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Nature of different types of absorbing states
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We present a comparison of three different types of Langevin equations exhibiting absorbing states: the
Langevin equation defining the Reggeon field theory, one with multiplicative noise, and a third type in which
the noise is complex. Each one is found to describe a different underlying physical mechanism; in particular,
the nature of the different absorbing states depends on the type of noise considered. By studying the stationary
single-site effective potential, we analyze the impossibility of finding a reaction-diffusion model in the multi-
plicative noise universality class. We also discuss some theoretical questions related to the nature of complex
noise, as for example, whether it is necessary or not to consider a complex equation in order to describe
processes as the annihilation reactiéri; A— 0. [S1063-651X98)09502-4

PACS numbd(s): 64.60—i

Different systems and models appearing in physics asigher-order terms could be added to the deterministic part
well as in other fields can exhibit absorbing states. An abof Eq. (1) but they can be easily argued to be irrelevant in a
sorbing configuration is one in which a system can getenormalization group sense.
trapped, from which it cannot escapg&—3]. Therefore an The previous conjecture has been confirmed in a large
absorbing configuration is a fluctuation-free microscopicnumber of computer simulations and series expansion analy-
state. Some examples of systems exhibiting absorbing statesis, and DP-universality class has proven to be extremely
among many others, are chemical reaction-diffusion modelsobust against the modification of many details in the micro-
of catalysis[4], models for the spreading of epidemics or scopic models. The conjecture of universality has been ex-
forest fireq 5], directed percolatiof6,1], the contact procces tended for multicomponent systerf5], as well as for sys-
[7,2], models of branching and annihilating random walkstems with an infinite number of absorbing staf&6].

[8], damage spreadin®], and even self-organized systems Nevertheless, not all the systems with absorbing states
[10]. belong in the universality class of DP. Some other classes
As some control parameter is changed, many of thesdifferent from DP have been identified, all of them showing

systems experience a phase transition from an absorbirgpme essential physical differences with DP.

phase, i.e., a phase in which the absorbing state is the only Two relevant examples for what follows are

stationary statd3], to an active phase, characterized by a (1) Particle systems in which evolution occurs only at the
nonvanishing value of the order parameter. At the criticalinterfaces separating occupiéactive from empty (absorb-
point, these systems exhibit universal features. ing) regions belong to thecompact directed percolation

It was conjectured some time ago by Janssen and Gras&DP) universality clas§17]. Examples of this universality
berger[11] that all the different systems and models with aclass are the one-dimensional diffusion-limited reactions of
unique absorbing state, a single-component order parametehe typeA+A—0 andA+A— A (in dimensions larger than
and no extra symmetry or conservation law belong in theone these models are not expected to be in the same univer-
same universality class as directed percolatdR), whichis  sality class as CDP The pseudoparticles Aan be thought
considered the canonical representative of that vast class of as thekinksseparating active from inactive regions, where
models. In a field theoretical description this universalitythe dynamics occurs. A field theoretical description for such
class is represented by the Reggeon field théBRFT) [12], class of systems was proposed by Peliti [itB,19]; its

which in terms of a Langevin equation redd$] equivalent Langevin equation reads
an(x,t) In(x,t) V2 bn? ; 2
&t' =V?n(x,t)+an(x,t)—bn?(x,t)+ Vyn(x,t) n(x,t), at NeGH=bni(xH+in(x,n 700, ()
()

wheren(x,t) is a field,i is the imaginary unit, and; is a

Gaussian noise with some amplitube Note thatn(x) =0 is
wheren(x,t) is a density field at positior and timet, a and  an absorbing configuration. Hereafter we refer to &j.as
b are control parameters, ang(x,t) is a Gaussian noise Peliti’s field theory. It is important to point out that the field
whose only nonvanishing correlations drg(x,t) n(x’,t")) n(x,t) is not the density ofA particles, but a more abstract
=Dd&(x—x")o(t—t"). The equation is interpreted in the Ito field [20] whose expectation value coincides with that of the
sense[14]. The noise term in Eq(1) is proportional to the real density field, and which higher-order moments can be
square root of the field, therefore in the absorbing statealso related to higher-order moments of the density field. All
n(x)=0 the dynamics is completely frozen: both the deter-this will become clearer in a forthcoming section where the
ministic and the stochastic terms are equal to zero. Otheexplicit derivation of Eq.(2) is performed.
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Before concluding this epigraph let us point out that there
is a class of systems that presents an active as well as a
absorbing phase with a phase transition separating both ¢
them, and that associated noise should also present a con
plex structure: this is the so-callgurity-conserving univer-
sality class[8]. Due to the extra conservation law it is clear
by now that these systems are not in the RFT universality .
class. s

