly from

(17) to obtain nto—nin a single.transition over a Ipqg di§tance in phase
space. Their contribution to the splitting is of the order
2. N |Sh,—n|. Chaos-assisted paths include at least two tunneling
| 864~ N|[S In,=nl: (23)  transitions over relatively small phase-space distances. They
tunnel fromn to some index” such that” lies in the inner
requiring /|86, <N<|56,] 1—a condition that can al- block of classically chaotic motion, then propagate — via
ways be fulfilled(if k<1). However, we will in the follow- classically allowed transitions — to som€& within the in-
ing calculate the splitting by use of E(2), as this expres- ner block and finally tunnel from¥”’ to n. Contributions
sion constitutes a linear relation between the splitting and tharising from chaos-assisted paths are then of the order
different. C-Ontr-il?utions. We therefore assume that the use qfsn,/s/’,—n| . As we have seen in the examp|e of the annular
Eq.(22) is justified and only comment on the use of E28).  pjlliard, tunneling matrix elements, , fall off very rapidly
[We note that Eq(23) was employed in an earlier account of (taster than exponentialfor large phase-space distances
this work[10].] _ In—/|. This rapid decay strongly suppresses the contribu-
Returning to Eqgs(21),(22) recall that any matrix element 55 from direct paths and explains why the combination of

N : )
[S™]nm can be expressed assam over pathsn matrix g tunneling transitions can be much more advantageous.
element space of lengtN that start ain and end aim by

writing out the intermediate matrix multiplications. This B. A block-matrix model
yields the real part of the shift and the splitting as We now formulate a generalization of the block matrix
N_1 models usually encountered in the treatment of chaos-
AR~ ilm| e_iNgg)) 2 s, ] (24) assisted tunnelingp, 8] that takes into account the effect of
n N (ony i=1 i the transition region between classically regular and chaotic

motion.
2 o N-1 Statistical modeling of chaos-assisted tunneling is usually
56,~ Nlm[ e Ny H S, 'ml]. (25) done in terms of a block matrix model of the typegular-
{n—-—n} i=1 chaotic-regularin which properties of the chaotic block are
approximated by random matrix ensemb[&é This three-
Block approximation, however, discards all information
about phase-space structures inside the chaotic sea, such as
the inhibition of mixing by broken invariant toricantorj
[35]. Inhibition of classical transport can lead to dynamical
NGO o localization of states in regions of phase space. Chaotic states
exp(=iNG)[S"],=1 s real. then do not extend over the full chaotic region of phase space
For the sake of completeness, we aalso comment on thg,y more, but only over components of it. This additional
imaginary part of the shift. Sinced"’+A6, is real, structure would not be reproduced by the approximation by a
A6’=—1m{6{"}. By unitarity of S, one finds single random matrix block. Block matrix models for chaos-
assisted tunneling were amended to the presence of imperfect
layers in Refs[8,9] by introduction of separate, weakly cou-
pling blocks for each of the phase-space components. A re-
lationship between classical flux crossing imperfect transport
It remains to connect eigenphase shifts and splittings tdarriers and quantum Hamiltonian matrix elements was
the corresponding energy quantities. At a given energyiven in Ref.[1].
E—which need not necessarily be an eigenenergy of the We now argue that the treatment of chaos-assisted tunnel-
system—the eigenphas#s(E) are distributed on the unit ing in a generic mixed system usually requirefiva-block
circle, with the position of regular doublets determined bymodel at least. The reason is that classical motion in the
Eqgs.(10),(24), and(25). Regular doublets revolve around the “beach” regions close to a regular domain is relatively

The eigenphase shift and the splitting are therefore given i
terms of paths of lengthl that lead from index back ton

or to —n, respectively. Note that in order to contribute to the
shift, the path must leave the indaxat least once; the trivial
path of constant matrix index does not contribute, as

1
AGY~— =[Sl (26)
m#n
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the transition amplitude“S?/,7 between beach and the center
block.

We now explain how the properties 8fcan be extracted
from the original matrixS. Note that a block that is almost

diagonalS will be changed only little in the transformation
to S. The outermost regular blocks are diagonal in all orders
of 1k (or ), and matrix elements of the transformed matrix
will differ from the original ones only by exponentially small

corrections. We can therefore approxim&g,, ~ S, o -
The argument also holds for the edge region, since the choice
of basis for the regular blocks will also be good in the edge
blocks, and we can approximaﬁ/,%s//a//, and in the
nondiagonal bloclén,/wsnv/. Consequently, the choice of
the border index between regular and edge blocks does not
affect the results to the present approximation.

We model quantum dynamics within the inner block by a
superposition of two Gaussian ensembl8g,38,2§ — in
our case two circular orthogonal ensemb{€OFE) [39] —
that approximate the sets of chaotic states with even and odd
stable, despite its long-time chaotic behavior. In particularsymmetry, respectively. For a given regular moadeoupling
transport in the direction away from the regular phase-spacg,ayrix elementsS, , are chosen as Gaussian distributed in-

region can be strongly inhibited. This dynamical Stabi"tydependent random variables of variance determined by
leads to the formation of quantutmeach stateghat have 2 _ 18 12/(o, .
O—H,C_ | Sn,C| /(2/C0E+ l) W|th

most of their amplitude in the beach region and little overlap
with the chaotic sea. It has been reported on many occasions

regular

beach

chaotic

beach

regular

FIG. 6. The modified block-matrix model: structure of blocks
participating in therecer contributions.

7 coE
that beach states have great similarity to regular states resid- |'§ 2= E 1S, 42 (27)
ing on the adjacent island and that they follow EBK-like m iy L

quantization rule$15,36,16,6. Note that the importance of

the beach region is highlighted in chaos-assisted tunnelinghere we have taken the chaotic block to extend frGgg e
processes: as tunneling amplitudgs, decay rapidly away to —/coe. Coupling matrix elementsS, , are defined
from the regular island, chaos-assisted paths of largest amanalogously,

plitude will typically lead to indices” and/” such that the

corresponding momentR,(/) and P,(/") lie just inside _ 7 coE
the chaotic sea on either side, that is, in the beach regions. 'S, cl?= 72/ |S/,g|2. (28
In order to take account of the special role of the beach 9= 77 coe

regions(or “edge” regions, we will use these two expres- i . ) )
sions as synonymswe propose to generalize the usual The choice of/ o contains some uncertainty that will af-

three-block modelregular-chaotic-regularto a five-block fect the results as an overall factor in the effective coupling
model of the typeregular-edge-chaotic-edge-regulatin elements. Notejhat an approximation for single coupling
this work we assume that, apart from the edge layers, ngatrix elementss, ,,, S, , in terms of the originab-matrix
further transport-inhibiting structures are present. The exiselements — or, even more, as a semiclassical expression —
tence of further transport-inhibiting structures inside the chais presently not possible, as too little is known about the
otic sea will require the addition of further blocks. precise nature of the quantum localization on the beach
In the following, we approximat8 by a five-block model layer. Also, standard semiclassical methods break down in

S as depicted in Fig. 6 in which each regular region, eactihe beach.. _ . ) -
beach region and the center chaotic region are modeled in a For brevity of notation, we will drop the tildes of and
separate block, and coupling between different blocks isg.

weak. We assume th& has, by a unitary transformation,

been converted such that all intrablock transitions vanish. )
We use indicesn and —n’ for the properties of the two We now use the block matrix model and formulas
regular blocks,” and — /" for the beach blocks, ang for (24),(25) Fo extract approximations for the shift and the split-
chaotic states. For the diagonal elements, we writdind Of €igenphase doublets. Also, we comment on how to

= ~ o extract eigenvector structure and to calculate eigenphase
Swa=expi6,), where he{n./,y,—/",—n’}. Note the b0 ioc™trom it,

symmetries S, ,=S_,_, and S_,_,=S,,, and

therefore 0_,=6,, 6_,=6,. Interblock coupling ele- 1. Eigenphase splitting

ments are denoted b®, ,, S,,, S/, and so on. It is When using Eq(25) and the block matrix representation

natural to assume that the tunneling eleméﬁ}{;; between of S to calculate the splitting, we have to perform the sum
regular tori and the beach region will be much smaller tharover paths

