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Nature of different types of absorbing states

Miguel A. Muñoz
Dipartimento di Fisica, Universita´ di Roma ‘‘La Sapienza,’’ Piazzale Aldo Moro 2, I-00185 Roma, Italy

~Received 26 September 1997!

We present a comparison of three different types of Langevin equations exhibiting absorbing states: the
Langevin equation defining the Reggeon field theory, one with multiplicative noise, and a third type in which
the noise is complex. Each one is found to describe a different underlying physical mechanism; in particular,
the nature of the different absorbing states depends on the type of noise considered. By studying the stationary
single-site effective potential, we analyze the impossibility of finding a reaction-diffusion model in the multi-
plicative noise universality class. We also discuss some theoretical questions related to the nature of complex
noise, as for example, whether it is necessary or not to consider a complex equation in order to describe
processes as the annihilation reaction,A1A→0. @S1063-651X~98!09502-6#

PACS number~s!: 64.60.2i
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Different systems and models appearing in physics
well as in other fields can exhibit absorbing states. An
sorbing configuration is one in which a system can
trapped, from which it cannot escape@1–3#. Therefore an
absorbing configuration is a fluctuation-free microsco
state. Some examples of systems exhibiting absorbing st
among many others, are chemical reaction-diffusion mod
of catalysis@4#, models for the spreading of epidemics
forest fires@5#, directed percolation@6,1#, the contact procces
@7,2#, models of branching and annihilating random wa
@8#, damage spreading@9#, and even self-organized system
@10#.

As some control parameter is changed, many of th
systems experience a phase transition from an absor
phase, i.e., a phase in which the absorbing state is the
stationary state@3#, to an active phase, characterized by
nonvanishing value of the order parameter. At the criti
point, these systems exhibit universal features.

It was conjectured some time ago by Janssen and Gr
berger@11# that all the different systems and models with
unique absorbing state, a single-component order param
and no extra symmetry or conservation law belong in
same universality class as directed percolation~DP!, which is
considered the canonical representative of that vast clas
models. In a field theoretical description this universal
class is represented by the Reggeon field theory~RFT! @12#,
which in terms of a Langevin equation reads@13#

]n~x,t !

]t
5¹2n~x,t !1an~x,t !2bn2~x,t !1An~x,t !h~x,t !,

~1!

wheren(x,t) is a density field at positionx and timet, a and
b are control parameters, andh(x,t) is a Gaussian noise
whose only nonvanishing correlations are^h(x,t)h(x8,t8)&
5Dd(x2x8)d(t2t8). The equation is interpreted in the It
sense@14#. The noise term in Eq.~1! is proportional to the
square root of the field, therefore in the absorbing st
n(x)50 the dynamics is completely frozen: both the det
ministic and the stochastic terms are equal to zero. O
571063-651X/98/57~2!/1377~7!/$15.00
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higher-order terms could be added to the deterministic p
of Eq. ~1! but they can be easily argued to be irrelevant in
renormalization group sense.

The previous conjecture has been confirmed in a la
number of computer simulations and series expansion an
sis, and DP-universality class has proven to be extrem
robust against the modification of many details in the mic
scopic models. The conjecture of universality has been
tended for multicomponent systems@15#, as well as for sys-
tems with an infinite number of absorbing states@16#.

Nevertheless, not all the systems with absorbing sta
belong in the universality class of DP. Some other clas
different from DP have been identified, all of them showi
some essential physical differences with DP.

Two relevant examples for what follows are
~1! Particle systems in which evolution occurs only at t

interfaces separating occupied~active! from empty~absorb-
ing! regions belong to thecompact directed percolation
~CDP! universality class@17#. Examples of this universality
class are the one-dimensional diffusion-limited reactions
the typeA1A→0 andA1A→A ~in dimensions larger than
one these models are not expected to be in the same un
sality class as CDP!. The pseudoparticles Acan be thought
of as thekinksseparating active from inactive regions, whe
the dynamics occurs. A field theoretical description for su
class of systems was proposed by Peliti in@18,19#; its
equivalent Langevin equation reads

]n~x,t !