(2) A new universality class characterized by a noise dif-
ferent from that of the previously described classes has re
cently been elucidatetsee[21-23 and references thergin
the multiplicative nois§MN) universality class. While in the
Langevin equation for the RFT the noise amplitude is pro-
portional to the square root of the field at each point, in the
MN universality class the noise amplitude is proportional to 0 05 1 15 2 25 3 35 4
the field itself, i.e., n

FIG. 1. PotentiaM(n) associated to the formal stationary solu-
tion of the zero-dimensional RFT for different parameter values:

an(x,t)  _, 2 b=D=1, and from top to bottorg=0.4, 0.8, 1, 1.5, and 1.9. Note
ot =Von(x,H+an(x,t) =bn“(x,h) +n(x,t) 7(x,1), the presence of a strorigonintegrablg singularity at the origin in
3 any case.
JP(n,t) d ) D 42
with n(x,t) being a density field at positionand timet, and G gplan—bn)P(ny+ 5 —nP(n,b).
7(X,t) a Gaussian white noise. Obviously this new type of (4)

noise is also compatible with the presence of an absorbing

state atn(x)=0 at which the dynamics is completely sup- By imposing the detailed balance condition, the associated

pressed. formal stationary probability distribution is found to be
While there are many microscopic reaction-diffusion

models belonging in the DP universality class, and is also

easy to identify reaction-diffusion models in Peliti's field

theory, to our knowledge, no microscopic reaction-diffusion

model in the MN universality class has been identified so farwhereV(n) is the effective potential. In Fig. 1 we pldft(n)

The possibility of constructing a reaction-diffusion model for different values ofa, andD = 1; for a= \/2b the potential

that exhibits the rather striking properties of Mi82] has  has a minimum an#0, while for a<2b V(n) has no

been explored in a recent paper by Howard andoga[24]. maximum or minimum. Note, however, that due to then-

They concluded that given the apparent impossibility of find-integrablé singularity atn=0, the probability Eq(5) is not

ing such a type of model in the MN class, the physical meannormalizable, and the only stationary solution B{n)

ing of that universality class is unclear. =4(n). Therefore there is no active phase in this simple
Motivated by the previous work24] we have further in-  zero-dimensional case, and the systems decay towards the

vestigate this issue. In what follows we present a comparisoabsorbing state for any set of paramenter values.

of the different noise terms appearing in Langevin equations Let us now study how the single-site effective potential

for Reggeon field theory, the multiplicative noise, and Peli-behaves in dimensions larger than zero. In particular, we

ti’s field theory, to identify physical differences among them. perform a numerical simulation of E¢L) in one dimension.

A simple and intuitive justification of the fact that no To do so we employ a technique developed by Dickfi25)

reaction-diffusion system can be found in the MN universal-to deal with numerical simulations of the continuous RFT.

ity class is given. Alternatively, we enumerate some othelet us point out that the simulation of this continuous theory

discrete, microscopic models belonging to that class. Wevith an absorbing state is not a trivial issue, and that, for

also discuss some curious properties of systems with comexample, a straightforward discretization of E§). in which

plex noise, and analyze whether a real Langevin equatioaventual negative values of the figlthat may appear due to

can be written for systems like the annihilation reactdn the discretizationare fixed ton(x) =0, does not preserve the

+A—0. presence of an absorbing state. Dickman’s method consists

of a discretization of the space, time, and also of the field
variable, which ensures the presence of an absorbing state
I. ANALYSIS OF THE SINGLE-SITE EFFECTIVE (see[25] for details.