C. Extracting the shift, splitting, and eigenvector structure
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N—-1

. S .S, _S_,_
o= > 1l SN 56\ =2 |m ity S j"‘/ /’yd po /20t
{n>-n} i=1 v/, I/ ny dn,/’

of lengthN>«/| 56,,|. As N is large(and under the assump- (319
tion that none of the internal diagonal eleme®s \ IS One sees that all tunneling rates mediated by internal blocks
equal toS;, ) it is sufficient to collect contributions that are can be strongly enhanced by two effects.
of orderN. We consider three families of paths: paths of type (1) Combinations of tunneling matrix elements may be-
regular-regular (rr) that contain one single jump fromto  come progressively more advantageous as more steps are
—n, paths of typeregular-chaotic-regular(rcr) that pass allowed.
through the center block, and pathsgular-edge-chaotic- (2) Coherent summation over staying times results in
edge-regularrece) that pass through all five blocks. Adding phase denominators. Avoided crossings of these phases turn
up the different contributions gives the eigenphase splittinghe splittings into a rapidly fluctuating quantity with respect
as a sum: to small changes in energy, say, or an external parameter of
the system. The phase denominators also lead tovarall
86n~ 804"+ 56,7+ 56,°° . (29 increase in the tunneling rate since, at a given wave number

Withi h of th famil has t indi , there are of ordek internal states available. This means
Ithin €ach ot these Tamilies, one nas o Sum OVer INAICES Of, typically, there will be one phase denominator of size

staying times of the path at each diagonal element. We sho ~1_ /2 at least

) . s i ny
in Appendix A hOW. this can be done ar_ld quote the TeS““- the Both effects,(1) and(2), can also enhance the recer con-
sum over paths wittM +1 jumps passing througil inter-

tributions with respect to the rcr ones. We can therefore ex-

; (i1.01) ivoim) e i
mediate blockss!+2), ... S ) is given as pect the recer contributions to dominate the tunneling rate.
Mos, For a given system, their relative importance may vary, de-
PN )y N1 6 S s 1 (oi)“iﬂ pending on the size 4§, ,| and|S, /S, ,/d, |.
n,—n 170 i6 i6
Ny onn, M i=1@% —e'%

(30 2. Eigenphase shift

Paths that contribute to the real part of the shift lead from
n back ton and have to leave this index at least once. To do
so, they can tunnel either to the center block or to the edge
block, which leads to a decomposition of contribution into

where the sums over the, run over all indices of the cor-
responding blockss('»''»), and \y,.;=—n. Corrections to
Eq. (30) are of lower order ifN or higher order in transition
amplitudes. The phase denominators
d10_git=d. AGR~AG+ AT+ A G

The summation over these paths can be done by the same
aprocedure used above, and one finds that the contributions to

the real part of the shift are

arise from the summation over staying timgsat the differ-
ent blocks. Within a given family, each path contributes
factor ex;ﬁiTi(H)\i—af?))], and geometrical summation over

results in the denominators listed. Note that only phase dif-
. . (rer —ig® Sn,/S/,n

ferences appear that combine the outermost ph8awith A =Im{e 't > I

one of the phase«sAi of the inner blocks. Contributions con- ’ n./

taining other phase denominators decay exponentially.in S, .S

Also, we have only taken into account paths that pass Aggrco:"nr e 1S 7_7“} (32h)
through each of the inner blocks once. This “never look 7 Ony

back’” approximation is justified since paths containing loops

(329

are of higher order in the interblock transition elements. For 0 S.,S, .S, S/,
a treatment of loops in index space, see Appendix A. Agle=1mi 7 > A
Let us now discuss the contributions of the different fami- v/ /" Oy oyt
lies in turn. For paths of typeegular-regular, we apply Eq. (329

(30) for M=0 and find . ] )
Due to the rapid decay of tunneling matrix elements we ex-

56M~2 |m{e—i0f10)sn b ~1Sn _al- (319  bect that|A 60> | A 6 = |A 0|, Furthermore from
’ ’ Egs. (310),(320), |Ag{)=|56{"*®"}. Consequently, the
Chaos-assisted paths of typegular-chaotic-regularvisit  shift will typically be much larger than the splitting.
the center block. By application of E¢30) for M=1, we

find that the rcr contribution to the splitting is 3. Eigenvectors
s SuoS, h We can also use the block matrix model to approximate
560 ~21Im{ e~ > é—y (31b  regular eigenvector doubleta™. We seta; =1/\2 and
Y n,y

a®,=*+1/\2, and solve

Finally, the pathsregular-edge-chaotic-edge-regulgpass .
through three intermediate blockME 3), hence (S—e'%)a™=0
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to leading order in the coupling matrix elements betweercerned, because we do not aim at an exact reproduction of
neighboring blockgneglecting all other coupling matrix el- the peak positions.For most beach states, it is therefore
ement$. We find that the components @~ in the beach more appropriate to make the somewhedthocapproxima-

regions are tion of ,=arg{S, ,} instead of—iInS, ,. This approxi-
mation now leads to an underestimate of the resonance
1S, width, but we have checked that in the cases discussed in
@y~ (333 gec. IVD the edge” is sufficient large £=59) that the
V2 dh,

resonancefS, ,— S, .| and|S, ,—exp(6,)| ~* cannot be
anda” , =+ «, . Components in the center block are givendistinguished by eye.

by From a methodological point of view, it is worthwhile
mentioning that the formulas for the shift and the splitting
N \/5Z Sn/Ssy 2 J2 S, _S_ i n can also be derived from a complementary approach. One
a_ = — =0 -3 et i
Y dy, Y dn, "< dy, dn, can expand the characteristic polynomial

(33b Pg(x)=de(S—x)

e Sty ()10 Sk BRGS0 1 i) s rr n e s
Y ) ; Y5 5 coupling elementsS, , |, |S,.. _nl, and then solve for its
Egs.(33) the relative error is)(|S, /|°/d, /,|S, ,|*/d, ,). A A e Moo . L

This approximation for the eigenvectors can be used 691X~ Ps(X 120' Upon definition of shift and splitting
relate eigenphase properties to the size of eigenvector colfi2 X~ =Xn+AX= 6x/2, one finds formulas that, to lowest
ponents in the different blocks. Upon comparison of Eqs_order in the internal coupling elements, are identical to Egs.

(323 and (333, we see that the dominant contribution to the (319,(328. Hence, the “never look back” summation over

shift can be written as paths corresponds to the lowest order of a formal expansion
of the eigenvalues, containing the coupling elements as small

AgleI—o | 2 _i0(0)d 2 34 parame_ters. _ _ .

O =2lm 2, e nAa), (34) It is important to realize that the different phase denomi-

natorsd, , and d, , may fluctuate on different scaleas
wherea is either of thea™. Therefore, the eigenphase shift functions of the energy or an external parameter. Typically,
is related to the eigenvector's overlap with the beach regionth€ center block will be mol;Ch_ larger than the beach blocks,
Similarly, from Egs.(310 and (33b), and avoided crossings & with one of thed,, will occur
more often than those with one of tl#e . Also, since beach
(rece) _i4© - 0 states display EBK-like behavior with actions that can be
66, =Im > el dn,l(ay)*=(a,)]r. (39  similar to those of the regular states, we can expect phase
7 differencess®’— 6, to vary more slowly than phase differ-
n 7/
Equation(35) relates the presumably dominant contributionencesé{”)— ... (For the case of the annular billiard, a semi-
to the splitting to the eigenvector’s overlap with the centerclassical argument is given in Ref23].) Consequently,
block. This explains and quantifies the observation of Utereigenphase splittingg6{"®°®" will show fluctuations ortwo
mann et al. [6], that regular doublet splittings in a mixed scales: there will be a rapid sequence of peaks due to avoided
system are in close correlation with the states’ projectiorcrossings of regular eigenphases with chaotic ones and a
onto the chaotic sea. Similarly, Gerwinski and S¢i8] slow modulation due to the relative motion of regular and
related tunneling rates between a chaotic phase-space regibsach eigenphases.
and a regular island to the overlap of a chaotic scattering Let us conclude by summarizing those predictions that
state with the regular island. However, we see thaethboc  genuinely depend on the explicit inclusion of the beach lay-
association ers into the five-block matrix model:
() Eigenphase splitting: contributing paths typically pass
2 2 through all blocks. As a function of an external parameter,
|A9”|N§/: |a %, |36 N; |a7| (36) the sglitting varies on two scales: a slow one attrit?uted to the
change of thed;ﬁ, and a rapid one attributed to the change
is not complete: in the exact relatid85), each summand is  of the dy, . Consequently, one sees resonances of different

weighted by a phase difference. line shapes.
(II) Eigenphase shift: paths contributing to the shift typi-
4. Comments cally visit only the beach layer. The shift is much larger than

In view of the explicit formulas, we see that the results arethe splitting, and it varies witld,, > on the slow scale only.
not significantly changed by approximating the regular and None of these statements would hold for the three-block
edge blocks oB by the corresponding elements of the origi- model, and thereforél) and (Il) can serve as a test of our
nal matrixS. Only in the immediate vicinity of resonances five-block model.
between regular and beach eigenphases the approximation
§/Y/~S// is not appropriate, as it overestimates the imagi-
nary part of the phasé, and leads to a spuriously broad  We now give numerical examples of the formulas just
resonance(With the neglect ofA 0(/R) we shall not be con- presented. In particular, we will give the most quantitative

D. Numerical results
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and direct proof of the chaos-assisted tunneling picture yet. [ L— )
Also, we will test the predictions derived from the explicit ® . >
treatment of the beach layer in our five-block matrix model. N = B 6

Again, we consider the annular billiard at parameter values
k=100, a=0.4 and6=0.2.