]t
5¹2n~x,t !2bn2~x,t !1 in~x,t !h~x,t !, ~2!

wheren(x,t) is a field, i is the imaginary unit, andh is a
Gaussian noise with some amplitudeD. Note thatn(x)50 is
an absorbing configuration. Hereafter we refer to Eq.~2! as
Peliti’s field theory. It is important to point out that the fiel
n(x,t) is not the density ofA particles, but a more abstrac
field @20# whose expectation value coincides with that of t
real density field, and which higher-order moments can
also related to higher-order moments of the density field.
this will become clearer in a forthcoming section where t
explicit derivation of Eq.~2! is performed.
1377 © 1998 The American Physical Society
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1378 57MIGUEL A. MUÑOZ
Before concluding this epigraph let us point out that th
is a class of systems that presents an active as well a
absorbing phase with a phase transition separating bot
them, and that associated noise should also present a
plex structure: this is the so-calledparity-conserving univer-
sality class@8#. Due to the extra conservation law it is cle
by now that these systems are not in the RFT universa
class.

~2! A new universality class characterized by a noise d
ferent from that of the previously described classes has
cently been elucidated~see@21–23# and references therein!:
themultiplicative noise~MN! universality class. While in the
Langevin equation for the RFT the noise amplitude is p
portional to the square root of the field at each point, in
MN universality class the noise amplitude is proportional
the field itself, i.e.,

]n~x,t !

]t
5¹2n~x,t !1an~x,t !2bn2~x,t !1n~x,t !h~x,t !,

~3!

with n(x,t) being a density field at positionx and timet, and
h(x,t) a Gaussian white noise. Obviously this new type
noise is also compatible with the presence of an absorb
state atn(x)50 at which the dynamics is completely su
pressed.

While there are many microscopic reaction-diffusi
models belonging in the DP universality class, and is a
easy to identify reaction-diffusion models in Peliti’s fie
theory, to our knowledge, no microscopic reaction-diffusi
model in the MN universality class has been identified so
The possibility of constructing a reaction-diffusion mod
that exhibits the rather striking properties of MN@22# has
been explored in a recent paper by Howard and Ta¨uber@24#.
They concluded that given the apparent impossibility of fin
ing such a type of model in the MN class, the physical me
ing of that universality class is unclear.

Motivated by the previous work@24# we have further in-
vestigate this issue. In what follows we present a compari
of the different noise terms appearing in Langevin equati
for Reggeon field theory, the multiplicative noise, and Pe
ti’s field theory, to identify physical differences among the
A simple and intuitive justification of the fact that n
reaction-diffusion system can be found in the MN univers
ity class is given. Alternatively, we enumerate some ot
discrete, microscopic models belonging to that class.
also discuss some curious properties of systems with c
plex noise, and analyze whether a real Langevin equa
can be written for systems like the annihilation reactionA
1A→0.

I. ANALYSIS OF THE SINGLE-SITE EFFECTIVE
POTENTIAL

A. Reggeon field theory

We start by analyzing the zero-dimensional~single vari-
able! version of the RFT Langevin equation. The Fokke
Planck equation associated to Eq.~1! is @14#
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]P~n,t !

]t
52

]

]n
~an2bn2!P~n,t !1

D

2

]2

]n2 nP~n,t !.

~4!

By imposing the detailed balance condition, the associa
formal stationary probability distribution is found to be

P~n!5exp@2V~n!#}
1

n
expF 2

D
~an2bn2/2!G , ~5!

whereV(n) is the effective potential. In Fig. 1 we plotV(n)
for different values ofa, andD51; for a>A2b the potential
has a minimum atnÞ0, while for a,A2b V(n) has no
maximum or minimum. Note, however, that due to the~non-
integrable! singularity atn50, the probability Eq.~5! is not
normalizable, and the only stationary solution isP(n)
5d(n). Therefore there is no active phase in this simp
zero-dimensional case, and the systems decay towards
absorbing state for any set of paramenter values.

Let us now study how the single-site effective potent
behaves in dimensions larger than zero. In particular,
perform a numerical simulation of Eq.~1! in one dimension.
To do so we employ a technique developed by Dickman@25#
to deal with numerical simulations of the continuous RF
Let us point out that the simulation of this continuous theo
with an absorbing state is not a trivial issue, and that,
example, a straightforward discretization of Eq.~5! in which
eventual negative values of the field~that may appear due to
the discretization! are fixed ton(x)50, does not preserve th
presence of an absorbing state. Dickman’s method con
of a discretization of the space, time, and also of the fi
variable, which ensures the presence of an absorbing s
~see@25# for details!.

