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We present a combination of heuristic and rigorous arguments indicating that both the pure state structure
and the overlap structure of realistic spin glasses should be relatively simple: in a large finite volume with
coupling-independent boundary conditions, such as periodic, at most a pair of flip-relatbé appropriate
number of symmetry-related in the non-Ising gasttes appear, and the Parisi overlap distribution corre-
spondingly exhibits at most a pair éffunctions at=qg, . This rules out the nonstandard mean-field picture
introduced by us earlier, and when combined with our previous elimination of more standard versions of the
mean-field picture, argues against the possibility of even limited versions of mean-field ordering in realistic
spin glasses. If broken spin-flip symmetry should occur, this leaves open two main possibilities for ordering in
the spin glass phase: the droplet-scaling two-state picture, and the chaotic pairs many-state picture introduced
by us earlier. We present scaling arguments which provide a possible physical basis for the latter picture, and
discuss possible reasons behind numerical observations of more complicated overlap structures in finite vol-
umes.[S1063-651X98)07202-X

PACS numbeps): 05.50+q, 75.10.Nr, 75.50.Lk

[. INTRODUCTION A of sideL centered at the origin with, say, periodic bound-
ary condition$ is (approximately a mixture of many pure
Prevalent scenarid4,2] concerning realistic spin glasses states:
require that the nature of the spin glass order paranfie¢er
the Parisi overlap distributiorand the structure of the ther- LS we pe (1)
modynamic states from which it is obtained be highly com- Py TP
plex; see, for example, Refl3—19]. This complexity is as-
serted to be a consequence of the existence of marand the finite-volume overlap distributid®(q) is (approxi-
competing pure states. In previous pap¢2)-25 we  mately the corresponding mixture of manyfunctions:
showed that the standard picture of this complex structure
(including non-self-averaging of the thermodynamic overlap L
distribution function, ultrametricity of distances among all P(a)~2 W5, WY, 8(q-05), @
pure states for fixed coupling realization, ¢twannot hold in “y
any finite dimension. However, at the same time we pre:
sented(as a logical possibility a nonstandardmean-field
picture in which some of these features appear in finite-
dimensional spin glasses but in a more limited sense — i.e., q5’= lim [A_/|~ Z (o) ¥ (oy)?. 3
in large finite volumes with coupling-independent boundary L' —o xeAys
conditions such as periodic. In this picture, onlgubsetof
all the pure states appears in each finite-volume mixed state Of course, if there is only a single pair of pure states
(which varies with volumg those pure states along with (related by a global spin fljpas in the droplet-scaling plcture
their weights and overlaps retain some mean-field structuredf Refs.[27-30 (see alsd31,32), then for eaciL, P(q)
In this paper, however, we provide both heuristic and rig-will simply approximate a sum of twé functions at+ qg, .
orous arguments that indicate the state and overlap structuk¥e will argue here thathe same conclusion is true for the
in finite volumes must in fact be relatively simple. This is so finite-volume overlap distributions even when there are many
even if there are many pure states overall. These argumenpsire statesThis is becauseb will still be approximately a
preclude the possibility of any type of mean-field structuremixture of asingle pair of pure states, although now the
— even the nonstandard, limited type — for the spin glasshoice of the pair will depend upoh. This scenario was
phase in finite dimensions. previously proposed in Reff21-23 as a logical possibility
Although the arguments and conclusions of this paper aréhat followed from the metastate approach introduced in
applicable to fairly general examples of disordered systemshose papers. Here we will argue that it is the ordgson-
we will focus on the Edwards-AndersofitA) Ising spin  ablepossibility consistent with many pure states, and we will
glass[26]. When there are many pu(iafinite volume states  also present scaling arguments that provide a physical basis
p“, it has been generally believédl] that the finite-volume for it and at the same time explain its relation to the earlier
Gibbs statepb (for a coupling configuration7 in the cube and simpler two-state droplet-scaling picture.

whereq?” is the overlap between the pure stateand y:
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It is important to note that in computing overlap distribu- particular pure states may be picked out by a special choice
tions as in Eq.(2), the region in which the computation is of boundary conditions depending on the disorder realiza-
done should be small compared to the overall size of théion, such boundary conditions are not relevant for compari-
system — i.e., the system boundaries should be far from theon either to experiments on physical spin glasses or to nu-
region of interest. The reasons for this were discussed aherical simulations. In all of these cases boundary
some length in the Appendix to RgR22], and will be re- conditions are chosendependentlyf the coupling realiza-
turned to in Sec. VI. This guarantees that one is focusing otion.
the thermodynamic states of the systgtf,28 and avoiding In this paper we will therefore focus on either fixed or
extraneous finite size and boundary effects. periodic boundary conditioneBC'’s) (and their flip-related

With this understanding, our arguments indicate that théBC's; see Sec. IY chosen independently of the couplings.
nonstandard Sherrington-KirkpatrickSK) picture, intro- From a theoretical point of view, observable properties in
duced by us previously as the only remaining viable meanthis situation are amenable to analysis by means of the met-
field-like picture, is not valid in any dimension. The readerastate approacf21-25.
may wish to glance ahead at Sec. IV in which this conclu- Metastates enable us to relate the observed behavior of a
sion, one of the main results of the paper, is presented. system in large but finite volumes with its thermodynamic

The plan of the paper is as follows. In Sec. Il we review properties. This relation is relatively straightforward for sys-
the concept of metastates. In Sec. Ill we discuss previousliems with few pure states or for those whose states are re-
proposed scenarios for the spin glass phase, including tHated by well-understood symmetry transformations; but in
newer chaotic pairs and nonstandard SK pictures. In Sec. Ithe presence of many pure states not related by any obvious
we present the first of our main results, a theorem on théransformations, this relation may be subtle and complex. In
invariance of the metastate with respect to flip-relatedhese cases the metastate approach may be highly useful.
boundary conditions, and then discuss the consequences of One reason for this is that, in the presence of many com-
the theorem. We will see why this result should be incom-peting pure states, a sequence las-~ of finite-volume
patible with any but the simplest spin glass ordering, and irGibbs measures on cube$%, with coupling-independent
particular how that argues against the nonstandard SK pid3C’s will generallynot converge to a single limiting thermo-
ture. In Sec. V we will provide a scaling basis for the chaoticdynamic statg36]. We call this phenomenonhaotic size
pairs picture, and present one possible physical scenario udependenc€CSD). In the metastate approach, we exploit the
der which it would occur. In Sec. VI we discuss, in light of presence of CSD by replacing the study of single thermody-
our results, the question of why some numerical experimentaamic stategas is conventionally donevith anensemblef
appear to see a complicated overlap structure. We furthgpure or mixed thermodynamic states. This approach, based
discuss appropriate procedures for computing overlap stru@n an analogy to chaotic dynamical systems, enables us to
tures in finite volumes as a means of extracting at least parconstruct a limiting measure, but it is a measure on the ther-
tial information on ordering in the low-temperature phase.modynamic states themselves.

