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General projection operator formalism for the dynamics and thermodynamics of complex fluids
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By applying the projection operator method, we derive the gIeneral eIquation for the nIoneIquilibrium
reversible-irreversible coupling~GENERIC! that, in previous work@Phys. Rev. E56, 6620~1997!; 56, 6633
~1997!#, was obtained by empirical arguments. We find microscopic expressions for the building blocks of
GENERIC, and we generally derive the rules for passing from any given level of description to a more
macroscopic one.@S1063-651X~98!15802-6#

PACS number~s!: 05.70.Ln, 05.60.1w, 47.50.1d, 51.10.1y
on
a
e

ire
th
-

d
o
l-
m
te

py
tin
ie

-
ir
ly

-
c-

s

er
e

een
ible

se
ible
ire-
r-
ical

of
on-
r of

for
he
etic
ce
he
rigi-
ro-

-
r
n-
I. INTRODUCTION

We here derive the general form of the time-evoluti
equations for nonequilibrium systems, proposed
GENERIC in @1,2#, by projection operator techniques. Th
general time-evolution equation can be written in the form

dx

dt
5L~x!

dE~x!

dx
1M ~x!

dS~x!

dx
, ~1!

where x represents a set of independent variables requ
for a complete description of the nonequilibrium system,
real-valued functionalsE andS are the total energy and en
tropy expressed in terms of the state variablesx, andL and
M are certain matrices. Sincex typically contains position-
dependent fields, such as mass, momentum, and energy
sities, the state variables are usually labeled by continu
~position! labels in addition to discrete ones. A matrix mu
tiplication, or the application of a linear operator, hence i
plies not only summations over discrete labels but also in
grations over continuous labels, andd/dx typically implies
functional rather than partial derivatives.

In the GENERIC framework, Eq.~1! is supplemented by
the complementary degeneracy requirements

L~x!
dS~x!

dx
50, ~2!

and

M ~x!
dE~x!

dx
50. ~3!

The requirement that the gradientdS/dx is in the null space
of L in Eq. ~2! expresses the reversible nature of theL con-
tribution to the dynamics: the functional form of the entro
is such that it cannot be affected by the operator genera
the reversible dynamics. The requirement that the grad
dE/dx is in the null space ofM in Eq. ~3! expresses the
conservation of the total energy by theM contribution to the
dynamics. Furthermore, it is required that the matrixL is
antisymmetric, whereasM is symmetric and positive
semidefinite. Both the complementary degeneracy requ
ments ~2!, ~3! and the symmetry properties are extreme
571063-651X/98/57~2!/1416~5!/$15.00
s

d
e

en-
us

-
-

g
nt

e-

important for formulating properL and M matrices when
modeling concrete nonequilibrium problems@2#. The two
contributions to the time evolution ofx generated by the
energyE and the entropyS in Eq. ~1! are called the revers
ible and irreversible contributions to GENERIC, respe
tively.

Many important examples of nonequilibrium system
have been expressed in the GENERIC form@2#: hydrody-
namics, polymer kinetic theory~including hydrodynamic in-
teraction, rigid constraints, reptation models, and polym
heat conductivity!, and chemical reactions. Moreover, th
bracket formalism of Beris and Edwards@3#, which includes
the linear thermodynamics of irreversible processes, has b
reproduced, and the relationship to extended irrevers
thermodynamics has been elaborated.

The key innovation in the GENERIC structure is the u
of two separate generators for the reversible and irrevers
dynamics, together with the symmetric degeneracy requ
ments~see@3–10# and references therein for previous the
modynamic approaches which aim to describe the dynam
behavior of complex fluids!. While nonequilibrium dynamics
is usually expressed in terms of a single generator~the effec-
tive Hamiltonian or free energy functional@3#!, the two-
generator idea, which leaves more flexibility in the choice
variables, allows us to formulate the mutual degeneracy c
ditions and hence actually increases the predictive powe
GENERIC @1,2#. In particular, the requirement~2! has very
strong implications, such as the Gibbs-Duhem equation
the local equilibrium systems of hydrodynamics or t
Kramers expression for the stress tensor in polymer kin
theory. In new applications, results of similar significan
can be expected. It is therefore very important to justify t
two-generator idea and the degeneracy requirements, o
nally discovered by empirical observations, also by mic
scopic arguments.