In the one-dimensional case the active phase survives
effect of fluctuations, contrary to what happens in the sing
variable case. In Fig. 2 we show the effective potential~de-
fined as minus the logarithm of the normalized station
probability distribution! for different values ofa. The upper-
most curve corresponds to a value ofa in the absorbing

FIG. 1. PotentialV(n) associated to the formal stationary sol
tion of the zero-dimensional RFT for different parameter valu
b5D51, and from top to bottom,a50.4, 0.8, 1, 1.5, and 1.9. Note
the presence of a strong~nonintegrable! singularity at the origin in
any case.
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57 1379NATURE OF DIFFERENT TYPES OF ABSORBING STATES
phase; the second one toa5acritical while the two lower ones
are in the active phase. Note that in all the cases a singul
at the origin of the same type is present, and conseque
for any finite system there is a finite probability for the sy
tem in the active phase to go through the potential bar
and decay towards the absorbing state: the active phase
metastable state. The mean time required for the system
overpass the barrier and collapse to the absorbing state g
exponentially with time, and becomes infinite in the therm
dynamic limit. In this way the phase transition appears o
in infinitely large systems, and the large system-size li
has to be taken first and then the infinite time limit in order
permit the presence of an active phase. In dimensions la
thand51 the same qualitative type of behavior is expect

B. Multiplicative noise

The Fokker-Planck equation associated to Eq.~3! in the
zero-dimensional case is

]P~n,t !

]t
52

]

]n
~an2bn2!P~n,t !1

D

2

]2

]n2 n2P~n,t !.

~6!

By imposing the detailed balance condition, the station
formal solution is

P~n!5exp@2V~n!#}
1

n2~D2a!/D
expF22bn

D G , ~7!

whereV(n) is the effective potential; the solution is not no
malizable whena,D/2, and normalizable otherwise.V(n)
is plotted in Fig. 3 for different values ofa and D51; the
two lowermost curves correspond to Eq.~7! in the absorbing
phase (a50 anda50.5) @where the only stationary solutio
is P(n)5d(n)#. The central one (a51), and the two upper-
most curves (a51.5 anda52) are in the active phase. Not
that contrarily to the RFT the MN exhibits a phase transit
even in zero dimensions. Observe also that the singularit

FIG. 2. Stationary potential for the one-dimensional RFT
coming from a simulation of the discretized Langevin equation. T
uppermost curve corresponds to a value ofa in the absorbing phase
the second one toa5acritical while the two lower ones are in th
active phase.
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the origin in the formal solution Eq.~7! changes its degree a
a is increased, in contrast with what happens for Eq.~5!; in
fact, for D/2,a,D ~in the active phase! the singularity is
integrable, and abovea5D ~also in the active phase! the
origin becomesrepelling instead ofabsorbing. This is an
essential difference with RFT.

Let us now explore how this property of the single-s
potential is modified in higher dimensions. For that, we p
form a numerical integration of the stochastic equation
fining the model, which presents less technical difficult
than the integration of the RFT@22#. The results are pre
sented in Fig. 4. Qualitatively the potential shape change
the same way as it does in the zero-dimensional case. Ab
the critical point, there is either an integrable singularity~up-
permost curve! or a repelling wall~three other curves! at the
origin. The first case, i.e., an integrable singularity at t
origin, occurs in a very tiny region of the parameter spa
On the other hand, in the absorbing phase there is a colla
of the probability towardsP(n)5d(n) ~nonintegrable singu-
larity at the origin!.

Therefore, the physics is very different from that of RF
when the system is in the active phase, there is either
integrable singularity at the origin of the potential or a rep
ling wall. In any case, the situation differs from that in RF
in which there are two locally stable attractors in the act
phase: one at the origin~the stable one! and one at a differen
point ~a metastable one!.

That is the reason why a reaction-diffusion system can
be described by an equation such as Eq.~3!: in a finite
reaction-diffusion system with a nonvanishing particle an
hilation rate there is a nonzero probability of reaching t
absorbing~empty! state for any finite system size and for an
set of parameter values. In systems with MN there is
accessible absorbing state in the active phase, i.e., there
nonintegrable singularity at the origin of the potential~and
consequently no collapse of the probability density to

s
e

FIG. 3. PotentialV(n) associated to the formal stationary sol
tion of the zero-dimensional multiplicative noise equation for d
ferent parameter values:b5D51, and from top to bottom:a
52, 1.5, 1, 0.5, and 0. The potential develops a minimum asa is
increased, has a negative singularity at the origin fora,1, and a
positive singularity fora.1; the singularity is integrable in the
active phase, i.e., whena,0.5, while in the absorbing phase th
only stationary solution is a delta function at the origin.
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1380 57MIGUEL A. MUÑOZ
origin!, and therefore MN does not capture the physics
reaction-diffusion systems.