Finally, in Sec. VIl we present our conclusions. This (infinite-volume measure contains far more infor-
mation than any single thermodynamic state. It has a particu-
Il. METASTATES lar usefulness in the context of the study of finite volumes

because it carries — among other things — the following

For specificity, we will focus on the Edwards-Anderson information. Suppose that there exist many thermodynamic
model [26] which, on a cubic lattice ird dimensions, is states in soméfixed) dimension and at som@ixed) tem-
described by the Hamiltonian perature. Thefffor examplg the periodic BC metastateon-

structed from an infinite sequence of finite-volume Gibbs
measures on cubes with periodic boundary condijidaks

HAo)= _<XE> Jyox0y s (4) us the likelihood of appearance of any specified thermody-

Y namic state, pure or mixed, in a typical large volume. More

where J denotes the set of couplings, and where the precisely, it provides a probability measure for all possible

brackets indicate that the sum is over nearest-neighbor paifs? - - - N-point correlation functions contained in a box
only, with the sitesc,y e Z%. We will take the spinsr, to be centered at the origin whose sides are sufficiently far from

Ising, i.e., o, =*1; although this will affect the details of anY of the boundaries so that finite size effects do not appre-
y Iy X — ) .

our discussion, it is unimportant for our main conclusions.ciably affect the result. ,

The couplingsJ,, are quenched, independent, identically Dete}lls on the construction and properties of t_he metastate
distributed random variables; throughout the paper we willVere given in previous papef21-23. Here we simply re-
assume their common distribution to be symmetric aboufOUnt Some central features. The histogram, or empirical dis-
zero (and usually with the variance fixed to be an@he tribution approach, is a type of microcanonical ensemble

most common examples are the Gaussian adddistribu- ~ Which considers at fixed7 a sequence of volumes with

tions. The infinite-ranged version of the EA model was in-SPecified BC, such as penoLdlc. '[he resulU{]g sequence of

troduced by Sherrington and Kirkpatri¢83] and is com- finite-volume Gibbs Stateﬁb(jl) ,9(52)7 e ,P(jN) each is

monly referred to as the SK model. given weightN 2. This “histogram” of finite-volume Gibbs
Numerical studies of spin glass overlap structure in thestates converges to soree asN—o. The (periodic BC, in

EA model study finite-volume cubes witlisually periodic  this examplg metastatec ; is a probability measure on ther-

boundary condition§19,34,39. A crucial property of disor- modynamic state¥ at fixed.7, and specifies the fraction of

dered systems with many competing states is that, althougtube sizes that the system spends in each diffépssibly
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mixed) thermodynamic stat€ [37]. This problem with the standard SK picture might sound

An alternative(and earlier construction of the metastate, like a mere mathematical technicality — for which one
in which the randomness of the couplings is used directly tanight hope to find a technical solution. But in fact this pic-
generate an ensemble of states, was provided by Aizenmdare has an inherent conceptual flaw — namely, the basic
and Wehr[38]. In this approach one considers the limiting problem that a single-staie; is simply not a rich enough
joint distribution ,u(j,p(jL)) asL—o. Technical details can description of theL—« behavior of a thermodynamic sys-
be found in[22—-24,38. tem where CSD occurs. In such a picture, one is in effect

It can be proved that there exists at leasf-mndependent replacing with a single state all of the information contained
subsequence of volumes along which the two approachds an entire distribution of states, i.e., the metastate. We now
(empirical distribution and Aizenman-Wehyield thesame  consider two nonstandard pictures, each of which arises
limiting metastatg22—24. This will be important in what naturally in the context of the metastate approach and the
follows [39]. possible presence of CSD.

Occasionally a distinction is drawn between finite- and The first of these resembles the Fisher-Huse picture in
infinite-volume stategsee, for example[19]), where it is  finite volumes, but has a very different thermodynamic struc-
argued that the first is more physical and the second mereligre. It is a many-state picture, but unlike in the mean-field
mathematical in nature. While we have shof@2] that the  picture each large voluméwith periodic boundary condi-
relation between the two may be more subtle than previousl$ions) “sees” essentially only one pair of states at a tifire
realized — at least in the case where many competing statésec. VI we discuss what it means for a finite volume to
are present — we also argue that the distinction drawn abovésee” a thermodynamic state, pure or mixedn other
is misleading. Indeed, it should be clear from the discussionvords, for largel, one finds that
above that the metastate approach is specifically constructed
to consider both finite and infinite volumes together and to WL aL o
unify the two cases. In the next section, guided by this ap- Py =35Py + oPg ®)
proach, we review various allowable scenarios for the EA

spin glass phase. where— « refers to the global spin flip of pure staie Here,

the pure state paiiof the infinitely many presepgppearing
Ill. THE FINITE-DIMENSIONAL SPIN GLASS PHASE in finite volume depends chaotically oh. Unlike the

. . : droplet-scaling picture, this new possibility exhibits CSD
Of the possible scenarios for spin glasses at low tempergg;ii, periodic BC's. In this “chaotic pairs” picture thépe-

ture, the simplest is that spin-flip symmetry is not broken atiodic BC) metastate is dispersed ov@nfinitely) manyT's,
positive temperatures in any dimension. This would be the

case if there were no phase transition at all and the parama@! the formI'=I""= 2P+ zp ;" The overlap distribution
netic state persisted to arbitrarily low temperatures. It wouldor each I’ is the same:Pr=26(q—gga) + 3 8(q+0ga)-
also be the case if themgerea phase transition but the EA Like the Fisher-Huse picture, this scenario also seems inter-
order parameteqg, [corresponding to the self-overlap of a nally consistent. It is interesting to note that a highly disor-
pure state, i.eq%" in Eq. (3)] remained zero. Such a phase dered spin glass modéh1,42) (see also43]) appears to
might have, e.g., single-site magnetizations equalling zero atisplay just this behavior in its ground state structure in suf-
low temperatures but two-spin correlation functions decayficiently high dimension.
ing as a power law at large distances. The last picture we discuss is a nonstandard SK-like pic-

More likely, however, is that spin-flip symmetiybroken  ture that resembles the standard SK picture in finite volumes,
for d>d, and T<T,(d) [2]. In that case the simplest sce- but has an altogether different thermodynamic structure. This
nario for the low-temperature spin glass phase is the Fishepicture, which also assumes infinitely many pure states, or-
Huse scaling-droplet picturi27-3Q (see alsd31,32), in  ganizes them such that eatk-= , W% 7. The metastate ;
which a single pair of pure states is present. In that case, witls dispersed over many sudhs, so that differenf’’s again
periodic BC’s, CSD is absent, and the metastate is concerappear in different volumes, leading to CSD. Unlike the cha-
trated on a single mixed thermodynamic state, with each obtic pairs picture, eacR; depends o’ (because each is
the two pure states having weight 1/2. This picture seemsow itself a nontrivial mixture of infinitely many pure
internally consistent. state$. However, the ensemble f’s (like the singleP ; of

We now consider possible many-state pictures. In thehe standard SK pictuyedoesnot depend on7 (again be-
standard SK picture, there is an overlap distribut®Rrq) cause of translation invariance and ergodicit$o the con-
that exhibits non-self-averagindNSA) even after the ther- ventional meaning of NSA — thermodynamic quantities
modynamic limit has been takdB-8]J; that is, it fluctuates such as the overlap distribution depending @n— is re-
with 7 even though it is a thermodynamic quantity. Otherplaced by a new notion: not dependence @rbut rather
features of this picture include ultrametricity amosgpure  dependence on the stdfewithin the metastate for fixed.
state overlaps and a continuous parfgf)) [the average of Moreover, ultrametricity of overlaps among pure states may
P (q) over all 7] between*qg,. For details, se¢l]. be present within individual'’s, but not for all of the pure