First of all, we have to decide on where to set the borders
between the different blocks. As already mentioned, the
outer borders between the regular blocks and the edge block: N |
do not pose any problem as in both blocks, matrix elements 0% 10 1ol
are approximated by the corresponding matrix elements of R R

the original S matrix. Due to the tunneling ridges in the FIG. 7. (a) Eigenphase shifa ¢® and (b) splitting 86, of the
region /=k(a+ d), paths starting from higm will most  doubletn=70 for different values of the radiuR of the outer
likely tunnel into this region first. In order to include these circle: exact results as obtained by numerical diagonalization
paths, we extend the beach region into the regular blockcircles and contribution predicted by the block matrix model that
whenever necessary. is dominant betweeR~0.99 andR~1.015(dashed line, see text
The border between the beach region and the chaotimset: power-law dependence of splitting neRy=0.9946 (full
block is more difficult to determine. In Sec. IV E we give circles andR,=1.0043(empty circleg. Throughout, full lines are
numerical evidence that some of the beach states’ structuite guide the eye.
arises from trapping of classical motion near KAM-like regu-

lar island extending into the chaotic sea down to impact pa
g pactp contributing paths. Figure (B shows the splitting of the

rameters |L{~0.55. This would s est the choice of ) : ?
L] 1S Wou 1gg I game doublet. Note that the logarithmic scale in flot

|/|=55 for the borders between the edges and the chaot _ . .
block. However, chaotic states that can carry transport belanges over twice the number of orders of magnitude than in

tween positive and negative angular momenta have sizab{@: AS Predicted by the five-block model, the splitting is

overlap only with angular momentum components betweer’fnUCh smaller than the shift and .S“OV.VS varlatlpns on two
/=—50 and/=50. Therefore, we will take the chaotic scales. The overall, slow modulation is determined by the

beach resonanoed;o%59 and closely follows the behavior of
the shift. On top of this modulation lies a rapid sequence of
spikes that we attribute to quasicrossings with eigenphases of
the internal block.

logyo| A6, ™)
logyo |5'9n|

are marked by very small shifts due to cancelations between

block to extend over angular momenté </ coe=50. The
uncertainty inherent in the choice af-qg affects the final
results via the effective couplingS, ,, S,,, which can

therefore only be determined up to an overall constant o o - .
order one. y P For the/'=59 contribution to the splittingdashed ling

Let us briefly discuss the magnitudes of the tunneling am¥e Uséd Ea( 52) of the next section to estimate the median
plitudes involved in the different contributions to the split- taken over the properties of the chaotic block and divided out
ting. As expected, the direct to —n tunneling matrix ele- a factor~ 15 to make the dashed line coalesce with the split-

ment is of negligible size. At the present parameter value&ng awayfrom thed, ,-resonances. Note that the change of
59%)~|S7o,—7o|~10_60, which is many orders of magnitude domln_ant edge index |s_S|gnaIed by a strong cancelatlon of
smaller than the observed splittif,o~10~2°. The differ- tunneling paths. In the inset, we compare the line shgpes of
ence between contribution$y{"” and 56{"*°®" is less dras- the two types of resonances by plottingg,q as a function

tic. At the parameter values considered, effective couplin of |R— Rp| in @ double logarithmic plot near the "beach

gbeak R,=0.9946, full circleg and a “chaotic” peak
elementss, ,S, ,/d, , are usually at least an order of mag- (R,=1.0043, empty circlésPower laws with exponents 2
nitude larger than the correspondiyg, . L ’

The dominance of recer contributions is particularl clearand —1 are obeyed to good precision, thus confirming the
P y prediction of the five-block model.

when studying the behavior of shift and splitting as a func- It is evident that the predictions of the five-block model

tion of an external parameter. We show in Fig. 7 the shift ; .
and the splitting of the doublet=70 as obtained from nu- serve very well to explain the data. We stress again that the

merical diagonalization of th& matrix as a function of the gffects Just described — different line s_hapes and fluctua-

LS ; i .~ tions on two parameter scales — genuinely depend on the
outer circle s.rad|usR=O.985—1.025R varies over a Suffi- role of the beach layer in tunneling processes. They serve as
_C|ently smqll interval as to leave the c_IaSS|caI billiard dynam—Clear fingerprints of the quantum implications of the pres-
ics essentially unchanged. The choicePfas an external

. - .ence of a beach layer between phase-space regions of clas-
parameter has the advantage that the tunneling magnitud y b P 9

) . . . 0 X gﬁ:ally regular and chaotic motion.
given by theinner scattering matrixS, /|=[S; | remain Let us, however, mention that the correspondence be-

constant, as variation d® affects only theouter scattering  tveen shift and splitting can be less clear. For langthe
matrix S, shift can show additional modulations that do not appear in
Figure 7a) displays the real part of the shift6 . The  the splitting whenever there is a degeneracy with an beach
shift varies slowly as a function & and is over long ranges mode with large/ [30]. In the shift, this resonance is
well reproduced by just a single term of E@10. (The  weighted with|S, /|2, which favors/ near the tunneling
dashed line show$sioy5g{d7o,5d with dyos5~ 69— 050 €X-  ridge. In the splitting, the resonance’s contribution has the
tracted fromsS, slightly shifted to account foA 6se.) Over  weight |S, ,S, ,|? that can become very small if is too
relatively large ranges oR, one single/ is clearly domi- large. This does, however, not contradict the predictiohs
nant. Transitions between domains of different dominant and (Il), it merely means that shift and splitting arise by



57 DYNAMICAL TUNNELING IN MIXED SYSTEMS 1433

FIG. 8. Spread of tunneling flux over the chaotic sea: buildup of quantum amplitude in the beaches. Gray-sdalbiptaty scalg of
averaged autocorrelations of tfe 50th, (b) 100th, andc) 500th iterate of a vector peakedrat 66. The initial component has been left
out. Full lines indicate classical tori.

coupling to different beach modes. Poincare Density (HPD). By use of HPDs, it becomes pos-
For later purposes it is important to note that whenevesible to follow the phase-space evolution of a tunneling pro-
the same beach state is dominant in both shift and splittingzess from one regular torus to its counterpart. The “dynam-
the correspondence between the shift and the slow modulges” (in iteration countN as the time variableof such a
tions of the splitting can be used to “unfold” the splitting process is visualized by projecting iterateg,= S w, of

data from beach properties. By E¢810),(32a), the ratio some initial vectorwy onto Cp.
Returning to the annular billiard, we consider a starting
— 4 40, ‘ Sn,/‘ 2 1 ‘2 S , S%_/‘ vectorw, peaked at high angular momentumand calculate
gn_; [AQ(R)]Z‘S/ ol ~|S| |2| > dn., ‘ the Husimi densitieg™[ ( wy- wy,)] of averaged autocorrela-
n ’ C Y (37) tions
then contains only properties of the center block and can + 2 _ ~4
therefore be used to extract its “bare” quantities. <""N""N>:M2:0 ON+M " ON+M
E. Evolution of tunneling flux on the PSOS in which the mean over 50 iterations has been performed in

Let us recall that the scattering mati$is the quantum Order to average out the internal dynamics of the center
analogue of the classical Poincarepping; it constitutes a block. The tilde indicates that theth component ofw has
time-domain-like propagator in the representation fixed byoeen set to zero(This truncation is necessary because the
Eq. (4). This makes it possible to study the evolution of Smoothing tails of the largath component would obscure
“wave packets” — vectorsy, corresponding to initial con- all features in the nearby beach regigns.

