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Zipf’s law is not a consequence of the central limit theorem

G. Troll and P. beim Graben
Nichtlineare Dynamik, Universita¨t Potsdam D-14415 Potsdam, Germany

~Received 23 April 1997!

It has been observed that the rank statistics of string frequencies of many symbolic systems~e.g., word
frequencies of natural languages! follows Zipf’s law in good approximation. We show that, contrary to claims
in the literature, Zipf’s law cannot be realized by the central limit theorem~s!. The observation that a log-
normal distribution of string frequencies yields an approximately Zipf-like rank statistics is actually mislead-
ing. Indeed, Zipf’s law for the rank statistics is strictly equivalent to a power law distribution of frequencies.
There are two natural ways to perform the infinite size limit for the vocabulary. The first one is the method of
choice in the literature; it makes the upper word length bound tend to infinity and leads in the case of a
multistate Bernoulli process via a central limit theorem to a log-normal frequency distribution. An alternative
and for text samples actually better realizable way is to make the lower frequency bound tend to zero. This
limit procedure leads to a power law distribution and hence to Zipf’s law—at least for Bernoulli processes and
to a very good approximation for natural languages where it passes thex2 test. For the Bernoulli case we will
give a heuristic proof.@S1063-651X~98!07102-5#

PACS number~s!: 05.40.1j, 87.10.1e
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I. INTRODUCTION

This paper examines the meaning and the origin of Zip
law @1# in the context of stochastic processes. First, we
going to state Zipf’s law for symbolic systems.

Suppose we are given a finite or infinite string of symbo
such as a text in a natural language or a DNA sequence
gene. Identify a set of constituent segments or build
blocks. These may either suggest themselves in the spe
context, such as proper linguistic words in the case of nat
text or they may be just the finite strings in the general ca
We will call them words anyway. Together they form th
vocabulary. Next, we identify families of finite subvocab
laries by introducing a parameter such as a fixed w
length, an upper length bound or—as we will argue for
this paper—a lower frequency bound. Determine the mult
of word frequencies$pi% i PI , i.e., we keep multiple instance
of frequencies, and order its elements according to their
creasing size. Multiple instances of one frequency get c
secutive ranks. The new index is called their rank. Zipf’s l
in the form given by Mandelbrot@2# now states that large
enough samples close to the parameter limit obey appr
mately

pr5
B

~A1r !r , ~1!

where r is the rank of the frequencypr , A, B, and r are
constants (B,r.0). A suitable normalization condition
leaves two free parameters, sayA andr.

The main questions connected with Zipf’s law concern
universality, its origin, and in particular its consequenc
such as short and long range correlations. It was claimed
Zipf’s law can be found in many symbolic systems in li
guistics, genetics, and even beyond symbolic systems in
ations, where the rank ordering of quantities other than pr
abilities is examined ~e.g., examples in economics!.
Examples treated in this paper are texts in natural langua
DNA sequences, and Bernoulli and Markov processes.
571063-651X/98/57~2!/1347~9!/$15.00
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There have been many attempts to construct simple
chastic processes~Bernoulli and Markov! and also other
models generating this law~e.g.,@6,3,5,4,7#!. See the Appen-
dix for a short discussion. The arguments for a spec
model were often largely phenomenological: by a least m
square fit the models just yield a reasonable approxima
of Zipf’s law over some intermediate range of ranks.

The aim of this paper is first to clarify the meaning
Zipf’s law by transforming it to a distribution law. Doing
this, one can replace least mean square fits by choosing
empirical mean and the empirical standard deviation as
proximations of the mean and the standard deviation of
distribution function and interpret the free parameters in E
~1! as functions of the mean and the standard deviation. F
thermore, one can now distinguish more easily between
tribution functions that yield a similar rank statistics. Th
second aim is to show how Zipf’s law can be genera
precisely and not only approximately by a broad class
stochastic processes.

It is clear from the algorithmic definition of the rank o
dering given above that the word frequency distribution
equivalent to the rank statistics. What is done in rank sta
tics is just shift all word frequencies in such a way that th
become equidistant, or in other words such that their dis
bution becomes uniform. This means analytically that we
given the Frobenius-Perron operator operating on the de
ties ~or more generally the measures themselves! and we are
looking for the point mappr°r associated with it. Details o
the derivation can be found in Sec. II.