However, this standard SK pictueannothold (in any  states taken together. A more detailed description of this
dimension and at any temperatuf0] because the transla- nonstandard SK picture is given in Refg21-23.
tion invariance ofP A{q) combined with the translation er- Given the results of20], the nonstandard SK picture is
godicity of the underlying distribution of couplings implies the only remaining viable mean-field-like picture. We have
that P {q) must be self-averaggd0]. presented preliminary argumerits|ased on the invariance of
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the ensemble oP;’s with respect ta7: we refer the reader boundary conditions, the metastate is highly robust.
to Ref.[22] for detail9 that already cast some doubt on its Of course, the insensitivity of the metastate with respect
validity, by demonstrating that the nonstandard SK picturd0 changes of boundary conditions would be unsurprising if
requires an enormous number of constraints to be simultdhere were only a single thermodynamic st@ey., paramag-
neously satisfied. In the next section we present further ametic) or a single pair of flip-related states as in the droplet
guments that more strongly rule it out as a viable possibility picture. But it is difficult to see how our result can be recon-
ciled with the presence ahanythermodynamic states; in-
IV. INVARIANCE OF THE METASTATE deed, at first glance it would appear to rule them out.
. . o . . Nevertheless, we argue below that our theorem chmts
The main result of this section is a theorem on the invariye oyt the existence of many states, but clearly puts severe
ance of the metastate; with respect to b(),undary_cond|t|ons constraints on the form of the metastéad overlap distri-
that are flip related. Twesequences oBC's are flip related  ption function, which also possesses this invariance prop-
if, for each finiteL, there is some subset of the boundaryerty) Our heuristic conclusion is that, in light of this strong
oA whose flip transforms one BC for thatinto the other.  jnyariance property, any metastate constructed via coupling-
An obvious example of flip-related boundary conditions aréindependent BC's can support only a very simple structure.

periodic and antiperiodic; a second example is any two fixeths 5 consequence, we will argue that this theorem effectively
boundary conditions, i.e., where each spin on the boundary ig)jes out the nonstandard SK picture.

specified. On the other hand, periodic and fixed BC's are not T4 see that amncountableset of pure states is not ruled

flip related. _ out (we will discuss countably infinite sets belpveonsider
In the fqlloyvmg theorem we c'ontlnu.e to assume that thee highly disordered ground state mofd] in high dimen-
common distribution of the couplingk, is symmetric about  gjons "which is believed to exhibit a version of the chaotic
zero, i.e., thatly, has the same distribution asJy,, and  pajrs picture with uncountably many states. Our invariance
that the external field is zero. _ theorem applies to this model also, and(e@) the periodic
Theorem.Consider two metastates constructed fixed,  and antiperiodic metastates must be the same, even though
a_rbltrary dimension and temperature, and using either thg,e might a priori expect them to be different. By what
histogram method or the Aizenman-Wehr methosing two  mechanism could this happen? The most natural possibility
different boundary conditions, with neither depending/8n s that both the periodic and antiperiodic BC metastates are
on an infinite (y—) sequence of cubes, . If the tWwo  the same as the free BC metastiatd] in which all relative
different sequences of boundary conditions are flip relatedsigns between the different trees in the invasion fo(sse
then the two metastates are the sdmi¢h probability one —  Refs.[41,42 for detailg are equally likely. That is, each of
i.e., for almost every)). these metastates consists ofuaiform distributionon the
Proof. We use the fact, discussed above, that along somground state pairs. Given that, it does not seem unreasonable
J-independent subsequence of volumes both the histograthat all sorts of different BC's should give rise to a similar
construction of metastates and the Aizenman-Wehr construemiform distribution. Indeed, any fixed B@oesgive a uni-
tion have a limit, and that limit is the same. Because theform distribution on allsingleground state$41,42,.
Aizenman-Wehr construction averages over couplings “at But this line of reasoning does appear to rule out the
infinity” (for details, see Ref$21—-24,39), it rigorously fol-  chaotic pairs picture with @ountableinfinity of states. In
lows (using gauge transformation arguments like those usethat case, of course, one cannot have a uniform distribution
in the proof of Theorem 3 in Ref36]) that the two met- (i.e., all equal, positive weights within the metasjat8o
astates must be the same. now suppose that for somg the periodic BC metastate as-
This is a striking resultdespite the brevity of the propf  signs, for example, probability 0.39 to one pair of pure
with important physical consequences. It says, for examplestates, 0.28 to another, and so on. In other words, with peri-
that the periodic BC metastate; must be the same as the odic BC's 39% of the finite cubes prefer pair number 1, 28%
antiperiodic BC metastate. In fact, if one were to chooseprefer pair number 2, etc. So pair number 1 is the overall
(independently of7) two arbitrary sequences of periodic “winner” (among different finite volumesin the periodic
and antiperiodic BC's, the metastat@gth probability ong ~ BC popularity vote.
would still be identical. In other words, the metastéaad It now seems clear heuristically, though, that the popular-
corresponding overlap distributions constructed fromait ity vote by antiperiodic BC'sshould come out differently; it
fixed temperature and dimension is highlysensitiveto  is unreasonable to suppose that pair number 1 be preferred
boundary conditions. by 39% of the periodic BC cubes and at the same time by
To appreciate the implications of this, consider the histo-39% of the antiperiodic BC cubes. The uniform distribution
gram construction of the metastate. The invariance of theonclusion seems even more inevitable when one considers
metastate with respect to different sequences of periodic arthat analogous arguments also apply to pairs of arbitrarily
antiperiodic BC’s means that the frequency of appearéince chosen sequences fifed boundary conditions.
finite volume$ of various thermodynamic states (with We conclude that consistency between our invariance
probability ong independenbf the choice of boundary con- theorem and the existence @fncountably many states re-
ditions. Moreover, this same invariance property hdidih quires, in some sense, an equal likelihood of the appearance
probability ong@ among any two sequencesfofedboundary  (in the metastajeof all states, i.e., some sort of uniform
conditions(and the fixed boundary condition of choice may distribution on them. Let us examine this further. We have
even be allowed to vary arbitrarily along any single sequencalready noted that different sequences of volumes with fixed
of volumesg. It follows that, with respect to changes of BC's — i.e., all volumes having plus boundary conditions,
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all volumes having plus on some boundary faces and minusf x andy. Then this must be true also for all volumes with
on others, all volumes with each boundary spin chosen byntiperiodic BC's; and similarly(but possibly separately
the flip of a fair coin, and so on — result in the same met-among all pairs of fixed BC states.
astate. We note for future reference that the term “chaotic Once again, the only sensible way in which this could
pairs,” which was chosen in reference to spin-symmetrichappen would be for the selection of states to be relatively
BC's (such as periodicshould be replaced here by “chaotic insensitive(in some global sengéo the choice of boundary
pure states”; i.e., in this picture, the Gibbs state in a typicalconditions, i.e., for the BC’s to choose the states in some
large volumeA | with fixed BC’s will be (approximatelya  “democratic” fashion without favoritism so that;, the av-
single pure state that varies chaotically with But we ex- erage over the metastate, should be some sort of uniform
pect that the mixed state;, which is theaverageover the  mixture of the pure states, as before. However, unlike in the
metastat¢20-23, chaotic pairs picture discussed earlier, we claim thatdais
not happen when th&’s are (nontrivial) mixed states.
The reason for this is that the metastate has a strong co-
Py(0)=j F(o)kAT)dL, (6)  variance property38] (see alsq22]) in which thel’s must
transform in a specified way under an arbitrary finite change
in the coupling realization. Under this finite change, the en-
. . . %emblexj(l“) transforms(as would any probability mea-
th'_nlk g)th's(Lf;J as E[‘e) a.verage. thermodynam|c State’sure) according to the change of variablés—I"'. Here,
N™(pz +ps =+ p "), in the limit N—oo. I'" is the thermodynamic state with correlations
Now consider the mixed boundary condition in whielr  (5,)., =(oxe #2H) /(e #AH) .| whereAH is the change
ery fixed BC on the boundary of each, is given equal in the Hamiltonian.
weight. If there arguncountably many pure states present,  Under this change of variables, pure states remain pure
then in a typical large volume one would expect to see and their overlaps do not change. However, the weights
Gibbs state which approximates a continuous mixture ovejyhich appear in each will in general change, as one would
the pure stategcf. Possibility 3 or 4 discussed in RéR1]).  expect. To see this, consider a particdlahaving a discrete
But we still expect that the average over the mixed BC metpure state decomposition
astate would be the same; as for the fixed BC metastate,
the periodic BC metastate, and so on. That is, the average
over the metastate should be even more robust than the met- F=§a: Wrpio), @)
astate itself, i.e., it should be the same for metastates con-