The time evolution~1! is deterministic, but fluctuations
can be added very naturally@1#. This can be done most con
veniently by formulating the following diffusion equation o
Fokker-Planck equation for the time-evolution of the co
figurational distribution function,f (x,t),

] f ~x,t !

]t
52

]

]x F S L
dE

dx
1M

dS

dxD f ~x,t !G
1kB

]

]x FM
]

]x
f ~x,t !G . ~4!
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57 1417GENERAL PROJECTION OPERATOR FORMALISM FOR . . .
The Fokker-Planck equation~4! can equivalently be rewrit-
ten as a stochastic differential equation@11#,

dx5L
dE

dx
dt1M

dS

dx
dt1kB

dM

dx
dt1BdWt , ~5!

whereB is a matrix with

BBT52kBM , ~6!

kB is Boltzmann’s constant, andWt is a multicomponent
Wiener process, that is, a Gaussian process with first
second moments given by

^Wt&50, ^WtWt8
T &5min~ t,t8!1, ~7!

or, more formally,

K dWt

dt L 50, K dWt

dt

dWt8
T

dt8
L 5d~ t2t8!1. ~8!

The fluctuations can be eliminated from Eq.~5! to obtain Eq.
~1! by going to the limit kB→0 ~without changing the
GENERIC building blocksE,S,L,M !, so thatkB may be
regarded as a small parameter controlling the fluctuation

II. PROJECTION OF HAMILTON’S EQUATIONS
OF MOTION

We here derive the GENERIC structure and microsco
expressions for the building blocksE, S, L, andM by com-
paring the above Fokker-Planck equation to the one obta
by the projection operator technique. The standard too
projection operators~see, for example,@12,13#! is here most
conveniently used in the form developed in@14# ~with the
only exception that we here assume a microcanonical ra
than a canonical ensemble!. Since all the details of the pro
jection operator derivation are worked out in@14#, we here
only need to compile the results obtained by comparing
equations.

The starting point for the projection operator approach
the purely reversible~fully microscopic! time-evolution
equation

dz

dt
5L0

dE0~z!

dz
, ~9!

which corresponds to Hamilton’s equations of motion; h
E0(z) is the microscopic Hamiltonian, and the antisymmet
matrix L0 ~generating the Poisson bracket! does not depend
on z.

The variablesx of the coarse-grained description are o
tained as phase space functionsP from the microscopic vari-
ablesz, that is,x5P(z). It is crucial for the application of
the projection operator method that there is a clear separa
of time scales: the time-evolution ofx ~and all functions of
x! is assumed to be much slower than of all the other v
ables in the system. In the projection operator approach,
quantity

expH S~x!

kB
J 5E d„P~z!2x…dz, ~10!
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plays a central role. Equation~10! means that the entropy i
obtained by counting the number of microscopic statez
consistent with a more macroscopic statex; this corresponds
to a natural generalization of the Gibbs entropy formula fro
equilibrium thermodynamics.

The matrix M (x) can be identified uniquely from the
second-order derivative terms in the Fokker-Planck equa
obtained by the projection operator method,

M ~x!5
1

kB
expH 2

S~x!

kB
J E

0

t

dtE d„P~z!2x…

3@ ẋ0~z!2 ẋ1~x!#@ ẋ0~z~ t !!2 ẋ1~x!#dz, ~11!

where

ẋ0~z!5
dP~z!

dz
L0

dE0~z!

dz
, ~12!

ẋ1~x!5expH 2
S~x!

kB
J E ẋ0~z!d„P~z!2x…dz, ~13!

z(t) is the solution of the time-evolution equation~9! with
z(0)5z, and t is a time scale large enough for the tim
integral to converge and small enough forx to be still con-
sidered as independent of time~such an intermediate time
scale exists due to the previously mentioned assumptio
clearly separated time scales for the slow and fast variab!.