That fact does not mean that it is not possible to const
a discrete lattice model in the multiplicative noise univers
ity class. In particular, systems exhibiting an unbinding tra
sition from a wall~such as, for example, the problem of loc
alignment of DNA chains@23#, and wetting transitions@26#!
belong in this universality class. These models are usu
defined in terms of a field variableh(x,t)56 ln(n) that flows
to 7`(n50) in the absorbing phase, and that reach a n
vanishing stationary average value otherwise.

C. Peliti’s field theory

In this section we compare the effect of the complex no
appearing in Peliti’s field theory Eq.~2!, with the two previ-
ously studied cases to get a global picture of the differ
types of noise that can appear in systems with absorb
states. In order to understand what is the origin of the co
plex noise in processes such asA1A→0, and to clarify
whether a microscopic process like that with a real den
field has necessarily to be described by a complex Lang
equation, we present a derivation of Peliti’s field theory
the annihilation reactionA1A→0 by employing the exac
Poisson representation introduced by Gardiner and Ch
verdi @27,20#. Note that for this reaction there is no activ
phase, and the interesting magnitudes are those descr
the decay towards the absorbing state. For the sake of
plicity in the notation we present here the zero-dimensio
case, extensions to higher dimensions being straightforw

The master equation defining the process is

]P~n,t !

]t
5k@~n12!~n11!P~n12,t !2n~n21!P~n,t !#.

~8!

FIG. 4. Stationary potential for the one-dimensional multiplic
tive noise Langevin equation as coming from a simulation of
discretized equation. The curves correspond to four different
rameter values, all of them in the active phase. Note that the si
larity at the origin is positive for the three lowermost curves (a5
22, 22.1, and22.2, respectively!, therefore there is not an ab
sorbing, but a repelling state. The uppermost curve (a522.23),
with a negative singularity at the origin, is still in the active pha
but the singularity is integrable.
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Multiplying both sides of Eq.~8! by sn, summing over all
n’s from 0 to `, and defining the generating functio
G(s,t)5(n50

` snP(n,t), we get

]G~s,t !

]t
5k~12s2!]s

2G~s,t !. ~9!

We now introduce the Poisson transformation

P~n,t !5E da
anexp~2a!

n!
f ~a,t !, ~10!

where f (a,t) is a given function~see @27#!, in terms of
which

G~s,t !5E da f ~a,t !exp@a~s21!#. ~11!

The Poisson transformation has the interesting prop
that the moments ofP(n) and f (a) can be easily related
^ap&5^n(n21)•••(n2p11)&; in particular the first mo-
ments are the same for both distributions. The integral o
a can be taken over different domains of integration; for t
moment let us assumea to be a real variable and leave th
integration domain undetermined. In terms off (a,t), Eq. ~9!
reads,

E daexp@a~s21!#] t f ~a!

52kE daa2f ~a,t !@2]a
212]a#exp@a~s21!#, ~12!

which, integrating by parts, and assuming that the bound
terms give a vanishing contribution to the integral@28# can
be written as

] t f ~a!5k@2]aa2f ~a,t !2]a
2a2f ~a,t !#, ~13!

which is a Fokker-Planck equation with a negative diffusi
coefficient. The Langevin equation stochastically equival
to the previous Fokker-Planck equation is

] ta~ t !52a~ t !21 iA2ah~ t !, ~14!

whereh(t) a Gaussian noise with amplitude 1,i the com-
plex unit, andk has been eliminated by redefining the time
t→t/k. Note that we have arrived to an inconsistency:a was
assumed to be a real variable and we have arrived at a c
plex equation.@Observe that due to the complex term in E
~14! a develops an imaginary part even if it is taken to
real at timet50. In Appendix A we present further detail
on the impossibility of defining a real Poissonian represen
tion for the reactionA1A→0.# Let us now repeat the pre
vious program but performing a complex transformation
stead of a real one, i.e., we take*da to be*2`

` dax*2`
` day ,

where ax and ay are the real and imaginary parts ofa,
respectively. This type of transformation leads to a funct
f (a), which is positive and can be identified as a probabil
distribution@27#. Proceeding in that way we get a new set
Langevin equations for the variablesax anday :