ditions localized in phase space — under the actio8.dh Figure 8 dHepicts thTe flow of tunneling probability ¢
particular, it is here of interest to follow the evolution of a by showingp™[{ey- @y)] for n=66 andN=>50, 100, and
tunneling process in phase space. 500. At these parameter values, the tunneling period between

The comparison of quantum dynamics and classical phas&/G tori is 2w/ 86¢s~10". As predicted by the five-block
space can, in the context of the scattering approach to quamatrix model, probability is fed from the starting angular
tization, conveniently be done by use of Wigner- andmomenturmn into the nearby beach region until it reaches a
Husimi-like functions of quantum operatof41,23. Let A  value~|S, ,|? (/'=58) and spreads over the chaotic sea up
be some operator that, for definiteness, we represent in ate a vaIue~|Snv/S/'C|2; see Fig. &). Oscillations between
gular momentum basis. As explained in detail in R28], A  the beaches set in with periodi26655~1000; see Figs.(8)
can be transformed to a functigi’[ A](y,L) on the Poin- and &c). On a much larger time scale, probability amplitude
carecell Cp by first performing a Wigner-transform ofand  starts to build up at at n (not shown here One clearly sees
then smoothing with a minimal-uncertainty wave packet.that the shape of the HPD is structured by the underlying
One obtains classical dynamics: in the beaches, most probability builds

5 o up around the chains of small KAM-like islands, whereas in
HEA Gy L= A —Ay KL — T+ the chaotic sea, the center island and its satellites are not
pLAlvL) = 7,/18X 2 2 penetrated. Also, the regions around the satellite islands and
h the homoclinic tangles between them are filled only weakly.
S Chaotic phase space can also be filled in a different man-
—ins=s )]' ner, depending on the phasés, 6,, and 6, involved in
the tunneling process. In Fig. 9 we present the case of a close
where (y,L) are the coordinates ifi, k is the wave num- degeneracy betweew,, and one of thed,. We show
ber, andAy? is a parameter determining the shape of the(wN~w‘,:‘> for N=4000 and the starting vectes, peaked at
smoothing wave packet. We choode/’=4/k. In the case n=65. In this case, there is high probability amplitude in the
that A= a- a' is the projector of dnormalized vectora, its  sticking regions around the center satellite islands.
transformp';(y,L) constitutes a positive semidefinite, nor-  Finally, we present in Fig. 10 HPDs of nine eigenvectors
malized density distribution on the Poincarell, theHusimi  of S atk=100, a=0.4, andé=0.2 (k=100, one should

2

+(/=/")?
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- T T We note that similar figures for much higher wave num-
ber k=600, corresponding to the 75 000th excited states,
0.6 w . can be found in Ref23].

~ e .-y . ) ]
= 0o0F ; \\ ,_B - - F. How important is chaos?
S—
o—0 > Let us now discuss a numerical study similar to that per-
06 T.- -l formed in the original work by Bohigast al. [7] in which
regular level splittings are calculated as a function of eccen-
0 . Jl . ) tricity & at constana+ 4. It is important to note that increas-

ing & has two effects: classical motion in the inner layer
/7 |L|<a+ & becomes chaotic, and simultaneously tunneling
rates from the regular torus to the chaotic layer are enhanced.
FIG. 9. Spread of tunneling flux over the chaotic sea: case of & priori, it is not clear which one of these effects governs the
direct degeneracy between the regular doublet and an internal stat@ate at which the splittings change, but a quantitative esti-
Gray-scale plotarbitrary scalg of averaged autocorrelation of the mate of either effect has now become possible.
4000th iterate of a vector peakedrat 65. We calculated the splittings of high-angular-momentum
modes for6=0.03-0.2 anch+ §=0.6 atk=60. Figure 11
note, is not an eigenenergy of the annular billa@ly the  displays the eigenphase splittingd,| for n=39 (n/k
Weyl formula[42] these vectors would, when quantized at a=0.65). Exact splitting<full lines) increase over eight or-
close-by energy, correspond to the2000th exited states. ders of magnitude and roughly follow an exponential in-
We show gray-scale plots of HPQs! with steps in gray crease withs. A description of the data in terms of our
scale corresponding to equidistant probability contour linesblock-matrix model that reproduces all the fine details might
The overall scales vary with each subplot. These HPDs dte a difficult task—even with exac®-matrix elements at
hand, the spread of tunneling amplitude can now be undehand—as the model relies on classical information to select
stood in terms of participating eigenvectors. For examplethe borders between the different blocks and assumes that,
the doublet depicted in Figs. ) and 1@c) is the beach apart from the beach layers, no significant phase space struc-
doublet involved in the tunneling process of Fig. 8. Like-ture is present. Therefore, the block-matrix model would
wise, the vector 1@) peaked around the center satellite is- have to be adjusted to the varying classical dynamic$ as
lands is the nearly degenerate one in the tunneling proceshanges, and the effect of remaining structure at lower
shown in Fig. 9. Evidently, their shape forms the spread oimight have to be taken into account with the introduction of

tunneling probability on the Poincacell. different blocks. However, the now familiar slow modula-
@ ' ' ® ' ' © ' '
06 F o — N | - - R o~ ~
0o T\ - QO T \- v AP U Q A
r—- R R = R
L 1 1
o ' '
—
.y 1
0 ‘
- \iK,
- SR —E
1 1 1
0 1 2 1 2 1 2

FIG. 10. PoincareHusimi distributions of selected eigenvectors of the annular billiard=a100, a=0.4, and§=0.2. (a) Regular
high-angular momentum vectdh),(c) doublet of beach vector&d,e) “chaotic” vectors, (f) vector in the sticking region around the satellite
islands,(g) regular vector on the period-6 satellite islands), regular vector residing on the main island, aindvector scarred by the
unstable period-1 fixed point and its homoclinic crossifdgss depict the stable and unstable manifplds



57 DYNAMICAL TUNNELING IN MIXED SYSTEMS 1435

IS
L B L B
I

logyo|66,|
10%10 l 6671,!
&

—
[\S I
I

T |

N 1 i 1 N I 1 I N
008 01 012 014 016 018 02 003 0045 006 0075 009

§ é

FIG. 11. Eigenphase splitting,| of doubletn=239 as a func- FIG. 12. Eigenphase splitting of a doublet peaked arotind7
tion of eccentricitys: exact splittinggfull line), increase of torus- atk=60 as a function o®. Here, resonances arise from avoided
to-beach tunneling matrix elementg’£ 29 dotted line, with arbi-  Crossings with states residing on the center island.
trary overall factoy, and effect of regular-to-beach phase
denominators(dashed line, with arbitrary overall facjorFor  two interesting observations: first of all, the resonant tunnel-
5>0.15: tunneling via”’= 35 (dashed-dotted lie ing process is mediated biyegular states residing on the

inner island. Resonant tunneling via the center island re-

tions in Fig. 11 point to the effect of beach layer states memains the dominant mechanism, even when classical trans-
diating the tunneling flux—however complicated the internalport from positive to negative. becomes allowedFigs.
structure might be. Indeed, we find that over the rangel3(d)-13(f)]. Here, tunneling between ehaotic doubletis
6=0.07-0.16 the tunneling processes are mediated by twmediated by aegular state. Secondly, the outer doublet sup-
beach states peaked aroune 29, with //k=0.48 well in-  ported by the KAM-like tori at smalb evolves into a doublet
side the nonintegrable regime. In Fig. 11, we have plottef states scarred near the unstable periodic orbit and
|Sn./|? as a dotted linéwith arbitrary offset to give a rough  stretched along its stable and unstable manifolds. By quan-
estimate of the change of regular-to-beach tunneling eletum localization effects, the doublet structure persists — de-
ments via these particular beach states. Taking into accouspite the seemingly chaotic classical moti@ee alsd23]).
also the effect of beach denominators, we have plottedunneling between the scarred doublet is direct, as indica-
|Sn,//dn,/|2 (dashed ling This estimate is multiplied with tions of resonances are absent in the splitting beyond
an overall factor X 10 ° to make the line coincide with the &=0.075.
exact data at smalb. The dashed line already gives a fair We are led to the conclusion that the enhancement of
reproduction of the data. It misses only the sharp peaks duginneling rates between symmetry-related phase-space ob-
to resonances with the chaotic states, the depressidid,pf jects.A and7.A by resonance with quantum states supported
between thed, 3 peaks due to destructive interference, andby an intervening phase-space structudeis only very
the change of coupling strength of the beach state to thosely related to the chaos & but rather depends on the
chaotic center states. We conclude that betw@e8.07 and  topologicalcharacter of53. In 5, it must merely be possible
5=0.2, the splitting is predominantly determined by theto traverse a phase-space distance in classically allowed
change ofbeachparameters, and that the change of internaisteps. It might therefore be more appropriate to refer to
coupling between beach and chaotic sea accounts only for ‘dransport-assisted tunneling,” a phenomenon of a more
factor of the order 1Qdifference between the dashed line general class than the chaos-assisted tunneling one.
and the exact data @&=0.15). For larges, different beach
doublets take over, but the basic structure is preserved. The V. STATISTICAL ANALYSIS OF EIGENPHASE
dashed-dotted line displays the recer contributions’fer3s SPLITTINGS
a.nd /‘COE: 20