structed through any two sequences of (coupling- yith many nonzero weight&/% . Suppose that one chooses a
mdepender)tBC.s, not just fhp—rglated ones. Particular coupling J,, and imposes the transformation
.Althoug.h Iogmally_poss@le, it se:ems unreasonab]e thany—>J>’<y=ny+AJ- Then the weightv® (within T') of the

this last(mixed BC with all fixed BC'’s given equal \_/velg)ht pure statex will transform for eacha as

metastate, chosen from a maximally uniform mixture of
boundary conditions, can have anything other than a uniform

distribution over the pure states. But, as just pointed out, this W“—>W’“:raW“/ E r,w?, (8
distribution should be the same for this as for all the other L4

metastates under discussid@We caution the reader that, un-
like the case of the strongly disordered mof#5], we do

not have a precise sense in which this distribution can bel’a=<eX[(,BAJO'x0'y))a=COSH,BAJ)+<0'X0'y>a5inf'(,8AJ).
9

where

defined to be uniform. For that reason, this part of the argu-
ment must be regarded as heurigtic.
With these points in mind, we now turn to a discussion of | ejther the droplet-scaling or the chaotic pairs picture,
the nonstandard SK picture, and other possible mixed stalgare are in each only two pure stategdepending of” in
scenarios. _ _ chaotic pairs each with weight 1/2. Because all even corre-
The nonstandard SK picture requifes. Eq. ()] thatthe  |5tions are the same in each pair(8ip-related pure states,
I'’s appearing in the metastate be of the fafnW3p 7, with e transformation of Eq8) leaves the weights unchanged.
at least some subset of the weight&; in eachl” nonzero However, in nonstandard SK there exist pure states within
and unequal. We would then have a situation like the follow-each(mixed I' with relative domain walls, so that they dif-
ing. With periodic BC's, say, the fraction df;’s for which  fer in at least some even correlation functions. But this then
the finite-volume Gibbs state i\, puts(e.g) at least 84% rules out thatp; must always be a uniform mixture of the
of its weight in one pair of pure statéisut with that pair not pure states, because a suitable change of couplings will shift
specified is 0.39. But then it must also be the case that withthe weights for eacli” in such a way that the distribution
antiperiodic BC'’s the fraction of volumes for which the over pure states op; also shifts.(This reasoning can be
finite-volume Gibbs state puts at least 84% of its weight inmade rigorous, but because other parts of the argument are
some unspecified pair is still exactly 0.39. Moreover, theheuristic, we omit a proof.
same argument must apply to any “cut” one might care to In other words, we argued above that the invariance of the
make; i.e., one constructs the periodic BC metastate anchetastate with respect to boundary conditions left open, as
finds thatx% of all finite volumes have puy% of their the only reasonable possibility for the presence of many pure
weight inz states, withz depending on théarbitrary choice  states, thap ;, the average over the metastate, be some sort
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of uniform mixture over the pure states. This must be true fotowest-lying states differ by order one. If, on the other hand,
any J (with probability ong, so the weight distribution over the “minimal” energy difference scales as some positive
all pure states must also be invariant with respect to changgsower of the system size, then one will see at most a single
in J. But this invariance is inconsistent with the transforma-pair of states in any given bowith spin-symmetric bound-
tion properties of thd"'s with respect to finite changes it ary conditions, such as periodglic

if there are multiple pure states in tH&s, with the pure To analyze the appearance in finite volumes, and at very
states in eacli” not having the same even correlatidine.,  |ow temperature, of infinite-volume pure states, as in@&j.
they have relative domain wallsthen their relative weights \ve will consider infinite-volumeground states restricted to

mu;t vary(as expectedwith chqnges in the coupling real- tthe cube of siz&, with a fixed boundary conditioor chosen
ization. This leads to a contradiction, and therefore rules oui ) .
independently of the couplings. In our analysis below we

not only nonstandard SK but any picture in which ffie are will treat the boundary spins as chosen randomly and inde-

a nontrivial mixture of pure states. : !
Our conclusion, based on the above combination of botfp€ndently of the couplings — but for a nonrandom fixed BC
uch as plus, the same arguments go through with minor

rigorous results and heuristic arguments, is that the nonstang4¢" as |
ard SK picture cannot be valid in any dimension and at anynedifications. S o
temperature. More generally, the many invariances of the Although there maya priori be infinitely many infinite-
spin glass metastate cannot suppamty picture in which volume ground states, the number of distinct restrictions to
thermodynamic mixed statésther than a single flip-related the cube is finite and its logarithm should be of order
pair) are seen in finite volumes. L9=1"¢ for some ¢. The scaling exponentp (with
Given that the only reasonable possibilities remainingd<¢=d—1) may be understood in another way: the mini-
(that display broken spin-flip symmejnare the droplet- mum number of spins on the surface of the cube that differ
scaling picture and the chaotic pairs picture, we concluddetween two infinite-volume ground states, whose spins dis-
that the overlap distribution functioRr., agree afor neaj the origin[46], should scale ak?. These
two states should correspondingl()/)/ cliiffer in the bulk by a
o a number of spins ofat least orderL¢*?!,
Pr(q):% WrWia(a—a) (10 If there exists only a single pair of flip-related ground
states(as argued in Refd.28,29), then ¢=d—1. In the
can at most be a pair @f functions at+qe, for eachl'; i.e.,  Nighly disordered spin glass model of Rei#$1,43 (see also
in each finite volume the overlap between pure states thdRef [43]), it appears thathp=d—1 below eight dimensions
appear in that volume is just that pair éffunctions. This ~ While ¢=3 above eight dimensions.
will be the case regardless of whether there is only a single L€t us examine the exponedtmore closely. Althougla
pair or uncountably many pairs of pure states. We will dis-Priori there seems to be no reason to exclude the possibility
cuss this further in Sec. VI, but first we turn to another topic.that #=0, there are several arguments indicating otherwise.
In the next section we present a simple scaling approacfNote also thaip=0 would saturate the possible growth rate
that provides both a plausibility argument and also a physica®f the number of distinguishable ground states in any finite
starting point for understanding the “chaotic pairs” many- volume since the logarithm of this number cannot exceed
state picture introduced in Refi21—-23. It is important to  orderL"") If =0, then spins in regions between domain
note that this scaling picture is consistent with the Fisherwalls would exist in one-dimensional tubelike objects. It
Huse droplet picturd27,3Q for appropriate values of the Seems very unlikely that such tubes could be stable; i.e.,
new scaling exponents, but for other values can give rise to gventually such a tube should encounter a fluctuation which
different thermodynamic picture. destroys its structure. A second and somewhat different ar-
gument uses the fact that should be bounded from below
by the exponen® introduced by Fisher and Huge7,30,
which governs the minimal interface free energy between
different pure states on a length scélgi.e., this minimal
We have argued above that with periodic boundary confree energy is presumed to grow B, It is not difficult to
ditions, one should see at most a single pair of flip-relatecsee, then, thaip=6. However, it was argued in Refs.
pure states in a large volume. As already discussed, thi®7,30 that the inequality¢>0 is necessary in order for
leaves open the possibilities of either a single pure geatg,  spin-flip symmetry to be broken at positive temperature. In
but not necessarily, a paramagnea single pair of pure what follows we therefore always assume tigat 0.
states(as in the droplet pictuye or the chaotic pairs many- Before considering the EA model itself, we first treat the
state picture discussed above. We now present a simple eriuch simpler case of a homogeneous Ising ferromagnet with
tension of earlier scaling-droplet argume[2%,3Q which is  fixed BC's chosen at random. First we consider the energy
consistent with this last possibility, and also provides a posdifference between the plus and minus ground stéigth
sible scenario for the spatial structure of domain wall con-nterface ground states temporarily not considgrddere
figurations among the ground states. there is no bulk energy difference, aggd=d— 1. Because of
The object here is to obtain estimates on the difference ithe randomness of the BC, the boundary energy difference is
energy or free energy between the lowest-lying state in @f orderL#2. The conclusion in this cagd7] (see als¢23])
fixed volume and the next higher one. The appearance a that the total energy difference is alk#? and thus with
nonzero temperature of multipleon-spin-flip relatefistates random BC’s one does not see a mixture of the plus and
in a single(large volume requires that the energies of the minus states but only one of thefwhosen by the sign of the

