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By applying the projection operator method, we derive tlenegal guation for the _bngquilibrium
reversible-irreversible couplinGENERIQ that, in previous workPhys. Rev. B56, 6620(1997); 56, 6633
(1997], was obtained by empirical arguments. We find microscopic expressions for the building blocks of
GENERIC, and we generally derive the rules for passing from any given level of description to a more

macroscopic ong.51063-651X98)15802-4
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[. INTRODUCTION important for formulating propet. and M matrices when
modeling concrete nonequilibrium problen&]. The two
We here derive the general form of the time-evolutioncontributions to the time evolution of generated by the
equations for nonequilibrium systems, proposed agnergyE and the entropys in Eq. (1) are called the revers-
GENERIC in [1’2], by projection operator techniques_ The ible and irreversible contributions to GENERIC, respec-

general time-evolution equation can be written in the form tively. o
Many important examples of nonequilibrium systems

dx SE(X) 5S(x) have been expressed in the GENERIC fdr2i hydrody-
—=L(x) +M(x) , () namics, polymer kinetic theor§including hydrodynamic in-
dt OX X : e . .

teraction, rigid constraints, reptation models, and polymer

wherex represents a set of independent variables requireEeat conductivity, and chemical reactions. Moreover, the

. - racket formalism of Beris and Edwarf3], which includes
for a complete dF_:SCI’IptIOﬂ of the nonequilibrium system, thethe linear thermodynamics of irreversible processes, has been
real-valued functional& andS are the total energy and en-

. . reproduced, and the relationship to extended irreversible
tropy expressed in terms of the state variablesndL and thermodynamics has been elaborated

M are certa_in matrices. Sincetypically contains position- The key innovation in the GENERIC structure is the use
dependent fields, such as mass, momentum, and energy def}-wwo separate generators for the reversible and irreversible
sities, the state variables are usually labeled by continuougynamics, together with the symmetric degeneracy require-
(pOSitiorib labels in addition to discrete ones. A matrix mul- ments(see[S_]_O] and references therein for previous ther-
tiplication, or the application of a linear operator, hence im-modynamic approaches which aim to describe the dynamical
plies not only summations over discrete labels but also intebehavior of complex fluids While nonequilibrium dynamics
grations over continuous labels, agddx typically implies is usually expressed in terms of a single generéhm effec-

functional rather than partial derivatives. tive Hamiltonian or free energy functionB]), the two-
In the GENERIC framework, Eq1) is supplemented by generator idea, which leaves more flexibility in the choice of
the complementary degeneracy requirements variables, allows us to formulate the mutual degeneracy con-
ditions and hence actually increases the predictive power of
8S(X) GENERIC[1,2]. In particular, the requiremeri®) has very
L(x) 5% =0, ) strong implications, such as the Gibbs-Duhem equation for
the local equilibrium systems of hydrodynamics or the
and Kramers expression for the stress tensor in polymer kinetic
theory. In new applications, results of similar significance
SE(X) can be expected. It is therefore very important to justify the
M (X) % =0. (3) two-generator idea and the degeneracy requirements, origi-

nally discovered by empirical observations, also by micro-

. . . scopic arguments.
The requirement that the gradies/ ox is in the null space The time evolution(1) is deterministic, but fluctuations

of L in Eq. (2) expresses the reversible nature of theon- .o e added very naturallg]. This can be done most con-
tribution to the dynamics: the functional form of the entropy veniently by formulating the following diffusion equation or

is such that it cannot be affected by the operator generatingokker-Planck equation for the time-evolution of the con-
the reversible dynamics. The requirement that the gradienigyrational distribution functionf(x,t),

SE/&x is in the null space oM in Eq. (3) expresses the

conservation of the total energy by the contribution to the afxt)y 9
dynamics. Furthermore, it is required that the matrixs gt ox
antisymmetric, whereasM is symmetric and positive-
semidefinite. Both the complementary degeneracy require-

ments(2), (3) and the symmetry properties are extremely
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The Fokker-Planck equatiof@) can equivalently be rewrit- plays a central role. Equatiqi0) means that the entropy is

ten as a stochastic differential equatidr], obtained by counting the number of microscopic states
SE 55 SM consistent with a more macroscopic statehis corresponds
dx=L > dt+M —dt+kg——dt+BdW,, 5) to a.ljat_ural generallzauon_ of the Gibbs entropy formula from
X equilibrium thermodynamics.