At § values below 0.07, numerical precision does not al-
low us to calculate the splitting directly. We can, however, This section is devoted to the distribution of level split-
get an impression by looking at the splitting of states suptings. We determine the asymptotic largé; behavior of
ported by quasi-integrable structures at snéalPresumably, the splitting distribution and find “typical” splitting values
these states will mediate the tunneling of high-angularby calculating the median of the distribution obtained by
momentum doublets. In Fig. 12, we show the splitting of theextrapolation of the asymptotic behavior towards smaller
doublet predominantly peaked &t=27 (//k=0.45). The splittings. We assume that recer contributions dominate and
splitting shows resonance peaks beldw 0.075 and then that properties of the beach blocks vary slowly. It is straight-
flattens out. This behavior can be understood by looking atorward to apply the calculation to the case of rcr contribu-
the HPDs of the states involved. In Fig. 13 we depict onetions as well.
partner of the tunneling doublet and its resonant state at Starting from Eq.(310 we introduce a number of nota-
(@—(c) 5=0.0402,(d)—(f) 6=0.0687, and(g),(h) §=0.09. tional simplifications. For a given, we write phases with
In the corresponding classical Poincasls, we have started respect tod”) (that is, setd{”’=0), definex, =2 sin(,/2),
trajectories from initial conditions+#,L) with L>0 only to  and collect the coupling of-n to a chaotic statey via the
indicate the classical inhibition of transport. We can makeedge into an effective overlap

A. Asymptotic behavior of the splitting distribution
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FIG. 13. Classical phase space and Husimi Poindistibutions of the tunneling doublet of Fig. 12 and its resonant staté®-«t)
6=0.0402,(d)-(f) 6=0.0687 andg),(h) 5=0.09. The doublet resides on KAM-like tori for smalland dissolves in the chaotic sea for
large 6. Note that the tunneling a#=0.0687 takes place between a chaotic doublet and is mediated by a regular stéte0.898, the
dominant tunneling process is direct.

N7 2
z . H 1 v
Un,y= 2 R%//’ et P(6o)= P(O)yzl \/ZWUZeXF{ - 2(:2) .

XSL/S/,ySy,—/’S—/’,—n We can write the probability density @&® in the form
2sin6,/2)2sin(6,.12) |

P(50)=f doP(0)P(50|0), (38
which leads to

whereP (86| 6) is the conditional probability 066 given 6,
(rece) Ny Un,y and the integral is performed oves o, 7]N». For fixed 6,
66y = 21 X " the v, /x, are mutually independent Gaussian random vari-
Y ables with variancesd/ y)2, and thusP( 56| 6) is a Gaussian
of varianceo?7(6), wherez(#6) is given by
N, denotes the dimension of the center block. In the follow-
ing we drop the subscript. N

Y
To devise a statistical treatment for the center block, we n( )= iz
make the following assumptions concerning the distribution r=1X,
of the chaotic eigenphases-1{6,}, and the effective over-
lapsv={v,}, ¥=1,...N,. We assume the following:  To perform the integration ove# in Eq. (38), we introduce
(1) There is no correlation between the overlaps and they(#) as an additional integration variable by rewriting

eigenphases. P(560) as

(2) Eigenphase9,, are real, ranging fronf—, 7], and
the joint distribution functiorP(6) of the eigenphases either w0 1 2
(a) is Poissonian, i.e., the eigenphases are uncorrelat¢h), or P(60)= f dnP(7) exp( -7 ) (39
has the property that degeneracies of eigenph@sase sup- 0 N27oty 20°7
pressedas is the case in Dyson random matrix ensembles

(3) The overlaps are mutually independent Gaussian ranwith
dom variables with zero mean and varianege o will be
fixed in terms ofS-matrix elements in the following. 1

The joint probability distribution of the,, andv , is then P(n):f deP(0) 5( 77—2 —2) . (40
given by v X,
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Note that, by virtue of the central limit theorem, almost all

overlap distributions will give rise to a Gaussian form of 2

P(56|6) in Eq. (39). 4
We continue by examining the larggasymptotic behav- . ,

ior of P(#) for the two cases listed in conditid@). where we have introduced the notatidfy=1II,,x, . By
(a) If the 6., obey a Poissonian distribution, thepis a changm_g_the integration varlabteﬁa/ 7 we can extr_act

sum over independent identically distributed variabigs the explicit» dependence from the firgtfunction and arrive

1
Z—ZEY X =

o v #y o

eV

each of which is distributed as at
1 - l _ 1 ,”1/2 1 2
P(7,)= Efﬂdgb‘( ny— P) P(n)= ﬂT/ZJ d0P(0)j”1/2da5( 1- ?Z/ R
— 1
[ t2mn, a1 for 9,2, y 6(%—1_[ Xy)_ )
0 for 7,<%. o

By inspection of the firstd function, and recalling that
|Z,|]<1, we see that contributions to the integral can only
arise from the rangéa| <N?. However, for finitea, the
secondd function is in the limitp— o given by

Note that for largen, this asymptotically behaves like
P(7,)~1/2m53?. In order to obtain the distributioR ()
of the sum, we evaluate the characteristic function

5 _ifwd g ioy 3 fc(\/iw) a
= 2wy 2 5<__H X’)NE S
Y Y

Vn
[see[43], Egs.(3.383.4 and (9.236.1], where erfck) de- i o )
notes the complementary error function. We use the fact thatrovided all thex, aredistinct Hence, the second function
the characteristic function of a sum Bbf, independent ran- 'S asymptotically independent of, and the integration can

dom variables is the product of all their characteristic func-P€ Performed explicitly, using

tions, to get 1 12
J daé(l——zE Xﬁ) =(Z Xi) . (44)
o a- vy Y

P(n)= 5 fwdwerfwy(@) glom, -
Finally, we substitute the forrd3) of the second function
The structure of they— o tail is determined by the nonana- and the resulf44) of the « integration into Eq(42). Noting
lytic behavior of P;(w) at the origin. Thus we can approxi- that if x,=0, then Xx,,=0 for all y'#y, and that
mateP(#) in that regime by expanding in a power series in 6(68,) = 6(x,), we arrive at the distribution

w,
N
o - 2 P(n)~—2~- for np—oo. 45
erfdh 12 —1-N \/—Iw+0 Ny " 2m 7 9
2 YN o7 2@ |’

) ) ) ] It is remarkable that the distributiod®( ) in Eqgs.(41) and
The leadinglnonanalyti¢ square root term is proportional to (45) display the same asymptotic power-law dependence.
N,. Thus the frequency dependence scales Nhand the Finally, we note that, by virtue of the Gaussian form of
resulting distribution P(7) scales asymptotically as the integrand in Eq(39), the integral depends primarily on
N *P(#7/N3). We thereby obtain the asymptotic distribution |arge 7= 56%/02. To extract the asymptotic behavior of
of #, P(566), we only need the asymptotic form B #) for large
7. Inserting Eq.(45) into Eq. (39) gives

N
P(7)> 77—372 for e, (41) S Y
P(8¢9)~N7J d7 32,2 2
(b) Next we will evaluateP(7) for a general eigenphase o (2m*nte m\2mss
distribution in which the occurrence of eigenphase degenergg, large 59. This is the largesé tail of a Cauchy distribu-
cies is suppressejdt4]. In order to rewrite the distribution jon “in accordance to the prediction of Leyvraz and Ullmo
function Eq.(40) in terms of products over the eigenvalues, [g]. we stress that we have derived this result for the case of
rather than sums over them, we introduce the integratiol poissonian eigenphase distribution and, in a second deriva-
parameteir=1I1,,x, by writing tion, without assuming any explicit form of the joint eigen-
. 1 pha;(se (rj]istribution f_unctri]on. rI]n t_h_e Ia(';t_er _cbase, vvfe onl_y had to
_ N - _ make the assumption that the joint distribution function van-
P Jlldaf d0P(0)5( K Ey: xi) 5( * l_yl XV)' ishes whenever two eigenphases approach each other. Our
derivation is therefore more general than the one given in
In the first & function, we can now substitute [9].