-
e
a-
u-

,
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57 1381NATURE OF DIFFERENT TYPES OF ABSORBING STATES
] tax~ t !522@ax
2~ t !2ay

2~ t !#1A2ay~ t !h~ t !,

] tay~ t !524ax~ t !ay~ t !2A2ax~ t !h~ t !, ~15!

which is equivalent to the original master equation. Note t
both of the equations in Eq.~15! include the same nois
function h(t), and that they could be obtained straightfo
wardly from Eq.~14! just by writing a5ax1 iay and sepa-
rating the real and imaginary parts!. A typical trajectory of
the previous set of equations in the stationary state is sh
in Fig. 5; it wanders in the complex plane avoiding a regi
around 0. Even if the stationary solution of the underlyi
processA1A→0 is a delta function at zero or one partic
~depending on whether the initial condition is even or od
respectively!, the stationary probability associated to E
~15! is not a delta function, but some complicated distrib
tion with ^ax&51/2 and^ay&50. The value 1/2 comes from
the fact that for initial conditions withn even,n(t→`)50
and, forn odd, n(t→`)51; the variablê ax&5^n& is the
average of the two previous possibilities. On the other ha
the expectation value of the imaginary part is zero as
pected given the relation among moments off (a) andP(n).
It is interesting to note that the effective potential associa
to the stationary distribution is a nondifferentiable one;
Fig. ~6! we show a one-dimensional cut of the stationa
potential for differentax with ay50 as computed in a simu
lation of Eq. ~15!. Note that contrarily to the cases of th
RFT and multiplicative noise equation, now the dynamics
not frozen even if the system has relaxed to the absorb
state.

We now explore the possibility of finding a real-variab
Langevin equation describing this class of systems@29#.

As the second equation in Eq.~15! is linear in ay it is
possible to integrate it analytically; doing so and substitut
the result in the first one, we get a closed equation forax ,
that reads

] tax~ t !5ax22ax
2~ t !12I ~ t !21A2I ~ t !h~ t ! ~16!

with

FIG. 5. Typical trajectory of the complex noise equation in t
stationary regime. Note that there is a large probability of find
the system in the vicinity of 1/2,0, while points inside a circ
centered at the origin of radius 1/2 are inaccessible.
t

n

,
.
-

d,
-

d

s
g

g

I ~ t !5ay~0!expS 2E
0

t

dt8~4ax21! D
2A2E dt8ax~ t8!h~ t8!expS 2E

t8

t

dt9~4ax21! D ,

~17!

which is a non-Markovian equation~see Appendix B!. The
stationary potential associated to Eq.~16! cannot be calcu-
lated analytically; the numerical solution is shown in Fig.
First we observe that it is nondifferentiable atax51/2; we
also point out thatax is not absorbing in general@except for
the pathological and unphysical caseay(0)50#; in other
words, due to the presence of the non-Markovian terms, p
portional toI (t), the system can cross from positive valu
to negative ones.

The role of the complex variable in Eq.~14! is played,
afteray has been integrated out, by the non-Markovian ter
in Eq. ~16!, and in both cases the absorbing state of

FIG. 6. Cut of the stationary probability distribution associat
to the complex noise equation withay50. Observe the nondiffer-
entiability atax51/2.

FIG. 7. Stationary probability distribution function associated
the non-Markovian equation or equivalently, the projection of t
stationary probability function associated to the complex no
equation over the real axis.
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1382 57MIGUEL A. MUÑOZ
microscopic associated process is not described by a fro
dynamics in the Langevin representation, but by a nontriv
dynamics ~complex or non-Markovian! whose statistical
properties reproduce those of the reaction-diffusion mo
Therefore, the nature of the absorbing state in this cas
essentially different from those of the previously studi
cases.

For the sake of completeness let us just mention bri
that a numerical study of the one-dimensional Peliti fie
theory in terms of a complex Langevin equation has b
recently published@30#. The measured magnitudes are
very good agreement with the theoretical predictions com
from renormalization-group and other types of analy
@18,31#, confirming that a complex representation captu
the physics of microscopic systems such as, for example
processA1A→0.