Using this transformation formula one finds that Zipf
law ~1! is actually equivalent to an exponential distributio
of the logarithmed word frequencies, which amounts to
power law distribution for the word frequencies themselv
This is sometimes called Zipf’s second law. It is at odds w
a normal distribution suggested in@7# and hence incompat
ible with the central limit theorem. We are going to sho
that for untruncated natural language texts the exponen
distribution is a better approximation than the normal dis
bution over the whole range of data and is even a go
1347 © 1998 The American Physical Society
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1348 57G. TROLL AND P. BEIM GRABEN
approximation for small word frequencies. Figures 1 and
show the standardized word frequency distribution and
standardized rank statistics for several English and Ger
texts and additionally for the codon~triplet! distribution for
the DNA on a yeast chromosome.

In certain cases such as for the DNA the normal distri
tion is clearly the better approximation. Why? Using Be
noulli processes as the simplest models we will show in S
III that they can actually realize two different limit theorem
In the case covered by the central limit theorem the infin
size limit for the ensemble of word frequencies is perform
by making the word length boundL tend to infinity. How-
ever, there is an alternative way. Instead of parametrizing
the word length one can introduce a lower frequency bo
e as a cutoff. We show numerically and prove heuristica
that by taking lne→2` in the Bernoulli process one doe
not obtain the normal distribution but the exponential one
a limit. Performing the limit in this way seems to us to b

FIG. 1. The empirical distribution functions of the standardiz
logarithm of word frequenciesz of several texts from German an
English books are in the neighborhood of the standardized expo
tial distribution function~upper dashed curve!, whereas the distri-
bution function of codons of a yeast gene is much closer to
standardized normal distribution function~lower dotted curve!.

FIG. 2. The empirical rank statisticsf 8(s)5exp z of the data of
Fig. 1 as a function of the normalized ranks. The exponential
distribution appears here as the dashed straight line~Zipf’s law!, the
normal distribution as the lower dotted curve.
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more suitable for finite samples of Bernoulli language mo
els or actual texts of natural languages where smaller w
frequencies are harder to find although in the case of thL
→` limit they should be included already for moderateL
because the letter frequencies vary considerably.

II. ZIPF’S LAW FOR DISTRIBUTIONS

A. From word frequency to rank statistics

In this section we are going to study the relationship b
tween the distribution of word frequencies to the rank
dered frequencies by means of the Frobenius-Perron op
tor. Our general setting is that of a stationary informati
source given by a stochastic process (AN,FA ,P), whereAN

is the set of sequences over a finite setA, called the alphabe
and FA is the Borel field of subsets ofAN, which is deter-
mined by the cylinder sets n@an•••am#m5$sPAN;si
5ai for n< i<m%; we assume thatP is a shift-invariant
~i.e., stationary! probability measure onFA , so that we can
identify the cylinder sets with finite strings:n@an•••am#m
5an•••am . Let W now be a subset of strings, called the to
vocabulary.

The simplest case is thatW is just the set of all finite
strings, i.e., the string vocabulary, but we are more interes
in the case where it is a true subset. For natural language
natural choice of this subset is formed by linguistic wor
and the information source is given by a finite stringT,
called the text. We are only interested in the values ofP on
W, which we define by the relative frequencies of the wor
in the textT. For practical purposes this means that the t
must be long enough to permit a reliable estimate ofP and
short enough to yield approximately stationary word fr
quencies.

Let (Wi) be a nested sequence of finite subvocabula
~the i th step vocabularies! whose union isW. If W is the
string vocabulary we choose the string length as a param
In the other case we define two special types of finite s
vocabularies parametrized by the upper word length bounL
and by the lower word probability bounde, respectively: let
Wl<L be the set of words inW of length l<L andWp>e the
set of words with probabilitiesp>e. We study the families
(Wi)5(Wl<L)L and (Wi)5(Wp>e)e .