(46)
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In a broader context, it is also interesting to mention thata “typical” value for the level splittings must be obtained
the calculationb) can be generalized to the case of a distri-otherwise. We propose to consider thedian| 56|y, of | 56|
bution defined by

» 1
)’ (47) ZJ' d(56)P(56’)=§.

1
2v |50|M
X7

P,,(5¢9)=f d0P(0)6( n—2,
Y

which corresponds to the distribution resulting from a SumThe factor of 2 on the left hand side arises from the fact that

over paths that containsigh power of the phase denomina- we integr.ate over positivéy only. By extrapolation of the
tor. The procedure is analogous to the casel just de- asymptotic form .OfP(M) as given by Eq.(46) towards
scribed, but for a substitutiom— «/ /%", and one arrives at smaller| 56|, we find
P.(n)=2mv) N, /5~ @*D2 This leads to a largéd

splitting distribution | 86|y~ 4oNy ) (51)
w2
P(66) T (48)  Inserting the variance? of Eq. (50) into Eq.(51) we finally
o0 get for the median splitting
Let us return to Eq(46). Having integrated out the eigen- 1 S S ’4 12
phase dependence B{56), we are left with the determina- 1664y o~ _< S| — /'g ) . (52
tion of the variancer? of the effective overlaps,, . It is Tom\ 7 sin((6,- 6 ))/2]’
given by . .
where we have inserted the index for thedependence
_ again, as well as the phasf’ . Formula(52) for the median
o?~{ |2 RGE e Oyt bt 0,002 splittings estimates the enhancements of tunneling splittings
47! due to chaos-assisted processes and constitutes one of the

in Eq. (52) are defined in terms if the origin&® matrix, and
the mostdirect and quantitativecheck of the chaos-assisted
tunneling picture yet becomes possible.

We assume the phases of t8g, to be arbitrary and uncor- We note that Eq(52) can be used to recast E@6) for
related, assume the, to be real, and absorb all phases intothe splitting distribution in a numerically more convenient
a random phase factor exp{ , ,). Using |S, | form

=[S, |=IS_,,|=1S,,-,| we can write

We now turn to the discussion of the approximations
IS /Sh | X|S, S y|2> made in the derivation of the central results E@®b),(52),
= — — (490 and(53) for the splitting distributions and the median split-
/70 BSirt(0,12)sir(6,12) tings. There are four sources of err@n. The estimatg50)
and (28) for the variances? is correct only within an order
of magnitude due to the ambiguity ef-og [See discussion
after Eq.(28)]. Up to now, ara priori determination o cog

) . was not possible. Note, however, that the skt¢ of the
total coupling of the” state to the chaotic block, see also Eq'center block does not enter in the expressiginsThe effect

(27), and where the,, , are '”dege”g’e”t Gaussian variables ¢ imaginary parts of the,, is not included in our calcula-
with unit variance. Using that¢y &7 )=(2+0,,,) We  tion. By unitarity of the block-transformed matrix,
find a statistical enhancement of the diagonal=(")  m{6,}~=,|S, |2 which in the splitting distribution intro-
terms. More importantly, the sum is dominated by the term§jyces a cutoff of the Cauchy-like tail af 56|
with the smallest.phase denominators.. Consequently, we can|s, _/sin(g,/2)|2. The resulting relative correction of the
neglect the nondiagonal terms and write median splitting isO(|S, c|?). (iii) Extrapolation of the
asymptotic tail towards smalletd is another source of error

Sh/S/c of O(1).[For example, the median calculated from an exact
sin(6,/2) Cauchy distribution H#(1+x?) is 1+ y2~2.4, whereas the
median estimated by integrating over its tailwkf is
4/7=~1.3] (iv) Our five-block model neglects the effect of
transport barriers other than the one separating the beach

As we have just shown, the splitting distribution behavesfrom the center of the chaotic block. Further transport barri-
asymptotically likeP(86)~ 562, and it is well known that ers lead to the inhibition of tunneling flux and thereby de-
the mean of a Cauchy distribution does not exist. Thereforegrease the splitting.

XSn,/S/,ySy,—/’S—/’,—n

2 central results of this work. Note that all quantities appearing
2sin(6,12)2 sin(6,112) > '

|56|M n
2 P(66,)= —. 53
> (66y) Py (53

|Sn,/Sh,'S/,S/1 ,lC08b, /1
s 2 sin( 6 /2)sin ( 0, — 9510))/2]

n

using the fact that théb, ,, , are uncorrelated and equidis-
tributed on the interval[—m,7]. Let us now write
1S, J?=NJYS, 26, where|S, [*=3.|S, |? is the

4

2. 3 . (50)

0-~8_N§//

B. Median splittings



57 DYNAMICAL TUNNELING IN MIXED SYSTEMS 1439

-
[\&1

sec | —] T
o \\ ] - 1 4
| [ ) s\“ ] = B l§; 0 a
. ' =9 <3 8 -1
i o . B | ﬁ\d <, _
I ., i — o [H 0
g 0= e 7] ] 1_ I i
= [ 'S ] &7
< B o 1 S )
2 e, y g2 ]
S i “a il i
15 "bx\ — 3 —
[ Q. i i
L \0\ J gk ]
5 . At . I
i o, 3 2 1 2
_20 l 1 I 1 ' 1 I 1 I 1 I 1 I 1 ‘I) o~
66 68 70 7 74 76 78 80 logy 66|
n

FIG. 15. Distribution functiorP(|?ST9|) for the “reduced” split-

ting |§é| (solid line), compared to the predicted Cauchy distribution
(dashed ling double logarithmic plot. Inset: “reduced” splittings
obtained after unfolding the modulations due to the beach layers.

FIG. 14. Median splitting$56|y , as a function of angular mo-
mentum (logarithmic plo}. Exact splittings are obtained from nu-
merical diagonalizatiorfull circles), calculation of|[SN]ny_n| for
large N (empty circleg, and estimates are taken from the median
formula (52) and corrected bg=1/6 (dashed ling

tings thus obtained from 30 configurations wihranging

We conclude that Eq(52) reproduces the exact median from R=1 to R=1.3. We have taken the edge region to
splittings only up to a factor of the order one. If the neglectextend over angular momenta=56, . . . ,64 anchave cho-
of remnant phase-space structure is the dominant source sén/cog=50. To account for the overestimate of the split-
error, then Eq(52) gives an overestimate. However, the er-ting by Eq.(52), theoretical predictions are multiplied by an
ror is expected to be independentpfand we can correct for  overall factorc~1/6. The dashed line shows the resulting
it by introducing anoverall factor ¢ that we extract from the approximation for the median splittings. Apart from the fac-
numerical data. Equatio(b3) for the splitting distribution  tor ¢, the formula(52) is in good agreement with the exact
function has to be corrected correspondingly. median splittings.

We finally return to the issue of the two different repre- | et us turn to the splitting statistics. If one is interested in
sentations Eq(22) and Eq.(23) for the splitting that differ  {he fluctuations due to changes in the chaotic dynamics, one
by taking either imaginary parts of exp(N6(’)[S¥],—n OF first has to discard the slow modulation due to the change of
absolute values dfSV], _,. In a statistical treatment, these beach layer properties. We do so by considering the “re-
two approaches give slightly different results, because in thg,ceq” splitting 30, of Eq. (37) for those values oR at
average over the random phases ,,, one obtains \yhich one single” is dominant in both shift and splitting
(|le'~/s])=1 after taking absolute values, as opposed Qor n=65, . ..,67, and here”=n—7). We find that the
(cos(g, ,,,))=1/2 after taking imaginary parts. The me- median of546,, is approximately equal to, independent of

dian splittings derived from Eq(23) would therefore be ) j R
twice the splittings predicted in E¢52). This explains why (ot shown. Figure 15 confirms that the distributidt(| 56|)

a formula given by us earlidRef.[10], Eq. (8)] differs by a falls off like a Cauchy distribution of widtlke. For the figure,
factor two from the one in Eq52). 750 exact splittings were transformed to reduced dises

inse) and collected in a histogram with log-binnirighain
figure, solid ling. This is compared to the Cauchy distribu-