POTENTIAL In the one-dimensional case the active phase survives the
effect of fluctuations, contrary to what happens in the single-
variable case. In Fig. 2 we show the effective poteri-

We start by analyzing the zero-dimensioisingle vari-  fined as minus the logarithm of the normalized stationary
able version of the RFT Langevin equation. The Fokker- probability distribution for different values of. The upper-
Planck equation associated to Ed) is [14] most curve corresponds to a value &fin the absorbing

. ®

1 2
P(n)=exd —V(n)]x Eex;{a(an—an/Z)

A. Reggeon field theory
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FIG. 2. Stationary potential for the one-dimensional RFT as FIG. 3. PotentiaV(n) associated to the formal stationary solu-
coming from a simulation of the discretized Langevin equation. Thetion of the zero-dimensional multiplicative noise equation for dif-
uppermost curve corresponds to a valua df the absorbing phase; ferent parameter valueb=D=1, and from top to bottoma
the second one ta= a;;cy While the two lower ones are in the =2,1.5,1,0.5, and 0. The potential develops a minimuna as
active phase. increased, has a negative singularity at the originderl, and a
positive singularity fora>1; the singularity is integrable in the
active phase, i.e., whea<0.5, while in the absorbing phase the

phase; the second onede a;cy While the two lower ones i e _ S
ly stationary solution is a delta function at the origin.

are in the active phase. Note that in all the cases a singularit?f'

at the origin of the same type is present, and consequently,

for any finite system there is a finite probability for the sys-the origin in the formal solution Eq7) changes its degree as
tem in the active phase to go through the potential barriea is increased, in contrast with what happens for & in

and decay towards the absorbing state: the active phase ifact, for D/2<a<D (in the active phagethe singularity is

metastable state. The mean time required for the system iategrable, and abova=D (also in the active phagehe

overpass the barrier and collapse to the absorbing state growsigin becomesrepelling instead ofabsorbing This is an
exponentially with time, and becomes infinite in the thermo-essential difference with RFT.

dynamic limit. In this way the phase transition appears only Let us now explore how this property of the single-site

in infinitely large systems, and the large system-size limitpotential is modified in higher dimensions. For that, we per-

has to be taken first and then the infinite time limit in order toform a numerical integration of the stochastic equation de-
permit the presence of an active phase. In dimensions largéining the model, which presents less technical difficulties
thand=1 the same qualitative type of behavior is expectedthan the integration of the RF[22]. The results are pre-
sented in Fig. 4. Qualitatively the potential shape changes in
B. Multiplicative noise the same way as it does in the zero-dimensional case. Above
the critical point, there is either an integrable singulafity-
permost curvieor a repelling wall(three other curvesat the
origin. The first case, i.e., an integrable singularity at the

IP(N.1) P D 52 origin, occurs in a very tiny region of the parameter space.

"~ =— —(an—bn®)P(n,t)+ nP(n,t). On the other hand, in the absorbing phase there is a collapse
an of the probability toward®(n) = §(n) (nonintegrable singu-

(6) larity at the origin.

Therefore, the physics is very different from that of RFT:
hen the system is in the active phase, there is either an

integrable singularity at the origin of the potential or a repel-

ling wall. In any case, the situation differs from that in RFT,

, (7)  in which there are two locally stable attractors in the active
phase: one at the origithe stable oneand one at a different
point (a metastable one

whereV(n) is the effective potential; the solution is not nor-  That is the reason why a reaction-diffusion system cannot

malizable whera<D/2, and normalizable otherwis¥®.(n) be described by an equation such as E): in a finite

is plotted in Fig. 3 for different values af andD=1; the reaction-diffusion system with a nonvanishing particle anni-

two lowermost curves correspond to E@) in the absorbing hilation rate there is a nonzero probability of reaching the

phase =0 anda=0.5) [where the only stationary solution absorbinglempty state for any finite system size and for any

is P(n)=&(n)]. The central oneg=1), and the two upper- set of parameter values. In systems with MN there is no

most curves &= 1.5 anda=2) are in the active phase. Note accessible absorbing state in the active phase, i.e., there is no

that contrarily to the RFT the MN exhibits a phase transitionnonintegrable singularity at the origin of the potenijahd

even in zero dimensions. Observe also that the singularity atonsequently no collapse of the probability density to the

The Fokker-Planck equation associated to &).in the
zero-dimensional case is

ot 2 on?