V. A SCALING APPROACH
TO THE CHAOTIC PAIRS PICTURE
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boundary energychaotically changing with.. spins. More preciselygA is the set of sitex inside A
What about seeing interface states? Here, the appropriateith a nearest neighbar outsidedA | ando, is the bound-

bulk energy difference between the constant ground stategy spino, timesJ,, . Equation(11) can be rewritten as
and the interface states scalesLds' (with ¢ the same as

before and so the bulk energy difference dominates the __ e ~=x T
boundary energy difference. In this case the total energy dif- Eu(a)==n(a)ZLN|SoN oA+ Y (@), (12

ference between the homogeneous state and the lowest-lyin , ,
interface state is of ordet® 1. As a result, all interface Where three new variables have been introduoga) = = 1

states are “invisible” in the random BC finite-volume ferro- "€Presents thg sign of the Sp"? at the origin in_ grounq state
magnet[23,47. Z, is (approximately a Gaussian random variable with zero

We now consider the EA Ising spin glass from this pointM&an and unit variance, aid (a) depends both on the bulk

of view. That is, we consider the energies of the restriction€N€rgy ofa and on the rest of the boundary spins., those

of all infinite-volume ground states to thé cube centered at "ot included in the first term

the origin. As before, we divide the energy into a bulk and a_ " 90ing from Eq.(11) to Eq. (12) we used the fact that
boundary part, and ask how the energy difference betweelfi€ Poundary condition consists of fixed random spins, cho-
the lowest-energy and next-lowest-energy state scales witf€n independently ok. The crucial observation is that the
L. Consider the statg* with minimum total energysubject rand(_)m vanable_ZL, which arise from the random boundary
to the fixed boundary conditiorand the state of next lowest conditions, are independent of the spectrum of (inestly)
energy that differs fromp* near the origin. By the definition Pulk energiesY, (). We now show that, regardless of the

of ¢, the two states differ by at least’* * spins in the bulk number and distribution of th¥ («)’s as a varies, there
and byL¢ spins on the boundary. will be no strong cancellations between the two temih

To estimate the energy differences between low-lyingProbability close to one _ _
states, we will separately consider the boundary energy com- Consider the ground state whose energy in @4) is the

. . ~ . ~” . minimum, and also the ground state which has the next
ing from the couplings betweewn and the adjacent spins in

. . higher energy, and isequired to have a relative spin flip
the cube, and the bulk energy differeri®m the remainder ; ) -
of the finite-volume Hamiltonian If there were no bulk en- with respect to the lowest-energy state at the origin. We then

. ) ) have
ergies to consider, then one might expect that two states

which differ by L? spins on the boundary would typically

differ by an overall energy of ordar?. If this were indeed min E (y)= min E (a)

the case for the two lowest-lying states in almost any vol- viog=-1 aog=+1
ume, then one would see only one state per vol(fimefixed -
y P =122, \[SoNaA |+ Y[ Y]], (13)

boundary conditions However, since one is doing a mini-

mization problem which includes bulk energies as well, it is _ N ]

not at all obviousa priori that this will happen. In particular, Where Y andY, are the bulk plus remainder boundary
there might be some delicate cancellation between bulk anginergies of the two lowest-lying states with a relative spin
boundary energies. flip at the origin.

We will now, however, present a specific scenario in SinceZ_ andY, —Y, are functions ofiisjoint sets of the
which an explicit calculation shows that the lowest-lying fandom boundary spins, they are independent random vari-
states, in a volume with fixed boundary conditions choser@bles. Hence, variances add and the effeatof- Y, on the
independently of the couplings, do indeed have an energgandom variable Z, \|S;NdA | can only be tdncreasethe
difference of ordet #/2. This example is presented as a plau-spread of its distribution. This allows us to conclude that
sibility argument and demonstrates one way in which thiswith probability close to ondi.e., for most choices of the
can occur, but is not meant to imply that it can occupily ~ boundary spinsthe expression on the right-hand side of Eq.
this way. (13) is of order(at least \[SyN A [, i.e., of order.#2. As

Consider then a scenario in which the spin at the originong as¢>0, which is part of our scenario, this growth with
belongs to a cluster, not intersected &gy domain walls, L in the spacing of the low-lying spectrum of ground states
whose intersection with the boundary as before is of size  argues for the appearance at small positive temperature of
We denote that cluste$,. Suppose further thai® is a gen- only a single pure state in large finite-volume Gibbs states
eral infinite-volume ground state, and that(«) is the en-  with fixed BC's (that are independent of the couplings
ergy — including both the boundary and bulk components The above argument is instructive in several respects. It
— of p,, restricted toA |, theLY cube centered at the origin. demonstrates that, given the condition that no domain wall

The energyE, («) can therefore be written separates the origin from the boundary of the box, there can

be no miraculous ‘“conspiracy” under which bulk and
p— o—  —b boundary energies cancel out to order one. It does require a
Ei(a)= _XES%ML Ix UX_XEMEL\SO T oxtEL(e), strong condition, namely, that all domain walls, in the union
(11)  of all symmetric differences over all ground states, do not
form any closed and bounded regions. As stated above, this
where the first term is the contribution from the spins in theis asufficientcondition for the scaling argument given above
cluster S, on the boundaryyA,, the second term is the to work, but we see no reason at this point why it should be
surface energy contribution from all other boundary spinsa necessarycondition in order for the conclusions to be
and the final term is the energy contribution of the bulkvalid.
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Nevertheless, it provides one interesting scenario for the
spatial structure of ground states and domain walls if many
states should exist. Interestingly, in the only example of -
which we are aware in which a finite-dimensional spin glass
apparentlydoespossess many states in high dimensions —
the highly disordered ground state model of Rgd4.,42] — -
exactly this structure occurs. These considerations provide a
possibly fruitful avenue for future investigations. -