. o The matrix M(x) can be identified uniquely from the
whereB is a matrix with second-order derivative terms in the Fokker-Planck equation
BBT=2k M, ©) obtained by the projection operator method,

kg is Boltzmann’s constant, an@/, is a multicomponent M(x)=iex _@]detj S(I1(z)—x)
Wiener process, that is, a Gaussian process with first and kg k 0

d i b . . . .
second moments given by X [Xo(2)~ Xa(¥) [ Xo(2(t) ~ e (x)]dz,  (1D)

(Wy=0, (W,W)=min(t,t")1, (7)
where
or, more formally,
. _ 6ll(z)  6Ey(2)
aw) _ o awdwil Xo(2)= 5, Lo—5, (12
e =0, at dt’ (t—t")1. (8) "
. X .

The fluctuations can be eliminated from E§) to obtain Eq. xl(x)=exp[ - k_s] f Xo(2)6(Il(z)—x)dz, (13

(1) by going to the limitkg—0 (without changing the
GENERIC building blocksE,S,L,M), so thatkg may be  z(t) is the solution of the time-evolution equati@®) with
regarded as a small parameter controlling the fluctuations. z(0)=z, and 7 is a time scale large enough for the time
integral to converge and small enough foto be still con-
Il. PROJECTION OF HAMILTON’'S EQUATIONS sidered as independent of tinfsuch an intermediate time
OF MOTION scale exists due to the previously mentioned assumption of

clearly separated time scales for the slow and fast varipbles
We here derive the GENERIC structure and microscopic
While X, is a state variable that varies on a very rapid,

expressions for the building blocls S, L, andM by com-
paring the above Fokker-Planck equation to the one obtaineficroscopic time scalex, depends only orx= I(z) and

by the projection operator technique. The standard tool ohence has a much slower time evolution. Thys; x, de-
projection operatorgsee, for exampld,12,13) is here most  scribes fluctuation effects, which are incorporated in a white-
conveniently used in the form developed[it4] (with the  noise approximation when going from E¢l) to Eq. (5).

only exception that we here assume a microcanonical rathétquation(11), which holds for general nonequilibrium sys-
than a canonical ensembleSince all the details of the pro- tems, has the form of the Green-Kubo expressions for trans-
jection operator derivation are worked out[it4], we here  port coefficients known from linear response theory. Here we
only need to compile the results obtained by comparing thelid not extend the time integral in EqL1) to infinity be-

equations. cause then it might be necessary to consider the slow time
The starting point for the projection operator approach iseyolution ofx1 in the second factor.
the purely reversible(fully microscopig time-evolution After identifying the irreversible dynamics, it is a simple
equation exercise to find the building blocks associated with the re-
versible dynamics. In the GENERIC approach it is assumed
d_Z= 9Eo(2) (9) that, as a very good approximation, the total enelgyz)
dt % o6z can be expressed in terms of the relevant state variables
which corresponds to Hamilton’s equations of motion; here Eo(z) =E(I1(2))=E(x). (14)

Eo(2) is the microscopic Hamiltonian, and the antisymmetric
matrix Lo (generating the Poisson brackeibes not depend  Finally, by coarse-grainin,, one naturally obtains
on z.
The variables< of the coarse-grained description are ob- L0 p[ S(X) ]f Sll(z)  Sll(z2)
X) =ex

tained as phase space functidhgrom the microscopic vari- s 5, Lo 5, dUl(z)—x)dz.
ablesz, that is,x=1I(z). It is crucial for the application of (15)
the projection operator method that there is a clear separation

of time scales: the time-evolution of (and all functions of  The resulting identity

X) is assumed to be much slower than of all the other vari-

ables in the system. In the projection operator approach, the ( )
quantity x1(X)=L(x) (16)
exp{ S(x )] f&(H(z —x)dz, (100  Might be useful in employing simulation techniquéso-
kg lecular dynamicsfor determiningM from Eq. (11).
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Ill. SOME IMPLICATIONS entropy contribution involving the Jacobian. As long as fluc-

. tuations are irrelevan(as is the case for most applications of

We can now discuss some implications of the microscopuf1 . ; :
. . drodynamics and of the equations for multi-component
expressions10), (11), (14), and(15) for the building blocks s;/stemz with chemical reactioqns as well as for polyr%er ki-

of GENERIC. Equatior{15) implies thal. is antisymmetric. netic theory on the level of configurational distribution func-