By imposing the detailed balance condition, the stationary(N
formal solution is

1 —2bn
P(n)=exd —V(n)]e« nz(D—a)/D°X D
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Multiplying both sides of Eq(8) by s", summing over all
| n's from 0 to «, and defining the generating function
10.0 f‘ _— " 1 G(s,t)==,_,s"P(n,t), we get
dG(s,t)
| — o —K(1-5)3G(s 1), 9
e | 7
z 5ol | We now introduce the Poisson transformation
aexp — a)
P(n,t)=J dan—lf(a,t), (10
where f(a,t) is a given function(see[27]), in terms of
0.0 ! . which
0.0 0.5 1.0

n

FIG. 4. Stationary potential for the one-dimensional multiplica- G(s)= f daf(a,iexda(s—1)]. (12)

tive noise Langevin equation as coming from a simulation of the

discretized equation. The curves correspond to four different pa- The Poisson transformation has the interesting property
rameter values, all of them in the active phase. Note that the singithat the moments oP(n) and f(a) can be easily related:
larity at the origin is positive for the three lowermost curves=( (aPy=(n(n—1)---(n—p-+1)); in particular the first mo-
—2, —2.1, and—2.2, respectively therefore there is not an ab- ments are the same for both distributions. The integral over
sorbing, but a repelling state. The uppermost curae- €2.23),  , can be taken over different domains of integration; for the
with a negative singularity at the origin, is still in the active phase’moment let us assume to be a real variable and leave the
but the singularity s integrable. integration domain undetermined. In termsf¢&,t), Eq.(9)

reads,
origin), and therefore MN does not capture the physics of

reaction-diffusion systems.

That fact does not mean that it is not possible to constrch daexd a(s—1)]df(a)
a discrete lattice model in the multiplicative noise universal-
ity class. In particular, systems exhibiting an unbinding tran-
sition from a wall(such as, for example, the problem of local
alignment of DNA chain$23], and wetting transitiong26])
belong in this universality class. These models are usuallyvhich, integrating by parts, and assuming that the boundary
defined in terms of a field variablgx,t) = = In(n) that flows  terms give a vanishing contribution to the integia8] can
to ¥o(n=0) in the absorbing phase, and that reach a nonbe written as
vanishing stationary average value otherwise.

= —kf dac®f(a,t)[—d2+2d,]exda(s—1)], (12

of(a)=k[20,,0%F (a,t)— Pa?f(a,t)], (13

C. Peliti’s field theory which is a Fokker-Planck equation with a negative diffusion

In this section we compare the effect of the complex noise0efficient. The Langevin equation stochastically equivalent
appearing in Peliti’s field theory E@2), with the two previ-  to the previous Fokker-Planck equation is
ously studied cases to get a global picture of the different
types of noise that can appear in systems with absorbing da(t)=2a(t)?+iv2an(t), (14)
states. In order to understand what is the origin of the com-
plex noise in processes such As-A—0, and to clarify —Wheren(t) a Gaussian noise with amplitude ilthe com-
whether a microscopic process like that with a real densitylex unit, anck has been eliminated by redefining the time as
field has necessarily to be described by a complex Langevih—t/k. Note that we have arrived to an inconsisteneyvas
equation, we present a derivation of Peliti's field theory forassumed to be a real variable and we have arrived at a com-
the annihilation reactioM+A—0 by employing the exact Plex equation[Observe that due to the complex term in Eq.
Poisson representation introduced by Gardiner and Chatil4) a develops an imaginary part even if it is taken to be
verdi [27,20. Note that for this reaction there is no active real at timet=0. In Appendix A we present further details
phase, and the interesting magnitudes are those describifg the impossibility of defining a real Poissonian representa-
the decay towards the absorbing state. For the sake of sinion for the reactiorA+A—0.] Let us now repeat the pre-
plicity in the notation we present here the zero-dimensionaVious program but performing a complex transformation in-
case, extensions to higher dimensions being straightforwar@tead of a real one, i.e., we takda to be [~ . da, [~ .day,

The master equation defining the process is where a, and «, are the real and imaginary parts af
p(n.1) respectively. This type of transformation leads to a function
JP(n,t) f(«), which is positive and can be identified as a probability
st K+2)(n+DP(n+2H=n(n=1)P(n,0)]. distribution[27]. Proceeding in that way we get a new set of

(8) Langevin equations for the variableg and ay :
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FIG. 5. Typical trajectory of the complex noise equation in the ~ FIG. 6. Cut of t_he statior_lary probability distribution assqciated
stationary regime. Note that there is a large probability of findingt® the complex noise equation with,=0. Observe the nondiffer-
the system in the vicinity of 1/2,0, while points inside a circle entiability ate,=1/2.
centered at the origin of radius 1/2 are inaccessible.

t
Jran(t) = — 2 (1)~ a3(1) ] +\2ay (1) (D), '“):“y(o)ex‘{ B fodt (4a—1) )