C. Numerical results tion 2cw Y/(c2+ 862 (main figure, dashed line The

This section is concluded by a presentation of numericahgreement is very good.
data for the eigenphase splitting and its distribution for the Finally, we show in Fig. 16 the distribution function
annular  billiard. We choose parameter valuesP(|56,|/|56|u ) of exact splittings divided by the median
k=100, a=0.4, §=0.2 and vary the outer radiu® over splittings displayed in Fig. 14. The actual splittings display a
490 values betweeR=0.985 andR=0.1035. Recall that power lawP(]56])~|86| %2 (dashed ling This can be un-
changingR leaves thdS, ,| constant and changes only the derstood by realizing that the variation Riis sufficiently
eigenphase configuration and the coupliys,. Figure 14 large to average not only over avoided crossings between
depicts the median values of eigenphase splittings of doushaotic and regular eigenphases, but also over avoided cross-
blets peaked at angular momenta 65, . . . ,80 as #unction  ings between regular and beach eigenphases. These avoided
of n. Full circles represent median splittin86|,, , as ob-  crossings, however, appear in the s(8ic with a squared
tained from numerical diagonalization. Since the diagonalphase denominatmf,;i, and we have argued in E@8) that
ization routine cannot differentiate between eigenvalues thahe distribution generated by such contributions displays a
are closer than-10" 15, splittings beyonch=75 could not power-law decay with exponent 3/2. The exponent 3/2
be resolved directly. Instead, they were extracted by use afonforms to the findings of Leyvraz and UlIn{®@], who
Eqg. (23), that is, by numerical calculation of[SN]n,,n/N studied chaos-assisted tunneling in the presence of an imper-
for largeN=<|486,| 1. Empty circles represent median split- fect transport barrier in the chaotic sea.
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d————T—— T T low-angular momentum quantum states should therefore be
FH HTe ] enhanced by chaos-assisted processes. It is, however, not

2H [TH- - clear whether these splittings are large enough to be experi-
i [T ] mentally accessible.

01 T N Another example might be provided by “frozen-planet”

configurations in helium in which one electron is dynami-
cally localized far away from the core and the other one is
localized near the core and close to the axis between core
and outer electron. By exchange of inner and outer electron,
there are two symmetric configurations corresponding to
classically regular motions that are separated by chaotic dy-

logyo P(168,|/168tas,)
[
l

P J N LA namics[47].
6 -4 2 Finally, a much-studied system in the field of quantum
logyo (160,1/160] s4,1) chaos, the quantum kicked rotor, has recently been experi-

mentally realized by Mooret al. [48] using ultracold so-
FIG. 16. Distribution of original eigenphase splitting®,|, for  gium atoms in pulsed, near-resonant light. Rotor systems
eachn divided by the medians6|y , (solid line), double logarith-  ave peen considered by several groups in studies of dy-
mic plot. E_)ashed line: comparison to &~ %2 power-law decay, namical tunneling in the presence of chd@®,49, and a
prefactor fitted to the data. link between theory and experiment might soon become pos-
sible. Again, the experiment might still be far from the re-

VI. DISCUSSION quired degree of accuracy.

A. Possible experimental realizations
. . 3. Open systems
Even though the occurrence of chaos-assisted tunneling

should be a very general phenomenon, an experimental ob- Chaos-assisted processes can enhance not only tunneling
servation of the effect has not yet been made. The maifscillations, but also thdecayof regular modes in a mixed,

difficulty might not be tomeasurehe effect, but toaecognize ~ OPen system in which the dominant coupling to the con-
it. As long as little is known about tunneling in multidimen- tinuum is mediated by states residing on the chaotic layer.

sional mixed systems in general, it will be difficult to sepa- EXperimental realizations of such systems were studied by
rate out the different contributions to the tunneling rates andiockel et al. and otherg50] who considered th@ spoiling

to identify the effects of classical transport. It is our strong®f Whispering gallery modes in deformed lasing droplets. In
suspicion that, as soon as qualitative theories for experimert 'ecent work, Hackenbroich and el [51] also consid-

tal systems are developed, chaos-assisted tunneling will tuf@féd mixed systems in which the direct coupling of regular
out to be a frequent effect in the splitting of dynamical tun-modes to the continuum is suppressed, but where chaotic

neling doublets. states have sizable coupling to the continuum. Regular
modes may then decay via a multistep process of type
1. Superconducting microwave cavities regular-chaotic-continuumTheir results were motivated by

. . ... astudy of a modified version of the annular billiard, in which
It has been argued in this work that the annular bIIIIardthe outer circle is replaced by a mirror, and the billiard is

SEIVes as an exce”ef‘t p_aradig_m_for Chaos-a_ssisteq tunnelir¥st,umed to have higher optical density than the exterior re-
An xpermena raizaton o1 sy vesigated o 0 1 e T T U S 0
' e - cay can lead a dramatic enhancement of level widths.
resonance measurements on a superconducting nloblum mi- Finally, Zakrzewskiet al. [52] have recently proposed
crowave cavity, the Darmstadt group has extracted hlghéltomic systems—hydrogen in either linearly or circularly po-

quallty_ spectra in the frequgncy range 0._20 GHz, COM€1arized microwave fields—that display ionization via chaos-
sponding tck=0-50 in our units, but experimental accuracy assisted tunneling

does not yet allow a resolution of the splittings of high-
angular-momentum doublets. However, it might be just as
interesting to measure the energy splittingsbefch dou- B. Discussion and conclusions
blets, as these splittings are also chaos assisted, but by orders

. Having discussed the experimental perspectives, one is
of magnitudes larger than those of the regular doublets. 9 b Persp

immediately led to the question of the general applicability
of the method and the block-matrix model proposed in this
work.

Atomic systems have served as paradigms of many pre- Itis clear that the scattering problem must be solved sepa-
dictions in quantum chaos, and there are some atoms ifately for each system under consideration. In a general sys-
which an observation of chaos-assisted tunneling might béem, it might be very difficult to formulate th® matrix and
conceivable. Hydrogen in a weak magnetic figlé] may be  to find a basis in which the&s-matrix elementsS, , and
such a case. In the weak-field limit, the classical system haS_,, _, corresponding to motion on the tunneling tori are
symmetry-connected regular islands corresponding to lowsufficiently close to unity. It must however be said in favor
angular-momentum motion along the field axis on either sidef the scattering approach that the difficulty of finding an
of the hydrogen core. These islands are separated by a chaBK-quantization scheme in nonseparable systems is by no
otic sea, and dynamical tunneling between the correspondingieans inherent to the scattering approach, but presently

2. Atomic systems
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poses one of the most serious problems of semiclassical This generality is extended even further by the observa-
theory in genera[53]. (In fact, it is one of the fortunate tion that enhancement of tunneling can also appear with help
aspects of the annular billiard that the angular momentunof regular states. Indeed, in Sec. IVF we have even ob-
basis is semiclassically diagonal in the region of regular moserved the case of tunneling betweechaoticdoublet via a
tion.) resonant regular state. This should serve as a reminder that
In situations whereS. , .., are not sufficiently close to only the phase-spadepologydetermines the occurrence of
unity, Egs.(15) and(16) may still work well, provided that tunneling, not its regularity or chaos, and that chaos-assisted
sufficient knowledge of eigenvector structure is availabletunneling is, in fact, a more general phenomenon of
(see[34] for an application to the case of rough billiafdgl]  transportassisted tunneling. Additionally, the tunneling rate
and other systemsHowever, calculation of the splitting by seems to be rather insensitive to the rate of classical flux
summation over long paths fromto —n relies on a suffi- connecting the opposite beach regions — as long as there
cient localization ofin) at thenth component. exists a classically allowed path between them. When chang-
Clearly, the block matrix model used in the summationing & in Sec. IV F, most of the tunneling enhancement was
over paths must be adopted to the specific transport situatiarelated to the change of tunneling properties between the
encountered. In the case of structure other than the beadhrus and the beach region. Progressively rapid classical
layers, additional blocks must be introduced. This does, howpropagation across the chaotic layer was related to tunneling
ever, not lead to problems in the summation E3§) as long enhancement of only one order of magnitude — out of five
as the outermost tunneling element is smaller than any of therders of magnitude in totald& 0.07—0.15.
internal coupling elements. At present, there isangriori Our study of chaos-assisted tunneling has led to the most
method to determine the border indices of neighboringquantitative treatment of the phenomenon to date. At the
blocks inside the chaotic layer. However, use of classicapame time, some challenging problems have been encoun-
information will warrant correct results to within an order of tered. For example, we have seen that tunneling can occur
magnitude. between doublets localized on “soft” phase-space structures
We note that our treatment is not limited to the case of arfuch as the beach regions or scarring periodic orbits. For
Smatrix symmetryS, ,=S._, ., and could easily be ex- these states, transport fro_m one _phase-space structure to its
tended to nonsymmétric syéterﬂm example, an annular symmetfy-related .partner is classically al_low.ed,. but quar!tum
billiard with the inner circle replaced by some nonsymmetricMechanically forbidden. Apart from the intriguing question
shapeg, or even to the case of tunneling at an accidentaF‘bOUI the quantum-mechanical localization mechanism giv-

degeneracy between two eigenphases. In the summation ovee rise to these states, their doublet structure introduces ad-

paths, we merely require that the initial and the final diagonafitional complications. For example, some of the doublets

S-matrix elements are equaﬁﬂi ,ni:Snf,nf- Note, however, tunnel via resonant processes, while others tunnel directly. A

that in the nonsymmetric case the contributiansSM|n,) quantitative treatment would certainly be desirable.
and(n¢|SV|n;) in Eq. (13) will in general not cancel. Their
difference is then likely to dominate the splitting.