;‘I;ih?i fcr)lrrtnarl: e>:p€eSS|?nan:d:/:i, Wh:cciés gftt(ra]n trtai;errr?](ij tro as ai tions[2]) we can expect the additional entropy contribution
ction tensor, IS Symmetric, provide at th€ mICroscopic,, o equally irrelevant. While transformations with Jacobian

time evolution is reversible. In order to avoid problems with unity clearly preserve the entropy, the selection of a particu-
antisymmetric contributions th (corresponding to dissipa- lar natural set of variable®r the natural separation of fluc-

tive dynamics without entropy productigrwe consider iso- tuationg is probably related to the applicability of the

lated systemgno external magnetic fielflsand we assume . . .
. . > volume-preservation argument used in the previous para-
that a sufficiently detailed level of description has been cho- b 9 b P

" : . raph for deriving the consistency requirem
sen(see problems caused by the transition from an inertial toq P 9 y req @
a noninertial level of description ifil5]). In any case, the
symmetry ofM can be traced back to the symmetry of the IV. RELATIONSHIP BETWEEN TWO COARSE-GRAINED

time correlation function in Eq(11). LEVELS OF DESCRIPTION
The degeneracy requiremet®) is an immediate conse- While the microscopic expressions for the building blocks

quence of the identityxo(z) SE(x)/6x=0 for x=II(z2) g g | andM may be regarded as the analogues of the
(which, in turn, follows from the antisymmetry dfo). In famous expression for the Helmholtz free energy in terms of
favor of the degeneracy requiremei@, we can offer the  the |ogarithm of the partition function when going from equi-
following heuristic argument: Since the projection should bejirium to nonequilibrium systems, the complexity of a prob-
such that, on microscopic time scaléf(z)=I1(z') if and  |em can be reduced dramatically by starting on an interme-
only if TI(z(t))=II(z'(t)), and since the microscopic time gjate level of descriptiorie.g., the viscoelastic properties of
evolution preserves volume in phase space, we expect  polymeric fluids are often determined from mechanical bead-
rod-spring models of polymersWe therefore derive the

ds(11(2)) =_ 9Eo(2) L S1(2)) =0. (17) rules for passing from any given level of description to a
dt sz ° ez more macroscopic one. We consider two coarse-grained lev-
els of description, where the level witk=11,(z), E{(x),

This leads to Si(x), Li(x), M4(x) is more microscopic than the level
SE(X) 5S(X) with y=115(2), Ex(y), Sa(y). La(y), Ma(y) (the respective
X v 0, (18  intermediate time scales arg andr,). We assumg =11(x)

whereIl,=TI-I1,. By comparing the microscopic expres-

sions for the building blocks of the two levels we can now
construct direct transformation rules. A direct projection of
the time-evolution equation from one coarse-grained level of

1 SE(X) 5S(x) description to another one, both based on Fokker-Planck
=k T ) o (19 equations, has been formulated very receft§.

B Since the total energy must, to a very good approxima-
the connection between Liouville’s theorem for the reversion, be accessible on any level of description we can obtain
ible dynamics and the degeneracy requirem@ntoecomes  E2(y) by writing E,(x) in the form
obvious.

The positive-semidefinite character of the maivixis not E1(x)=E,(I1(x)). (20
obvious from Eq.(11). However, the Fokker-Planck equa-
tion derived by the projection operator method is meaningfuFor the entropy, we obtain the following general formula:
if and only if M is positive-semidefinite; a violation of this
condition would lead to physically unacceptable properties Sy(y) Si(x)
of the fluctuating forces. We have thus derived the full ex K }:f exp[ K
GENERIC structure from the microscopic expressions for B B
the building blocks obtained by projection operattire Ja-
cobi identity for the bracket associated with matrix [1]

for arbitrary functional€(x) and hence to Eq2). Since the

expression(15) implies

SE(X)
SX

X L(x)

] SII(x)—y)dx. (21

In practical applications, the integral in E21) might be

remains to be derivad dominated by statex near thg maximum of the integrand,;
We would here like to point out a problem with the trans- the saddle-point approximation would then be useful for

formation behavior of the GENERICL). From the micro- €valuating the coarse-grained entropy. _

scopic expressions it can be verified that all building blocks FOr theL matrix one can verify the transformation behav-

except entropy have a simple transformation behavior. Ac!°"

cording to Eq.(10), a one-to-one transformation—x' in-

troduces the Jacobian of the transformation into the entropy | ( ):f ox S1(X) = S,(y)

expression. This problem can be resolved by looking at 2y kg

GENERIC with fluctuations. Under nonlinear transforma- ST1(x) STI(x)