Denote byUi the multiset~i.e., keeping all instances o
the same element! of relative frequencies of words inWi ,
i.e., Ui has the same cardinality asWi , which is the vocabu-
lary size denoted by #Wi . By ‘‘#’’ we denote the number of
elements in the set following this symbol.

Example II.1:The first information source is determine
by the Luther bible, whose length is about 53106 characters;
A is the set of small letters of the German alphabet toge
with the blank and punctuation symbols; we define two d
ferent total vocabularies:W(1)5Wling is the linguistic vo-
cabulary consisting of all the bible’s proper names and G
man words (#Wling523679) and W(2) is the string
vocabulary, i.e., the set of all substrings of the Luther bib
P(1) and P(2) are determined by the relative frequencies
words inW(1), W(2), respectively.

Example II.2:Take the DNA string of chromosome III o
the yeast Saccharomyces cerevisiae strain S288C with le
ca. 3.23105 over the alphabetA5$A,G,C,T% of DNA

n-

e



u

th

th
is

ra

s

i-

s

h

ble

e

n

ti

t t

e
or
hi

a

ng

t a

-
ur-

he
-

t
d

and

o

ps

tri-
nk

-

rge

57 1349ZIPF’S LAW IS NOT A CONSEQUENCE OF THE . . .
bases;W is the string vocabulary; there is a special vocab
lary Wl 535A3 consisting of what is called codons~base trip-
lets! in genetics; #Wlci54i , i.e., 64 for the codons.

Example II.3 (Perline 96):Here we take the (K11)-state
Bernoulli process; the alphabet is the state setA
5$L1 ,...,LK ,h%, K>2, ‘‘ h’’ is the space character, with
probabilities a5(a1 ,...,aK11), Sai51, maxai5aK11,
which is supposed to be nongenerate in the sense
$a1 ,...,aK% contains at least 2~different! elements; again
W(1) is the set of those substrings that are delimited by
space character and is supposed to simulate the lingu
vocabulary of a text in a natural language;W(2) is the sub-
string vocabulary, where we might ignore the space cha
ter.

Example II.4 (Kanter, Kessler 95):The stochastic proces
taken here is a Markov process, its state set isA
5$0,1, . . . ,N21%, N52L; each statemPA is connected to
just two statesm052m mod N, m152m mod N11. The
transition matrixS1 is determined by giving these 2 trans
tions probabilitiesx, 12x, respectively, independent ofm,
whereas transition matrixS2 does the same with probabilitie
12x,x, respectively: The actual trial choosesS1 andS2 with
probabilities~bias! B and 12B, respectively.

Next we define a probability space onUi . We introduce
the random variableYi :Wi→Ui , which associates to eac
word w its probability p; take as ans algebra onUi the
power set and as a measure the counting measure. In
following we are more interested in the random varia
ln Yi , which we standardize introducingZi5(ln Yi
2mi)/si :Wi→Vi , wheremi is the mean ands i the standard
deviation of lnYi , Vi5Zi(Wi) as multiset.

Let Mi be the distribution function andm i the probability
distribution ofZi , i.e., we have

Mi~x!5m i~$Zi<x%!5
#$qPVi ,q<x%

#Vi
, xPR. ~2!

We assume now that the distribution functionsMi con-
verge pointwise to a distribution functionṀ with probability
distributionm:

;xPR:Mi~x! ——→
i→`

M ~x!. ~3!

The limit distributionm can only then be continuous if th
vocabulary size #Wi tends to infinity.

Next we are going to introduce rank statistics. The ra
dom variableZi is realized by a sequence (qj ) j PJi of fre-
quencies. Usually, the rank map is regarded as a permuta
on the index setJi which orders the sequence (qj ) j PJi

ac-
cording to size. For our purposes it is more convenien
introduce the normalized ranks5r /#Ji as the values of a
monotonically decreasingrank map Si into the interval@0,1#,
which satisfiesqj<qk iff sj5Si(qj )>Si(qk)5sk , so thatqj
is the r j th largest value of (qj )Ji

. We do this because w
want to extend the rank map to the real line where it is m
amenable to analytic calculations. The problem with t
definition of the rank map is that we have defined it on
sequence or equivalently on a multisetWi5$qj% j PJi