While ẋ0 is a state variable that varies on a very rap
microscopic time scale,ẋ1 depends only onx5P(z) and
hence has a much slower time evolution. Thus,ẋ02 ẋ1 de-
scribes fluctuation effects, which are incorporated in a wh
noise approximation when going from Eq.~1! to Eq. ~5!.
Equation~11!, which holds for general nonequilibrium sys
tems, has the form of the Green-Kubo expressions for tra
port coefficients known from linear response theory. Here
did not extend the time integral in Eq.~11! to infinity be-
cause then it might be necessary to consider the slow t
evolution of ẋ1 in the second factor.

After identifying the irreversible dynamics, it is a simp
exercise to find the building blocks associated with the
versible dynamics. In the GENERIC approach it is assum
that, as a very good approximation, the total energyE0(z)
can be expressed in terms of the relevant state variablesx, or

E0~z!5E„P~z!…5E~x!. ~14!

Finally, by coarse-grainingL0 , one naturally obtains

L~x!5expH 2
S~x!

kB
J E dP~z!

dz
L0

dP~z!

dz
d„P~z!2x…dz.

~15!

The resulting identity

ẋ1~x!5L~x!
dE~x!

dx
~16!

might be useful in employing simulation techniques~mo-
lecular dynamics! for determiningM from Eq. ~11!.



p

a
pic
ith
-

ho
l t

he

-

b

e

rs

-
fu

s
ie
ul
fo

s-

k
Ac

op
a

a

a

c-
of
ent
ki-
c-
on
ian
cu-
-
e
ara-

ks
the

of
i-
b-

e-
f

ad-

a
lev-

l

-
w
of
l of
nck

a-
tain

;
for

v-

1418 57HANS CHRISTIAN ÖTTINGER
III. SOME IMPLICATIONS

We can now discuss some implications of the microsco
expressions~10!, ~11!, ~14!, and~15! for the building blocks
of GENERIC. Equation~15! implies thatL is antisymmetric.
The formal expression forM , which is often referred to as
friction tensor, is symmetric, provided that the microsco
time evolution is reversible. In order to avoid problems w
antisymmetric contributions toM ~corresponding to dissipa
tive dynamics without entropy production!, we consider iso-
lated systems~no external magnetic fields!, and we assume
that a sufficiently detailed level of description has been c
sen~see problems caused by the transition from an inertia
a noninertial level of description in@15#!. In any case, the
symmetry ofM can be traced back to the symmetry of t
time correlation function in Eq.~11!.

The degeneracy requirement~3! is an immediate conse
quence of the identityẋ0(z)dE(x)/dx50 for x5P(z)
~which, in turn, follows from the antisymmetry ofL0!. In
favor of the degeneracy requirement~2!, we can offer the
following heuristic argument: Since the projection should
such that, on microscopic time scales,P(z)5P(z8) if and
only if P„z(t)…5P„z8(t)…, and since the microscopic tim
evolution preserves volume in phase space, we expect

dS„P~z!…

dt
52

dE0~z!

dz
L0

dS„P~z!…

dz
50. ~17!

This leads to

dE~x!

dx
L~x!

dS~x!

dx
50, ~18!

for arbitrary functionalsE(x) and hence to Eq.~2!. Since the
expression~15! implies

d

dx FL~x!
dE~x!

dx G5
1

kB

dE~x!

dx
L~x!

dS~x!

dx
, ~19!

the connection between Liouville’s theorem for the reve
ible dynamics and the degeneracy requirement~2! becomes
obvious.

The positive-semidefinite character of the matrixM is not
obvious from Eq.~11!. However, the Fokker-Planck equa
tion derived by the projection operator method is meaning
if and only if M is positive-semidefinite; a violation of thi
condition would lead to physically unacceptable propert
of the fluctuating forces. We have thus derived the f
GENERIC structure from the microscopic expressions
the building blocks obtained by projection operators~the Ja-
cobi identity for the bracket associated withL matrix @1#
remains to be derived!.