tions, the fluctuations can introduce systematieterminis- _

tic) effects, which are exactly cancelled by the additional x OX La(x) X SI(x)—y)dx. (22
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While the above three relations involve only static proper-evaluated atx=x(0). We then obtain the final result
ties, the time evolution comes in when coarse grainingdhe M, (y)=M5(y)+M3(y) with

matrix. In order to find a tractable expression for that matrix

we rewrite the matrixM,(y) of Eq. (11) in the equivalent

form , 1 (= S1(X) = S,(y)
wiy) = [ "ot exp{lk— S0 —y)
1 (7 1)~ S,(y) s Jo 8
Moy = | Pt exp{ 22 s -y) o
B J0 B X[(D, I1(x(0))DIL(X(t)))x—Y2(y)y2(y)1dX,
X[(Yo(2)Yo@D))g—Yo(Y)y2(y)1dx, (23 (29
where( )Y is the flat averagéhe normalized integrabver
all z with I1,(2) =x, where( ), is the ensemble average over the trajectories ob-
g tained by solving the fluctuating GENERIC on level 1 with
- _v Xx(0)=x. Compared to Eq(23), the microscopic level is
Yo(z(1)) dtH[Hl(Z(t))]’ (24 now completely eliminated. The expressiaf2§) and (29)
for the coarse-grained friction matrix agree with the result of
and a direct projectiori16] from level 1 to level 2 after adapting
_ SE,(Y) it to a microcanonical ensemble.
Vo(y)=Lo(Y) ;y . (25) The two contributiong26) and(29) to M,(y) thus corre-

spond to fluctuations resulting from the fast time evolution of
z compared to< and from the fast time evolution of com-
pared toy, respectively. If the step from level 1 to level 2

We now assume that(t)=I1,(z(t)) is represented by ! .
GENERIC on level 1 where, for evaluating correlations, it ismVOIV(':'S coarse graining then we EXthZI#Q' There may.
be reductions in the number of state variables for which

obviously important to consider the GENERIC with fluctua- °~ "=
tions (corresponding to variations of the microscopic stateM2=0; the passage from level 1 to level 2 may then be
variables on time scales shorter thap). According to the considered as a “solution” of the level 1 model rather than a

stochastic differential equation of GENERIC with fluctua- COarse graining.

[This notation is consistent with Eg&l2) and(16).]

tions and Ifo calculus [11], there is a white-noise(&- For determiningM, by numerical simulations on level 1
correlatedl contribution todTI(x(t))/dt, which leads to one general_ly needs Browman dynamics S|mulgt|ons beca_use
X(t) is obtained as the solution of a stochastic differential
M ):J' exp{ Sl(X)—Sz(y)] equation. The situation is different when one determines the
2y kg friction matrix from the most microscopic level, where mo-

lecular dynamics simulations of Hamilton’s equations are re-
oI1(x) SIL(x) quired.
M 1(x) SII(x)—y)dx. (26)

SX SX
While this contribution accounts for the fluctuations resulting V. CONCLUSIONS
from the fast time evolution of compared to (faster than ) ) _ )
71), we still need to account for the fluctuationsobn the It is amazing that the entire GENERIC structure previ-

time scaler, on which y remains constant. We replace ously obtained from many examples _of nongquilibrium Sys-
Yo(2(t)) by the mean forward time derivative of the stochas—geergir?r,:% ;r%rgnageazsetrri?/gdc%nlefr:a:c;?n?f g'ff,(va;enftrffl?g
tic processlI(x(t)) (as the best possible estimate for the. . P . ) P y from pra
future time-evolution ofy; see p. 80 of17]) jection operator techniques. While the actual derivation is

' P- ' completely based on standard calculations, the proper iden-

tification of the building blocks, their individual properties,
1 S6E, 58S, oM, ) .
DII(x(t)=—|L;—+M;—+kg—— and the mutual degeneracy requirements make the previous
X X ox X results much more valuable. In practical applications, the
S2T1 importance of molecular and Brownian dynamics simula-
+kBM1m: (27)  tions for coarse graining the friction matrid is obvious.

The developments of this paper provide a theoretical back-
ground for these different types of simulations for nonequi-

evaluated ak=x(t). In order to preserve the proper symme- librium systems.

try of the microscopic time-evolution, which is related to the
symmetry of the friction matrisV ,(y), we replacey,(z(0))
by the mean backward time derivativgee p. 95 of17)),
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