It is one of our main results to point out the importance of We studied dynamical tunneling between symmetry-
the beach layer to the chaos-assisted tunneling phenomenaelated phase-space tori that are separated by a chaotic re-
The appearance of classically chaotic, but not too unstablgion. Using scattering theory, we introduced a unitary matrix
regions around regular islands is generic in mixed systemsS that constitutes the quantum analogue of the classical Poin-
Such regions should always support states if the mixing wittcaremap. By expressing eigenphase splittings and shifts in
the rest of phase space is sufficiently sléov if energy is terms of matrix elements of high iterates 8f we related
sufficiently low). However, it must be checked whether somethese quantities to paths in phase space. While paths contrib-
of the importance of the beach layer should actually be atuting to the splitting connect the two tunneling tori, paths
tributed to the tunneling ridge that favors tunneling processethat contribute to the shift lead from a tunneling torus back to
into the beach regiofsee Fig. . Such a test is given in our itself, leaving the torus at least once. We performed the sum-
version of the Bohigas numerical experiment; see Sec. IV Fmation over paths within a block-matrix approximation, al-
We have verified that, at smafl there arenovisible tunnel-  locating different blocks to the two regular regions, the cha-
ing ridges, and the tunneling amplitudes decay monotonietic sea, and the two intervening beach layers. Within this
cally away from the diagonal. Nevertheless the beach regioapproximation, we derived analytic expressions for the con-
still governs the behavior of the eigenphase splittifgme  tributions to the tunneling properties. Explicit inclusion of
Fig. 11). It must, however, be noted that, in this case, thethe beach blocks enabled us to predict a number of new
correspondence between slow splitting modulations and theffects that could be verified for the case of the annular bil-
shift breaks down. The shift is then determined by pathdiard. (1) As a function of an external parameter the splitting
n—n-—1—n instead of paths leading to the beach and baclkaries on two scales: a rapid one attributed to resonance de-
ton. nominators of regular and chaotic states, and a slow one

It is another interesting point that the statistical resultsattributed to (squaredl resonance denominators between
found in Sec. V are independent of the explicit joint distri- regular states and beach states. This diversity of scales is also
bution function of eigenphases, but can be derived undepbserved in statistical quantities, e.g., the distribution func-
rather general assumptions. We merely require that the joiriton P(66) of eigenphase splitting$6. When averaging
distribution of eigenphases vanishes at eigenphase degenerer a sufficiently small range of a system paramésech
cies. that beach properties remain effectively constattite split-

C. Summary
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tings are distributed with a Cauchy t&(56) ~ 66~ 2. When Dy Cj
averaging over a large parameter rangech that beach ,
resonances occyrthe squared resonance denominators lead Co D1 C; 0
to aP(56)~ 56~ %? power-law behavior(ll) Typically, the Cc, D,
shift varies on the slow scale only and is much larger than c , (A
the splitting. M-1
Analytical formulas at hand, we could also assess the rela- 0 Cu-1 Dm Cy
tive importance of tunneling amplitudes and classical trans- Cu Do

port properties within the chaotic sea. As the annular bil-

liard’s eccentricity is increased, most of the enhancement of -

tunneling rates can be attributed to the tunneling amplitudeshere each of the diagonal bIocRB=S§\'V')'\)5_M, is coupled

and resonances between regular tori and the beach regiong. its neighbor by the coupling b|00@i=5§' v'w*l)_ C'is a

Progressively faster classical transport within the chaotic se : : L~ alitli)
9 y P &hort notation for the other coupling block;; =S/,

was found to play a minor role in the splitting enhancement., . L
Finally we%e%ved the asymptotic foprm( 5¢g9)~50*2 of (which need, however, not be the transpos€gfasSis in

the splitting distribution’s largesé tail (average over a small general not symmetr)cD():Sn,_n:S_n,__n contains the d".
parameter rangeln this calculation, no explicit assumption agonalSmatnx element _assomated with th_e Fun_nelmg tori.
about the form of the joint distribution function of chaotic In addition to summations over the _matrlx indices of each
eigenphases was made; it was merely required that the di?—lo_Ck’ we ha_we to sum over the staying t|rr1‘d§,_ -+ N
tribution is either Poissonian or vanishes for degenerat .S'.de the diagonal blockBy, ... Dy, respectively. Ex-
eigenphases. In order to give “typical” splitting values, we plicitly, we have to perform the sum

calculated the median splitting by averaging over the prop-

erties of the chaotic sea. Apart from an overestimate by an ZNg=Nq .. =Ny —

overall factor~5, the predicted values for the median split- N 2 N DSIOCODTL ) 'D'&MCMDE' Mot M

tings closely follow the numerical results over many orders
of magnitude. =pN"W ¥ } Co(D1/Do)M1- - - (Dy /Dg)NMCyy,
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APPENDIX: SUMMATION OVER PATHS

IN THE SPLITTING FORMULAS +2 R

—Z+—(1—z)2'

R R
. . . | > (R-p+1)z°= (A2)
In this Appendix we will derive formul&30) that contains p=0 1
the contributions of the different families of paths to the full

sum over paths Forz=D,; /D, of absolute valugz|<1, we need only keep

N—1 the termR/(1—2z), because in further summations the re-
N o 2 H S, maining terms generate subdominant _con_tr_ibut_ioné)OI)
R et O i BN RS or O(|z]V). Neglecting these terms is justified in our case,
because we have assumed that the outerthasteling ma-
leading fromn to —n. Recall thatP)

N is related to the trix elements are much smaller than internal transition ele-
splitting of the doubletsd” by Eq. (25). As N~«/86, is ~ ments and by unitarityfD;| <|Do| for all i #0. Keeping only

taken to be large, we need only collect the leading-ordethe termR/(1-2) of Eq. (A2), the structure of the sum
contribution inN. always remains the same, and each summation results in a

Let us consider the general case in which Senatrix multiplicative factor (:-D;/D,) 1. We arrive at the result
block diagonalized into any number of blocks that the sum over paths of lengil passing through the
s, i,j=0,... K. For the summation over paths, we PlOCksDo, ... Dy is given as
merely require that the outermost couplir@{%{? and S(AJ”AK,)

be much smaller than entries of the internal coupling matri- NG i No1 M 1

ces. Suppose we want to collect the contributions from paths Pon M ~NDG Vo[ D—D. Ci}- (A3)
with M +1 steps that start from and pass through thil =L
intermediate diagonal blocks(1:11) Sliz2:12)  Slim:im)

before arriving at—n, and let us for the moment neglect  Equation(A3) was formulated without allowing for rep-
repetitions in the block indices. It is equivalent to summingetitions in block indices and contains all coupling elements
over all such paths in the block-tridiagonal matrix to lowest order. Loops in block index space that stay within
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=the inner blocks can, however, be included by allowing

repeated indices in EGA3). Paths withk repetitions of the
index combinationi(i +1), say, then give rise to contribu-
tions  containing a factor [(Dy—D;) 'C/(Dg
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1 -1

Do—D; G

1
DO_Di+1

.1
'Dy—D;

C Ci

—Di4+1) "*C;1%. The number of repetitions can be summedAll types of loops can be included by the corresponding

over, which leads to an expression as in E43) with the
replacement

replacements, giving rise to a continued fraction structure of
N(i i
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