. But
there is an easy solution. We remove the degeneracy of m
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tiple values in the multisetWi by perturbing them by an
amount that is small relative to the minimal nonvanishi
spacing of neighboring values inWi . The precise form of the
perturbation is arbitrary. Essential is only that we arrive a
genuine setW̃i and correspondingZ̃i with distribution func-
tion M̃ i . Alternatively, if we do not have additional symme
tries enforcing degeneracy, we may interpret multiple occ
rences of a frequency inVi as a finite size effect, i.e., we
interpret the multisetVi as an imprecise measurement of t
limit frequency setV where all frequencies differ. The in
verse rank mapSi

21 exists in any case.
Now, supposeSi :Ṽi→@0,1# is a rank map ofZ̃i . The

rank ordered log-frequency curve is given by$„Si(x),x…;x
PṼi%. Let n i be the counting measure onD i
:5$1, . . . ,#Wi%/#Wi , i.e., n i($s%)51/#Wi for sPD i and 0
on all other singletons of@0,1#. Its distribution function is
Ni(s)5D i(s), sP@0,1#, whereD i(s) is the closest elemen
<s in D iø$0%. OnceṼi is fixed, the rank map is determine
by its action on measures: its Frobenius-Perron operatorPSi

transforms the measurem̃ i to the counting measuren i :

PSi
m̃ i~A!5n i~A! for each setA,D i , ~4!

where PSi
m̃ i(A)5m̃ i„Si

21(A)… by definition of the

Frobenius-Perron operator for measures. We extendSi
21

monotonically decreasing but otherwise arbitrarily to@0,1#.
Hence, we get forsPD i and A5@s,1# the equation
M̃ i„Si

21(s)…512Ni(s) or M̃ i512Si on D i .
Now we leti→`. Then the counting distributionNi tends

to the continuous uniform distribution on@0,1#, whose distri-
bution function is the identity map. Therefore

Si→S512M ~5!

pointwise becauseM̃ i→M . If the limit distribution M is
continuous it is surjective, hence the right inverse exists
we also have the existence of the inverse rank map

S21~s!5M 21~12s! for sP]0,1@ . ~6!

Remark II.1:Observe that this formula remains valid als
for not standardized distributionsMn and M . Furthermore,
Eq. ~6! is equivalent to

PSm~A!5n~A! ~7!

for each Borel setA,@0,1#. If the limit distribution M is
continuous one knows that the convergence ofMn is auto-
matically uniform. In this case we also haveSn

21→S21

pointwise. In the following figures, both the rank ma
f 8(s)5expz(s) and the distribution functionMi(z) are plot-
ted. One sees readily that the uniform convergence of dis
butions contrasts with only pointwise convergence of ra
maps.

Definition II.1: The generalized rank map for a distribu
tion m is given by Eq.~7! or equivalently~6!.

Thus, we have shown the following:
Lemma II.1: For the sequence of random variablesZi

which converges in distribution the rank maps conve
pointwise to the rank map of the limit distribution.
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1350 57G. TROLL AND P. BEIM GRABEN
B. What distribution generates Zipf’s law?

We show here that Zipf’s law for the rank statistics
equivalent to a power law of the word frequency distributio
Let X be a real valued random variable~playing the role of
lnYi above! with meanm, standard deviations, and distri-
bution functionEX . Furthermore, suppose the inverse ra
map f :5SexpX

21 of the random variableeX obeys Zipf’s law
with parametersA>21, B.0, r.0, i.e.,

Sexp X
21 ~s!5

B

~s1A!r . ~8!

What is the form ofEX? The logarithm of the frequencie
obey Eq.~6!:

x:5 ln Sexp
21~s!5 ln B2r ln~s1A!5EX

21~12s!. ~9!