II. CONCLUSIONS

We have analyzed different Langevin equations ass
ated to systems with absorbing states. Systems describe
the Reggeon field theory Langevin equation exhibit a n
integrable singularity at the origin of the single-site poten
that corresponds to a true absorbing state; i.e., there i
accumulation of probability density at the origin, while th
active state is a metastable one for finite system sizes.
tems with multiplicative noise instead change the degree
the singularity at the origin as the control parameter
changed: while in the absorbing phase there is a collaps
the probability density towards the origin, in the active pha
there is either an integrable singularity at the origin or
becomes repelling, in which case the probability to be nea
the origin becomes extremely small, and there is no ac
sible absorbing state. That is the reason why it is not poss
to find reaction-diffusion systems~in which for finite size
systems there is always a finite probability of reaching
absorbing state! in the multiplicative noise universality class
We have also analyzed some aspects of the annihilation
cess A1A→0, which is described by a complex nois
Langevin equation or alternatively by a real non-Markovi
Langevin equation. This type of Langevin equation show
behavior quite different from that of Reggeon field theo
and multiplicative noise; in particular, even if the system
in the absorbing state, there is not a collapse of the proba
ity density to a delta function, and the dynamics is nontriv
Systems with complex noise can alternatively be descri
by real non-Markovian equations.
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APPENDIX A

Let us consider the pair of reactionsA1A→0 and
A→2A, the first occurring with a ratek2 and the second with
k1. The associated master equation is
en
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]P~n,t !

]t
5k2@~n12!~n11!P~n12,t !2n~n21!P~n,t !#

1k1@~n21!P~n21!2nP~n!#. ~A1!

Performing a real Poissonian transformation we get

] t f ~a!5@]a~k1a22k2a2! f ~a,t !1]a
2~k1a2k2a2! f ~a,t !#,

~A2!

which is equivalent to the Langevin equation

] ta~ t !5~k1a22k2a2!1A2~k1a2k2a2!1/2h~ t !
~A3!

interpreted in the Ito sense. Note that the factor multiplyi
the noise is positive in the intervalaP]0,k1 /k2@ , and van-
ishes at the limits of the previous interval. The formal s
tionary solution of Eq.~A2! is

f ~a!}
1

a
exp~2a!~12ab!~12b!/b ~A4!

with b5k2 /k1. Considering the Poisson representation
defined in@0,k1 /k2#, it is a matter of simple algebra to verif
that the boundary terms appearing in the processes of ge
Eq. ~A2! from Eq.~A1! give a vanishing contribution. At the
same time, trajectories of Eq.~A3! with initial condition in
@0,k1 /k2# do not leave that interval. On the other hand, if t
domain of integration was extended over those limits, E
~A3! would develop an imaginary part and the procedu
would not be self-consistent. Therefore the transformatio
well defined only in the real interval@0,k1 /k2#. From a
renormalization-group point of view the noise term propo
tional to k2 in Eq. ~A3! can be argued to be irrelevant re
dering the system in the RFT universality class.

We can now take the limitk1→0 to see what happens i
Peliti’s field theory case: the interval in which the Poiss
representation is defined shrinks down to a single pointa
50. In the strict limitk150, a meaningful real Poisson rep
resentation cannot be performed, and a complex represe
tion is required.

Let us point out as a final remark that it is someho
surprising that the standard renormalization-group anal
of Peliti’s field theory, based on a path integral represen
tion of Eq. ~14! @or equivalently of Eq.~13!#, in which a is
treated as a real variable, give the right exponents and p
erties@18,31#. We plan to investigate that apparent parad
in a future work.

APPENDIX B

As a last attempt to write down a one-variable Lange
equation with a structure simpler than Eq.~16!, and inspired
by the rotational quasisymmetry of the stationary distribut
solution ~see Fig. 5!, we perform a change of variables t
polar coordinatesr and u defined by ax5rcos(u), ay
5rsin(u). After changing variables~for which Ito calculus is
required@14#!, we get

] tr~ t !5r~ t !22r2~ t !cos~u!,

] tu~ t !522r~ t !sin~u!2A2h~ t !. ~B1!
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Observe that the first one is a deterministic equation, w
the second one is stochastic. It is easy to verify that
system does not admit a potential solution~which is consis-
tent with the stationary potential being nondifferentiabl!.
This new set of equations permits one to derive analytic
s
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ys

,
et

, J

wn
he

I

le
is

y

some of the properties of the stationary probability distrib
tion @such as, for example, the presence of a maximum
(1/2,0)#, but it does not simplify the elimination of one o
the variables in favor of the other one to construct a sim
one-variable Langevin equation.
.
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