Sy (1) = — Ay ay ()~ 2ay()m(D),  (15) _ ﬁf dt’ax(t’)n(t')eXp( - ftdt"(‘lax_l)),
t!
which is equivalent to the original master equation. Note that
both of the equations in Eq15) include the same noise (17)

function »(t), and that they could be obtained straightfor-
wardly from Eq.(14) just by writing a= a,+ia, and sepa- ; ) :
rating the real and imaginary partsA typ)i(cal tryajectory of Stationary potential associated to E@6) cannot be calcu-

the previous set of equations in the stationary state is shovJﬁ‘.ted anal;t/)tically; tEe r!“f”e”caé.ffo'u“of‘ ::)SI shoxvn/ir! Fig. 7.
in Fig. 5: it wanders in the complex plane avoiding a regiont 'St We observe that it is nondifferentiable @f=1/2; we

around 0. Even if the stationary solution of the underlying/SC PoInt out thaty, is not absorbing in gener@gxcept for
processA+A—0 is a delta function at zero or one particle "€ Pathological and unphysical casg(0)=0]; in other
(depending on whether the initial condition is even or oddVords, due to the presence of the non-Markovian terms, pro-
respectively, the stationary probability associated to Eq. Portional tol(t), the system can cross from positive values
(15) is not a delta function, but some complicated distribu-t© N€gative ones.

tion with (a,) =1/2 and(«a,) =0. The value 1/2 comes from The role of the complex variable in Eql4) is played,
the fact that for initial conditions witm even,n(t—c)=0 after @, has been integrated out, by the non-Markovian terms

and, forn odd, n(t—o)=1; the variable{a,)=(n) is the in Eq. (16), and in both cases the absorbing state of the

average of the two previous possibilities. On the other hand,
the expectation value of the imaginary part is zero as ex-
pected given the relation among momentg @f) andP(n).

It is interesting to note that the effective potential associated 0.040 |- ]
to the stationary distribution is a nondifferentiable one; in
Fig. (6) we show a one-dimensional cut of the stationary
potential for differenta, with «,=0 as computed in a simu- 0.030 ]
lation of Eg. (15). Note that contrarily to the cases of the
RFT and multiplicative noise equation, now the dynamics is =
not frozen even if the system has relaxed to the absorbing
state.

We now explore the possibility of finding a real-variable
Langevin equation describing this class of syst¢ag.

As the second equation in ELS) is linear in ay it is /
possible to integrate it analytically; doing so and substituting 0.000 o~ ‘ o :
the result in the first one, we get a closed equationdfr 18 05 « 05 18
that reads

which is a non-Markovian equatiofsee Appendix B The

0.050

(o)

0.020 i

0.010 - i

%

FIG. 7. Stationary probability distribution function associated to
diay(t)= ax—2a)2((t)+2l (H)2+ V21 (1) 5(t) (16 the non-Markovian equation or equivalently, the projection of the
stationary probability function associated to the complex noise

with equation over the real axis.
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microscopic associated process is not described by a frozeryp(n,t)

dynamics in the Langevin representation, but by a nontrivial ——— =k,[(n+2)(n+1)P(n+2)—n(n—1)P(n,1)]
dynamics (complex or non-Markovian whose statistical

properties reproduce those of the reaction-diffusion model. +k;[(n—1)P(n—=1)—nP(n)]. (A1)
Therefore, the nature of the absorbing state in this case is

essentially different from those of the previously studiedPerforming a real Poissonian transformation we get
cases.

For the sake of completeness let us just mention brieflﬁtf(o‘):[aa(kl‘)‘_ZkZ‘xz)f(a'tH‘?i(kla_kZ“Z)f(“*t)]*
that a numerical study of the one-dimensional Peliti field (A2)
theory in terms of a complex Langevin equa_tion has be_e'i}vhich is equivalent to the Langevin equation
recently published30]. The measured magnitudes are in
very good agreement with the theoretical predictions coming dra(t)=(kia—2k,a?)+ \/E(kla— koa?)Y?5(t)
from renormalization-group and other types of analysis (A3)
[18,31], confirming that a complex representation captures

the physics of microscopic systems such as, for example, tHaterpreted in the Ito sense. Note that the factor multiplying
processA+A—0. the noise is positive in the interval € 10,k, /k,[, and van-

ishes at the limits of the previous interval. The formal sta-
tionary solution of Eq(A2) is