We would here like to point out a problem with the tran
formation behavior of the GENERIC~1!. From the micro-
scopic expressions it can be verified that all building bloc
except entropy have a simple transformation behavior.
cording to Eq.~10!, a one-to-one transformationx°x8 in-
troduces the Jacobian of the transformation into the entr
expression. This problem can be resolved by looking
GENERIC with fluctuations. Under nonlinear transform
tions, the fluctuations can introduce systematic~determinis-
tic! effects, which are exactly cancelled by the addition
ic
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entropy contribution involving the Jacobian. As long as flu
tuations are irrelevant~as is the case for most applications
hydrodynamics and of the equations for multi-compon
systems with chemical reactions, as well as for polymer
netic theory on the level of configurational distribution fun
tions @2#! we can expect the additional entropy contributi
to be equally irrelevant. While transformations with Jacob
unity clearly preserve the entropy, the selection of a parti
lar natural set of variables~or the natural separation of fluc
tuations! is probably related to the applicability of th
volume-preservation argument used in the previous p
graph for deriving the consistency requirement~2!.

IV. RELATIONSHIP BETWEEN TWO COARSE-GRAINED
LEVELS OF DESCRIPTION

While the microscopic expressions for the building bloc
E, S, L, and M may be regarded as the analogues of
famous expression for the Helmholtz free energy in terms
the logarithm of the partition function when going from equ
librium to nonequilibrium systems, the complexity of a pro
lem can be reduced dramatically by starting on an interm
diate level of description~e.g., the viscoelastic properties o
polymeric fluids are often determined from mechanical be
rod-spring models of polymers!. We therefore derive the
rules for passing from any given level of description to
more macroscopic one. We consider two coarse-grained
els of description, where the level withx5P1(z), E1(x),
S1(x), L1(x), M1(x) is more microscopic than the leve
with y5P2(z), E2(y), S2(y), L2(y), M2(y) ~the respective
intermediate time scales aret1 andt2!. We assumey5P(x)
whereP25P+P1 . By comparing the microscopic expres
sions for the building blocks of the two levels we can no
construct direct transformation rules. A direct projection
the time-evolution equation from one coarse-grained leve
description to another one, both based on Fokker-Pla
equations, has been formulated very recently@16#.

Since the total energy must, to a very good approxim
tion, be accessible on any level of description we can ob
E2(y) by writing E1(x) in the form

E1~x!5E2„P~x!…. ~20!

For the entropy, we obtain the following general formula:

expH S2~y!

kB
J 5E expH S1~x!

kB
J d„P~x!2y…dx. ~21!

In practical applications, the integral in Eq.~21! might be
dominated by statesx near the maximum of the integrand
the saddle-point approximation would then be useful
evaluating the coarse-grained entropy.

For theL matrix one can verify the transformation beha
ior

L2~y!5E expH S1~x!2S2~y!

kB
J

3
dP~x!

dx
L1~x!

dP~x!

dx
d„P~x!2y…dx. ~22!
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57 1419GENERAL PROJECTION OPERATOR FORMALISM FOR . . .
While the above three relations involve only static prop
ties, the time evolution comes in when coarse graining theM
matrix. In order to find a tractable expression for that mat
we rewrite the matrixM2(y) of Eq. ~11! in the equivalent
form

M2~y!5
1

kB
E

0

t2
dtE expH S1~x!2S2~y!

kB
J d„P~x!2y…

3@^ ẏ0~z!ẏ0„z~ t !…&x
02 ẏ2~y!ẏ2~y!#dx, ~23!

where^ &x
0 is the flat average~the normalized integral! over

all z with P1(z)5x,

ẏ0„z~ t !…5
d

dt
P@P1„z~ t !…#, ~24!

and

ẏ2~y!5L2~y!
dE2~y!

dy
. ~25!