VI. PURE STATES IN FINITE VOLUMES: - ; ;
WHAT IS GOING ON HERE? +

In this section we address what it actually means, in an
operational sense, to “see” a pure state — which formally is -
an infinite-volume object — inside a finite volume. We then
use that analysis to answer a glaring question: if states and
overlaps in finite volumes are restricted to, at most, a single -
pair of flip-related pure states and a pair ®ffunctions at - - - - - ¥ ¥ + ¥ %
*(Qga, respectively, then what are the many numerical simu- . ) . o . . )
lations (e.g., [12,16,18,19,34,35 and experiment$48,49 FIG. 1. A typical spin configuration in a two-dimensional Ising

that appear to see a more complicated state and overl rromagnet at positive temperature beldy, with fixed spin
structure actually seeing? oundary conditions that are1 on the right half of the boundary

Our main point will be that pure state structure can anofmd —1 on the left half. The maximurtand typica) deviation of

. . A he induced d i Il f th tical line th h th igin i
does manifest itself in finite volumes, and governs the phys © ML vicec domain war from e verfica fine rolign fe origin 1S

. t finite lenath los. C - ob i q O(LY?). This domain wall persists on all length scales but is unre-
IcS at Tinite 1ength scales. Lonversely, observalions made Wlieq 1q the low-temperature ordering. It will miss a sufficiently

large, finite volumes must in turn reveal the thermodynamlcsma”[O(Ll/z)] window about the origin: examination of the order

structure and the nature of ordering of the system — if sufyarameter inside only this window will correctly capture the ther-

ficient care is given to the analysis of those observationsmodynamics(in particular, one can examine any fixed finite region
Indeed, were both the above statements not true, it would bgs the boundaries move far awaJhis sketch depicts a relatively
difficult to see why the study of thermodynamics would besmall square; for large, the domain wall would be virtually indis-
of any interest to physics. tinguishable from a straight line through the origon the scale
While the above assertions have long been noncontrovebf the entire squajeand the window would be extremely sméh
sial for most statistical mechanical systems and models, thetaat scalg
remains considerable confusion in the case of spin glasses
[50]. At least part of the problem is that reliance on thevicinity of a boundary on which all spins are fix¢elg., to be
overlap structure alone can at best give only partial — and+1). As the boundary moves farther out, subsequent mea-
sometimes misleading — information on the thermodynamsurements at those same sites would find their magnetization
ics of realistic spin glass mode[21,22,28,29 A second tending to zero.
problem is that, as we have emphasized in previous papers It is not unusual, even for comparatively simple systems,
[21,22, the connection between finite- and infinite-volume for boundary effects to penetrate more deeply into the inte-
behavior may be more complex and subtle in spin glassegor than a shallow “boundary layer.” Consider the example
than in simpler systems. An analysis of this connection thusf the two-dimensional uniform Ising ferromagnet. It is
deserves more thought than a simple attempt to sever the litknown [52,53 that this system has only two pure states —
altogether between the two behaviges in Appendix | of the translationally invariant positive and negative magnetiza-
[19]). So in this section we will expand on previous discus-tion states — for all 8&ZT<T.. Suppose now that on a
sions[22] to further clarify these issues. square of side. one were to impose fixed boundary condi-
A thermal state, whether pure or mixed, is completelytions such that all spins on the right half of the boundary are
specified by the set of all of itone-point, two-point, three- +1 and all spins on the left are-1. This will impose a
point, .. .) correlation functions. In a finite volume, a state domain wall on the system, whose maximyand typical
will manifest itself through the appearance of a particular setleviation(from the vertical line passing through the origin
of such correlations. Because boundary effects will invari-will scale asL'? (see Fig. 1 So for all largeL the system
ably alter or distort(compared to an infinite-volume state gives theappearanceof having a pure state with a domain
these correlations in some regiomhose size will depend on wall [54]; indeed, the domain wall always stays quite far
the specifics of the Hamiltonian, temperature, dimensionfrom the(vertical) boundaries. However, if one were to look
etc), one must always be careful to examine them in a vol-at any fixed, finite region, then as the site of the square
ume small enough so that these “distortion” effects are neggrows, the domain wall eventually moves outside the fixed
ligible. In other words, the boundary should be sufficientlyregion, and one would see only a mixture of the positive and
far from the region under examination so that an accurat@egative translationally invariant states. Ttegjual, in this
picture of the thermodynamics can be obtaipgd. case, ad.—x) weights in the mixture correspond to the
So, for example, even in the paramagnetic state, onprobabilities of the domain wall thermally fluctuating to the
would measure nonzero magnetizations at interior sites in theft or to the right of the fixed region.
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So in this example the domain wall is an artifact of the does nof57], and that nontrivial overlaps will be seen for all
imposed boundary condition, and has nothing to do with anyarge L (as the uniform ferromagnet domain wall example
thermodynamic structure or low-temperature ordering propillustrateg. The real problem is in some sense the opposite:
erties of the system. Moreover, consideration of the spin conramely, that overlap computations are not being done in
figurations over the entire square would lead to incorrecémall enough regions to provide an accurate picture of spin
conclusions about the pure state structure. This illustrates o@fass ordering.
contention thain order to arrive at an accurate picture of
the thermodynamic structure and the nature of ordering of a
system, one must focus attention on a fixed “window” near
the origin (which may be arbitrarily large, but is small com-  In our previous paper$20-22, we showed that spin
pared to the entire volume under consideration). glasses may be more complex — in the relation between

This conclusion is especially important when evaluating,their behavior in finite and infinite volumes — than had pre-
and drawing inferences from, overlap functions. A more de-viously been noted in the literature. In the present paper, we
tailed discussion is given in the Appendix of RE€22], to  have presented arguments indicating that, in a different
which we refer the reader; here we will only reiterate ansense, spin glasses are mem@plethan had previously been
illuminating example due to van Entgb5], which in turn  claimed in much of the literature.
extends an earlier example due to Huse and Figz&r Con- Our main conclusion is that, for realistic spin glass mod-
sider the overlap distribution of an Ising antiferromagnet inels such as Ising Edwards-Anderson, any large finite volume
two dimensions with periodic boundary conditions. For odd-(with, say, spin-symmetric BC's, such as periodic, chosen
sized squares the overlap is equivaldyt the obvious gauge independently of the couplingsvill display at most a single
transformation to that of the ferromagnet with periodic pair of flip-related pure states. This may correspond to either
boundary conditions, and for even-sized squares it is equivea single pair of pure states in total, as in the droplet-scaling
lent to that of the ferromagnet with antiperiodic boundarypicture [27,29,3Q, or to the “chaotic pairs” picture intro-
conditions. If the overlap distribution were computed in theduced in Ref[21] and elaborated upon in Ref22,23.
full square, it would therefore oscillate between two different  This rules out the nonstandard SK picture also introduced
answerdone a sum of twaS functions at plus or minus the in Ref.[21] and elaborated upon in Ref22,23. Combined
square ofM*, the spontaneous magnetization, and the othewith our earlier resul{20] ruling out the standard SK pic-

a continuous distribution betweeh(M*)?]. On the other ture, we conclude thahe thermodynamic structure and the
hand, computing overlaps in boxes which are much smallenature of spin glass ordering, whether in finite or infinite
than the system size would give rise in this example to avolumes, cannot be mean-field-like in any dimension and at
well-defined answer — i.e., the twé-function overlap dis- any temperature

tribution — which provides a more accurate picture of the The argument leading to this conclusion followed a theo-
nature of ordering in this system. rem, presented in Sec. IV, that the metastate for figeid