II. CONCLUSIONS

We have analyzed different Langevin equations associ- f(a)ocEexp(Za)(l—aﬁ)(l_B)/ﬁ (A4)
ated to systems with absorbing states. Systems described by a
the Reggeon field theory Langevin equation exhibit a non-

: : . e : i ._with B=k,/k;. Considering the Poisson representation as
integrable singularity at the origin of the single-site potential efined i 0k, /k,], it is a matter of simple algebra to verify

that corresponds toa trge absqrbmg state;.|.'e., thgre IS aﬁ%at the boundary terms appearing in the processes of getting
accumulation of probability density at the origin, while the Eq' (A2) from Eq. (A1) give a vanishing contribution. At the

active state is a metastable one for finite system sizes. Sy ame time, trajectories of EGA3) with initial condition in
tems with multiplicative noise instead change the degree j?()k Ik d' N Jtl ve th tint.rv L On the other hand. if th
the singularity at the origin as the control parameter is- "1 2] do not leave that interval. € other hand, €

changed: while in the absorbing phase there is a collapse gjﬁmam of integration was extended over those limits, Eq.

the probability density towards the origin, in the active phas w03u)l dwr?gtlOtl)ed:Zﬁ!ggnzgtg?g%aerryefg?gtﬁg‘ir;:gfcﬁﬁ;zgﬂrf’s
there is either an integrable singularity at the origin or |tWeII defined only in the real intervalok, /k,]. From a

becomes repelling, in which case the probability to be nearb o . . :
the origin becomes extremely small, and there is no acce gnormallzatlon-group point of view the noise term propor-

sible absorbing state. That is the reason why it is not possibl on_aI tok; in Eq. (AS) can be argued to be irrelevant ren-

to find reaction-diffusion system@n which for finite size ering the system in the RFET universality class. .
systems there is always a finite probability of reaching the We can now take the .I|mk130 to see what happen_s In
absorbing stajan the multiplicative noise universality class. peliti's f|eld. theiory case. the.mterval n wh|ch'the P0|§son
We have also analyzed some aspects of the annihilation pr6§presentatlor_1 |s_d¢f|ned shrinks d.own to a smgle paint;
cess A+A—0, which is described by a complex noise =0.1In the strict limitk; =0, a meaningful real Poisson rep-
Langevin equation or alternatively by a real non-Markovian'€Sentation cannot be performed, and a complex representa-
Langevin equation. This type of Langevin equation shows &°" IS required.

behavior quite different from that of Reggeon field theory Lej[ us point out as a final remark_ th_at It Is somehow_
and multiplicative noise; in particular, even if the system igsurprising that the standard renormalization-group analysis

in the absorbing state, there is not a collapse of the probabif?f Peliti's field theory, based on a path integral representa-

ity density to a delta function, and the dynamics is nontrivial,ion of Eq.(14) [or equivalently of Eq(13)], in which « is

Systems with complex noise can alternatively be describe{/€ated as a real variable, give the right exponents and prop-
by real non-Markovian equations. erties[18,31). We plan to investigate that apparent paradox

in a future work.

ACKNOWLEDGMENTS APPENDIX B

Itis a pleasure to acknowledge Yuhai Tu, Geoffrey Grin- A5 a |ast attempt to write down a one-variable Langevin
stein, Ron Dickman, Pedro Garrido, and Andrea Gabrielli forequation with a structure simpler than Eg6), and inspired
very useful discussions and comments. This work was Supy the rotational quasisymmetry of the stationary distribution
ported by the European Community through Grant No.sojution (see Fig. 5, we perform a change of variables to

ERBFMBICT960925. polar coordinatesp and ¢ defined by a,=pcos(@), ay
=psin(#). After changing variableor which Ito calculus is
APPENDIX A required[14]), we get
Let us consider the pair of reactior&+A—0 and dp(t)=p(t)—2p3(t)cog 6),

A— 2A, the first occurring with a ratk, and the second with
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Observe that the first one is a deterministic equation, whilssome of the properties of the stationary probability distribu-
the second one is stochastic. It is easy to verify that thigion [such as, for example, the presence of a maximum at
system does not admit a potential solutievhich is consis- (1/2,0)], but it does not simplify the elimination of one of

tent with the stationary potential being nondifferentiable the variables in favor of the other one to construct a simple
This new set of equations permits one to derive analyticallyone-variable Langevin equation.
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