Solving the first part of this double equation fors and setting
the result into the second part yieldsEX(x)511A
2B1/r exp(2x/r) for x.C, 0 otherwise, whereCPRø
$2`% is determined as the left border of the support ofEX ,
i.e., EX(x)50 for all x<C. The requirementEX(`)51 im-
pliesA50 andEX(C)50 amounts toB5eC; calculating the
mean and the standard deviation yieldsC5m2s and r
5s, and consequently

EX~x!5 H 12e2~x2m1s!/s for x.m2s
0 otherwise ~10!

for the distribution ofX. For the random variableeX with
realizationj5ex we receive the power functionEexpX(j)51
2e(m2s)/sj21/s for j>em2s and 0 otherwise. Its density i
eexpX(j)5EexpX8 (j)5(1/s)e(m2s)/sj2121/s for j>em2s, and
0 otherwise. Using the moments ofX Zipf’s law can be
written as

Sexp X
21 ~s!5

exp~m2s!

ss , sP]0,1]. ~11!

Now assume conversely that lnX is exponentially distrib-
uted @Eq. ~10!#. Then lnSexpX

21 (s)5SX
21(s)5EX

21(12s)5
2s ln s1m2s, i.e., Zipf’s law. In a log-log plot Zipf’s rank
curve will be a line: witht5 ln s, z(t):5 ln f(et)52st1m
2s wheretP] 2`,0]. The limit caser50 is equivalent to a
uniform distribution.

Now, take the log-frequency random variable lnYi for X.
Zipf’s hypothesis is thatSYi

21 obeys approximately Zipf’s

law. As eZi5Yi
1/s i exp(2mi /si) we find that the limit distri-

bution function of Zi is exponential, i.e., M (x)51
2e2(x11) for x.21,0 otherwise if and only if its limit rank
map obeys Zipf’s law in its standardized form

lim Sexp Zi

21 ~s!5Sexp Z
21 ~s!5

1

es
, sP]0,1]. ~12!

This is of course also true for discrete random variables.
Theorem II.2:The empirical rank statistics of word fre

quencies converges to Zipf’s law if the empirical distributi
of log-frequencies converges in distribution to the expon
tial distribution. The convergence of distribution functions
automatically uniform.
.

-

C. What rank curve is generated by a process obeying
the central limit theorem?

Suppose the empirical distribution function converg
pointwise to the normal distribution:

;xPR:Mi~x! ——→
i→`

N0,1~x!5E
2`

x

e2y2/2dy. ~13!

Examples II.3 and II.4 satisfy this condition. For examp
II.3 this does not follow directly from the central limit theo
rem because the word length is not fixed. Taking the w
length as another random variable Perline shows in@7# by
using a variant of the central limit theorem~Anscombe’s
theorem, cf. theorem 3.1 in@8#! that the word frequencies
generated by the nondegenerate Bernoulli process of
ample II.3 converge in distribution to the normal distrib
tion:

Ml<L→N0,1 for L→`. ~14!

The stationary probability densities of the Markov process
example II.4 also seem to be approximately normally distr
uted if the number of states is large enough. For an impor
special caseB50 of this Markov process this is straightfo
ward: The stationary probabilities are given in@4# as pj
5qj /(11q)L for all words containingj 1’s and N52L.
However, from this one sees immediately that theL loga-
rithm of the probabilities are equidistant and occur (j

L) times,
so that the probabilities themselves are binomially distr
uted. ForL tending to infinity the binomial distribution con
verges to the normal distribution by the theorem of
Moivre and Laplace.

We know already that the log-normal distribution do
not imply Zipf’s law analytically. This leads to two ques
tions: ~i! Does the log-normal distribution yield at least
good approximation of Zipf’s law?~ii ! Does the log-normal
distribution yield a good approximation of the empirical di
tribution function of word frequencies?

1. Does the log-normal distribution yield a good approximation
to Zipf’s law?

The rank statistics for the normal distribution is given
Eq. ~6! as

ln f ~s!5N0,1
21~12s! for sP]0,1@ . ~15!

By Eq. ~12! a good approximation to Zipf’s standardized la
requires thatt:5z(t)5N0,1

21(12et)'2t21, which is satis-
fied if z8521 and forz(t'0)'21. Observe thatt'0 cor-
responds tos'1, that is to a high rank. However, a
z21(t)5 ln@12N0,1(t)#, we get

z8~ t !51/~z21!8~t!52
12N0,1~t!

N0,18 ~t!
. ~16!