With these remarks in mind, we now turn to the finite- invariant with respect to arbitrary choices of flip-related
dimensional Ising EA spin glass. Essentially all the simula-boundary conditiongsuch as periodic and antiperioglidt
tions of which we are aware compute the overlap distributiorwas then argued that only the simplest pure statel corre-
in the entire box. Boundary conditions are chosen indepen-sponding overlapstructures could be so robufi8]. The
dently of the couplings, and are usually periodic. Given ouronly reasonable scenario under whi@mcountably many
conclusion that, under these circumstances, at most a pair sfates could then appear is that, statistically, the states are
flip-related pure states will appear in almost any finite vol-insensitive to the boundary conditions. That is, the met-
ume, we suspect that the overlaps computed over the entiastates would be generatdds in the highly disordered
box are observing domain wall effects arising solely from theground state modgthrough some kind of random fair-coin-
imposed boundary conditions, rather than revealing the adessing process.
tual spin glass orderingThis is the reason why in Sec. Vwe  We argued in Sec. VI that overlap computations should be
looked only at states with relative domain walls in the vicin-done in small interior boxegsurrounded by much larger
ity of the origin) boxes where the boundary conditions are actually imposed

In other words, if overlap computations were measured irin order to remove boundary effects and get a picture of spin
“small” windows far from any boundary, one should find glass ordering that is not misleading. We expect {hadth
only a pair of § functions. One way to test this would be to periodic BC'’9 for those dimensions and temperatures where
fix a region at the origin, and do successive overlap compugega# 0, this procedure would result in a single pair &f
tations in that fixed region for increasingly larger boxes withfunctions at+ qg, [59].
imposed periodic boundary conditions; as the boundaries We also presented in Se¥ a scaling argument that
move farther away, the overlap distribution within the fixed shows how a “chaotic pairs'{or chaotic pure states, under
region should tend toward a pair éffunctions[56]. fixed BC’s) picture can arise. We provided an explicit calcu-

It is important to clear up one other misconception. It waslation that supported this picture under the sufficigntt not
asserted at the end of Sec. 2 in H4®] that “after Ref.[34]  necessanycondition that the union of domain walls between
one has to argue that the physics must change after sonedl pairs of pure states form no closed and bounded regions.
very large length scale ... in order to claim that the mearinterestingly, exactly such a structure is present in the only
field limit is not a good starting point to study the realistic example of a nontrivial short-ranged spin glass model known
case of finite dimensional models....” Although, of course,to have many ground states — i.e., the highly disordered spin
this changeover may well occur, it is at least as likely that itglass model of Ref441,42 (see alsd43]).

VII. CONCLUSIONS
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Given that an overlap structure computed in an entire fidap structure(if presenj could have an observable, although
nite volume(as opposed to that computed within a smallerperhaps nonuniversal, effect on dynamics. We plan to ex-
window) might be nontrivial due only to boundary effects, it plore this issue in the future.

cannot yield definitive information on the ordering of the

spin glass phase. Furthermore, there isanariori reason to

expect that it would display any exotic or intricate properties
such as ultrametricity, or in general bear any particular re-

ACKNOWLEDGMENTS

This research was partially supported by N.S.F. Grant No.

semblance to the mean-field structure observed for the SROMS-95-00868(C.M.N.) and by U.S.D.O.E. Grant No. DE-
model. However, the domain walls responsible for this over+G03-93ER2515%D.L.S)).

[1] M. Mézard, G. Parisi, and M. A. Virasor&pin Glass Theory [26] S. Edwards and P. W. Anderson, J. Phys, P65 (1975.

and BeyondWorld Scientific, Singapore, 1987
[2] K. Binder and A. P. Young, Rev. Mod. Phys8, 801(1986.
[3] G. Parisi, Phys. Rev. Lettt3, 1754(1979.
[4] G. Parisi, Phys. Rev. Letg0, 1946(1983.
[5] A. Houghton, S. Jain, and A. P. Young, J. Physl€ L375
(1983.

[27] D. S. Fisher and D. A. Huse, Phys. Rev. L&, 1601(1986.
[28] D. A. Huse and D. S. Fisher, J. Phys.2@, L997 (1987.
[29] D. S. Fisher and D. A. Huse, J. Phys.2@, L1005 (1987.
[30] D. S. Fisher and D. A. Huse, Phys. Rev.3B, 386(1988.
[31] W. L. McMillan, J. Phys. C17, 3179(1984).

[32] A. J. Bray and M. A. Moore, Phys. Rev. Le88, 57 (1987).

[6] M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Vira- [33] D. Sherrington and S. Kirkpatrick, Phys. Rev. L&, 1792

soro, Phys. Rev. Letb2, 1156(1984).

(1975.

[7]1 M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Vira-[34] J. D. Reger, R. N. Bhatt, and A. P. Young, Phys. Rev. |6t

soro, J. Phys(France 45, 843(1984).

1859(1990.

[8] R. Rammal, G. Toulouse, and M. A. Virasoro, Rev. Mod. [35] S. Caracciolo, G. Parisi, S. Patarnello, and N. Sourlas, J. Phys.

Phys.58, 765 (1986.
[9] M. Mézard and G. Parisi, J. Phys1) 809 (1997).

(France 51, 1877(1990.

[36] C. M. Newman and D. L. Stein, Phys. Rev.4B, 973(1992.

[10] J.-P. Bouchaud, M. Mgard, and J. S. Yedidia, Phys. Rev. Lett. [37] We reemphasize a point made earlier in Sec. Il, which in the

67, 3840(199).
[11] J. S. Yedidia, in1992 Lectures in Complex Systeradited by
D. L. Stein(Addison-Wesley, Reading, MA, 1993p. 299.
[12] G. Parisi, Physica AL94, 28 (1993.

[13] D. Badoni, J. C. Ciria, G. Parisi, F. Ritort, J. Pech, and J. J.

Ruiz-Lorenzo, Europhys. LetR1, 495(1993.

[14] S. Franz, G. Parisi, and M. A. Virasoro, J. Phys4,11657
(19949.

[15] F. Ritort, Phys. Rev. B0, 6844(1994).

[16] E. Marinari, G. Parisi, and F. Ritort, J. Phys. 2V, 2687
(19949.

[17] P. Le Doussal and T. Giamarchi, Phys. Rev. L&, 606
(1995.

[18] E. Marinari, G. Parisi, J. J. Ruiz-Lorenzo, and F. Ritort, Phys.

Rev. Lett.76, 843(1996.

[19] E. Marinari, G. Parisi, and J. J. Ruiz-Lorenzo,3pin Glasses
and Random Fieldsedited by A. P. YoundgWorld Scientific,
Singapore, in pregs

[20] C. M. Newman and D. L. Stein, Phys. Rev. Lef6, 515
(1996.

[21] C. M. Newman and D. L. Stein, Phys. Rev. L€t 4821
(1996.

[22] C. M. Newman and D. L. Stein, Phys. Rev5E, 5194(1997).