@This notation is consistent with Eqs.~12! and ~16!.#
We now assume thatx(t)5P1„z(t)… is represented by

GENERIC on level 1 where, for evaluating correlations, it
obviously important to consider the GENERIC with fluctu
tions ~corresponding to variations of the microscopic st
variables on time scales shorter thant1!. According to the
stochastic differential equation of GENERIC with fluctu
tions and Itoˆ calculus @11#, there is a white-noise~d-
correlated! contribution todP„x(t)…/dt, which leads to

M28~y!5E expH S1~x!2S2~y!

kB
J

3
dP~x!

dx
M1~x!

dP~x!

dx
d„P~x!2y…dx. ~26!

While this contribution accounts for the fluctuations resulti
from the fast time evolution ofz compared tox ~faster than
t1!, we still need to account for the fluctuations ofx on the
time scalet2 on which y remains constant. We replac
ẏ0„z(t)… by the mean forward time derivative of the stocha
tic processP„x(t)… ~as the best possible estimate for t
future time-evolution ofy; see p. 80 of@17#!,

DP„x~ t !…5
dP

dx S L1

dE1

dx
1M1

dS1

dx
1kB

dM1

dx D
1kBM1

d2P

dxdx
, ~27!

evaluated atx5x(t). In order to preserve the proper symm
try of the microscopic time-evolution, which is related to t
symmetry of the friction matrixM2(y), we replaceẏ0„z(0)…
by the mean backward time derivative~see p. 95 of@17#!,

D* P„x~0!…5
dP

dx S L1

dE1

dx
2M1

dS1

dx
2kB

dM1

dx D
2kBM1

d2P

dxdx
, ~28!
-

x

e

-

evaluated atx5x(0). We then obtain the final resul
M2(y)5M28(y)1M29(y) with

M29~y!5
1

kB
E

0

t2
dtE expH S1~x!2S2~y!

kB
J d„P~x!2y…

3@^D* P„x~0!…DP„x~ t !…&x2 ẏ2~y!ẏ2~y!#dx,

~29!

where^ &x is the ensemble average over the trajectories
tained by solving the fluctuating GENERIC on level 1 wi
x(0)5x. Compared to Eq.~23!, the microscopic level is
now completely eliminated. The expressions~26! and ~29!
for the coarse-grained friction matrix agree with the result
a direct projection@16# from level 1 to level 2 after adapting
it to a microcanonical ensemble.

The two contributions~26! and~29! to M2(y) thus corre-
spond to fluctuations resulting from the fast time evolution
z compared tox and from the fast time evolution ofx com-
pared toy, respectively. If the step from level 1 to level
involves coarse graining then we expectM29Þ0. There may
be reductions in the number of state variables for wh
M2950; the passage from level 1 to level 2 may then
considered as a ‘‘solution’’ of the level 1 model rather than
coarse graining.

For determiningM2 by numerical simulations on level 1
one generally needs Brownian dynamics simulations beca
x(t) is obtained as the solution of a stochastic differen
equation. The situation is different when one determines
friction matrix from the most microscopic level, where m
lecular dynamics simulations of Hamilton’s equations are
quired.

V. CONCLUSIONS

It is amazing that the entire GENERIC structure pre
ously obtained from many examples of nonequilibrium s
tems and from an abstract consideration of different levels
description can be derived in such a simple way from p
jection operator techniques. While the actual derivation
completely based on standard calculations, the proper id
tification of the building blocks, their individual propertie
and the mutual degeneracy requirements make the prev
results much more valuable. In practical applications,
importance of molecular and Brownian dynamics simu
tions for coarse graining the friction matrixM is obvious.
The developments of this paper provide a theoretical ba
ground for these different types of simulations for noneq
librium systems.

ACKNOWLEDGMENTS

I thank Pep Espan˜ol and Miroslav Grmela for very helpfu
comments and discussions. The availability of a prelimin
version of the manuscript@16# was of great help in verifying
the relationship between two coarse-grained levels of
scription.



n,

-

t,

s.
s

-

.

1420 57HANS CHRISTIAN ÖTTINGER
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