Using the error function one can find an asymptotic exp
sion of this expression for larget, which corresponds to
large word frequencies:z8(t)'2(1/t)@12(1/t2)6•••#.
However, this is only in the neighborhood of21 for t3

2t21150, i.e., t'20.75488, which is not in the
asymptotic region. Of course, it is possible to approxim
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57 1351ZIPF’S LAW IS NOT A CONSEQUENCE OF THE . . .
Zipf’s law in a certain region by a least mean square fit. Th
has been the standard procedure in the literature but the
lection of the region is arbitrary and the fit will lead to eve
larger deviations in other regions.

2. Does the log-normal distribution yield a good approximation
of the empirical distribution function of word frequencies?

It is usually argued that the rank statistics of a broad ran
of samples obeys Zipf’s law, i.e., the rank statistics is a
proximately linear in a log-log plot. So it is claimed, fo
instance, by Kanter and Kessler that both the bible and
codons of the yeast DNA satisfy Zipf’s law. However, in th
empirical distribution functions the qualitative difference
are immediately apparent. Figures 1 and 2 show the w
frequency distribution and rank statistics for several Engl
and German texts~by Martin Luther, Immanuel Kant,
Charles Dickens, Frank Baum, and Charles Darwin! and ad-
ditionally the codon~triplet! distribution for the DNA on
chromosome III of the yeast Saccharomyces cerevisiae st
S288C which was sequenced at Manchester Biotechnol
Centre, UMIST, UK, 1992. All texts are clearly rather expo
nentially than normally distributed~in particular for values
corresponding to larger word frequencies! whereas the DNA
is well approximated by a normal distribution over the who
range.

FIG. 3. The empirical distribution functions of the standardiz
logarithm of word frequenciesz of the Luther bible. Admitted are
only linguistic words of length~i! L<2, ~ii ! L<3, ~iii ! L<5, ~iv!
L<7. The upper dashed curve is the standardized exponential
lower dotted curve the normal distribution function.

FIG. 4. The same as Fig. 3 for the rank statisticsf 85expz.
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Still, the answer is not yet complete, because we ha
sampled all words, whereas the central limit of Eq.~14! re-
quires neglecting words of lengths above a cutoff parame
L. It is reasonable to suspect that the statistics for long
word lengthsL eventually deteriorates in a given finite tex
Therefore one might get a better approximation to the norm
distribution for intermediateL. Figures 3, 4, 5, and 6 show
snapshots for word lengthsL52,3,5,7 for the linguistic vo-
cabulary of the Luther bible and the string vocabulary of th
Luther bible together with the yeast DNA, respectively
Whereas for the linguistic vocabulary the normal distributio
can be seen even forL52,3 only with some imagination, it
is much more visible forL52,3 in the string vocabulary of
the Luther bible as a transient state. For largerL55,6,7 the
exponential distribution takes over again. This is in contra
to the central limit for DNA substrings, where one sees ve
distinctly the normal distribution as highL limit.

There is no point going much beyondL57 because the
word number #W( l ) as a function of word lengthl reaches
its maximum atl 57 for both the linguistic words and the
substrings of the Luther bible, so that forl .7 the topologi-
cal entropy sequencel ° ln#W(l)/l deviates qualitatively
from a Bernoulli process.

Of course, there is noa priori reason why a Bernoulli
process~example II.3! should be a good model for natura

he

FIG. 5. The empirical distribution functions of the standardize
logarithm of word frequenciesz of the Luther bible~dash-dotted
line! and of the yeast DNA~continuous line!. Admitted are only
strings~blanks are canceled! of fixed length~i! L52, ~ii ! L53, ~iii !
L55, ~iv! L57.