[23] C. M. Newman and D. L. Stein, itMathematics of Spin
Glasses and Neural Networksdited by A. Bovier and P.
Picco (Birkhauser, Boston, in pregs

[24] C. M. Newman,Topics in Disordered Systen{8irkhauser,
Basel, 1997.

[25] C. M. Newman and D. L. Stein, iRroceedings of the 1997
International Congress of Mathematical Physieslited by D.
De Wit, M. D. Gould, P. A. Pearce, and A. J. Brack&World
Scientific, Singapore, in press

current context implies that only boundary conditions chosen
independently of the couplings should be used to construct the
metastate. We note that there might exist pure states for a
given J that would not appear in a metastate so constructed;
i.e., they would not appear in the pure state decomposition of
any of thel’s appearing in the metastate. A situation where
such “invisible” pure states occur in the context of Ising fer-
romagnets is discussed in Sec. V. In the spin glass, such states
would require special coupling-dependent boundary conditions
in order to appear in the metastate. As indicated in our remarks
at the beginning of Sec. Il, these states, should they exist,
could be of mathematical interest but would almost certainly
play no physical role.Arguments along these lines can also be
found in Sec. 3 of A. C. D. van Enter and J." fech, Commun.
Math. Phys98, 425(1985)]. It should be understood through-
out that when “pure states” are referred te.g., in Sec. IV,

we generally mean only those that appear in a metastate con-
structed using coupling-independent boundary conditions.

[38] M. Aizenman and J. Wehr, Commun. Math. Ph¢80 489

(1990.

[39] It should be noted that currently existing proofs require not

only a subsequende,,L,,...,.Ly,... of cube sizes, but possi-

bly also a subsequence Mfs when taking the histogram limit.
However, the crucial point is that this subsequence of cube
sizes, even if necessary in some instances, remains indepen-
dent of J.

[40] As shown in Ref[20], the rigorous exclusion of the non-self-

averaging property folP /q) also implies a lack of ultra-
metricity of distances among all of the pure states. That is,
although not also rigorously excluded, the ultrametricity prop-
erty was shown to be highly implausible. It is worth noting that
an ultrametric structure in state space can appear in the ground



1366

state structure of models witteterministioland hence trivially
self-averaged interactions, although in order to obtain this

C. M. NEWMAN AND D. L. STEIN 57

[54] Such a non-translation-invariant pure stai# occur in higher

dimensions than two, below the roughening temperature.

structure one has to make a very artificial choice of interaction[55] A. C. D. van Enter(private communication
For details, see A. C. D. van Enter, A. Hof, and J. Miekisz, J.[56] Although all direct numerical computations & ) [and

Phys. A25, L1133(1992.

[41] C. M. Newman and D. L. Stein, Phys. Rev. L€ef2, 2286

(1994.

[42] C. M. Newman and D. L. Stein, J. Stat. Ph§&, 1113(1996.
[43] M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett.

72, 2320(1994.

[44] Note that free boundary conditions aret flip related to peri-

odic and antiperiodic boundary conditions.

[45] The uniform distribution in the case of the strongly disordered

model corresponds to the sign of each tree in the invasion
forest being chosen by the flip of a fair coin.

[46] This is clearly a subset of all pairs of the ground states that are
[58] We should point out the special properties, under these argu-

distinct within the cube\ | ; the reason for this restriction will
be discussed in Sec. VI.

[47] A. C. D. van Enter, J. Stat. Phy80, 275(1990.
[48] M. Lederman, R. Orbach, J. M. Hamann, M. Ocio, and E.

Vincent, Phys. Rev. Bl4, 7403(1991)).

[49] OY. G. Joh, R. Orbach, and J. M. Hamann, Phys. Rev. Z&}t.

4648(1996.

[50] In Appendix 1 of Ref[19], for example, it is argued that the

pure state, or thermodynamic, structure is merely a mathemati-
cal infinite-volume construct that has little or no physical rel-
evance to redffinite-volume systems such as spin glasses. We
believe those arguments to be misleading, and indeed, misdi-
rected in that the metastate approach precisely does connect
the behavior of observable quantities in finite volumes with the
thermodynamic structure of the systefMoreover, the sug-
gestion in that same reference that the Boltzmann-Gibbs prob-
ability distribution does not even exist in the infinite-volume
limit for many disordered systems is simply incorrgdt.is,

for example, a misconception that the behavior of correlation
functions is more physical or less “metaphoricdkf. Appen-

dix 1 of Ref.[19]) than thermodynamic states. Indeed, the two
are simply different labels for the same object, in the same way
that one can talk either of the probability distribution of a
random variable or the set of its moments.

[51] This should not be confused with the fact that, if many pure

states are present, then changes in boundary conditions can
change the state everywhere in the volume, including the re-
gion about the origin. In this situation, boundary conditions
can select the thermodynamic state in the interior; but in order
to see which state has been selected, one must still measure
correlations in a region about the origin sufficiently far from
the boundaries.

[52] M. Aizenman, Commun. Math. Phyg3, 83 (1980.
[53] Y. Higuchi, in Random Fields, Esztergom (Hungary) 1979

edited by J. Fritz, J. L. Lebowitz, and D. Sza(North-
Holland, Amsterdam p. 517.

P(q)] of which we are aware compute overlaps in the full
volume, at least one computation has been repdri&il9

that does examine a type of overlap measure, called the Binder
cumulant, constructed on restricted subvolumes. Although
strictly speaking the measurement reported has a dynamical
component, it may contain potentially interesting and currently
unexplained information on the equilibrium spin glass. How-
ever, the limited nature of the measurements done to date seem
to us insufficient grounds for ruling out the droplet-scaling
picture, as asserted [18,19.

[57] The possibility that finite size effects might be persistent in

systems with quenched disorder was also noted in [Réf.

ments, offree boundary conditions. Free BC's are not flip
related to any others and our arguments in Secs. IV and V do
not apply to them. We further note that in the SK model itself,
free BC’s are in some sense the only natural boundary condi-
tion available. So could it be the case that the nonstandard SK
picture might appear under free BC’s and no other? We do not
find this to be a reasonable possibility because, unlike in the
case of the infinite-ranged model, there is nothing particularly
special about free BC's in finite-dimensional short-ranged
models. Although for technical reasons our arguments apply to
BC'’s such as periodic, antiperiodic, fixed, and so on, the cru-
cial aspect of our arguments is more closely related to the
property that these BC'’s are chosedependentlyf the cou-
plings. In this respect free BC’s for arbitrary volumes are no
different from the others. In the highly disordered model, for
example, we expecbut have not provedthat the periodic or
antiperiodic BC metastate is identical to the free BC metastate
(cf. Sec. IV.

[59] We discussed in the Appendix to R¢R2] various subtleties

associated with the precise method of construction of the over-
lap distribution. In this paper we have referred only to the case
where the overlap is computed in finite volumes using the
replica measure”{") discussed in that paper. If replica non-
independencf21,22) were present, as would be the case if the
chaotic pairs picture were to hold, then one could construct a
different infinite-volume overlap distribution by breaking rep-
lica symmetryafter the infinite-volume limit is takericf. con-
struction 2 of Ref[20]). This would be the replica overlap for
the averagg ; of the metastate, and it would be the same not
only for almost all flip-related boundary conditions but also, at
the same time, for almost every. Given that, the only rea-
sonable possibilities for this overlap function within the cha-
otic pairs scenario would be either a sindldunction at the
origin, or (less likely, we believea continuous distribution
between* qg, with no é-function spikes.