FIG. 6. The same as Fig. 5 for the rank statisticsf 85expz.
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1352 57G. TROLL AND P. BEIM GRABEN
languages whose letter probabilities are obviously not in
pendent. Choosing such a model and taking the word len
limit L→` results only therefore in the normal distributio
because those short words that are made up completel
rare letters produce both the smallest word frequencies
small numbers of letter permutations and thus generate
left branch of the normal distribution. However, it is pre
cisely these words that are missing in natural texts. For
stance, the rarest 4 letters in English are ‘‘z, ’’ ‘‘ q, ’’ ‘‘ x, ’’
and ‘‘j . ’’ They are a few hundred times rarer than the mo
common letter ‘‘e. ’’ The Random House Unabridged, one o
the largest unabridged dictionaries of American Englis
contains only 21 words with 2 ‘‘x,’’ 1 with 3 ‘‘x, ’’ 1 ~a
hyphenated proper name! which contains all three letters
‘‘ z, ’’ ‘‘ q, ’’ ‘‘ j . ’’ These vocabulary gaps are probably th
reason why the central limit also~see next section! yields
exponential rather than normal distributions for natural te
of the examined sizes of up to a few Mbytes. The differen
of DNA sequences to natural languages on the level of
Bernoulli processes is that their letter~the bases in genetics!
frequencies vary much less and word gaps do not occur.

One way to test this hypothesis is to recode the text
choosing a coarser code with a more balanced letter
quency than the Latin alphabet. By this method the gaps
rare letter words can be closed without changing the dis
bution of word lengths. In Figs. 7 and 8 we took a 5 letter

FIG. 7. The empirical distribution functions of the standardiz
logarithm of word frequenciesz of the Luther bible recoded in a
phonetic 5 letter alphabet. Admitted are only strings~blanks are
canceled! of fixed length~i! L52, ~ii ! L53, ~iii ! L55, ~iv! L57.

FIG. 8. The same as Fig. 7 for the rank statisticsf 85expz.
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phonetic encoding. As predicted, the convergence to a
mal distribution is now much better.

III. AN ALTERNATIVE WAY TO PERFORM
THE INFINITE SIZE LIMIT

In this section we ask the question of whether Zipf’s la
can already be produced by a Bernoulli process. This qu
tion is important because if the answer is yes, then one c
not deduce the existence of any correlations for a stocha
process which obeys Zipf’s law. At first glance this questi
seems to have been answered to the negative, becaus
Bernoulli process leads to the log-normal distribution, whi
as we have argued can be numerically and analytically
tinguished from Zipf’ law. However, as we have alrea
stressed in the introduction there is an alternative way
perform the limit in 3.

Instead of parametrizing by the upper bound of wo
lengths we choose a lower bounde of word frequencies as
cutoff parameter. That is we neglect words that are rarer t
a fixed frequency parameter and study the subvocabula
(Wi)5(Wp>e)e for e→0 or rather for technical reason
(Wi)5(Wln p>f) for the cutoff parameterf→2`. What are
the consequences for a Bernoulli process?

Take example II.3 with state setA5$L1 ,L2 ,h% and
probabilitiesa5(a1 ,a2 ,a3), (ai51, max(ai)5a3. It is easy
to prove that the distribution of log frequencies of words
(Wln p>f) cannot converge to a normal distribution forf→
2`. First, assume that the log probabilities lna1 and lna2
are incommensurable~i.e., lna1 /ln a2 is irrational!. Then for
each normalized log probabilityf ~normalized by subtracting
ln a3! there is at most one pair (n1 ,n2) of natural numbers,
such thatw5n1 ln a11n2 ln a2 describing the normalized
log probability of all words withn1 symbolsL1 andn2 sym-
bols L2 and ending by definition with the blank symbolh.
Their number #w, which we call degeneracy ofw, is given by
the binomial coefficient.

#w5#w~n1 ,n2!5S n11n2

n1
D5:Binom~n11n2 ,n1!.

~17!

If ln a1 and lna2 are commensurable then

#w5( f 5n1lna11n2 ln a2
Binom~n11n2 ,n1! .

The limit casea15a2 leads to Mandelbrot’s model~see Ap-
pendix! where all words of the same length get the sa
probability. This will result in an exponential distribution o
w for any f . If on the other hand a1,a2 then
f °max$#w;wP@ f , f 1 ln a2#% is monotonically decreasing
This means that on the scale of lna2 the degeneracy #w is a
monotonically decreasing function ofw because one can ad
another symbolL1 ~there is no string length bound now! to a
string that realizes the global maximum up to somef without
moving beyondf 2 ln a2 . As for small enoughf it is pos-
sible to swap symbolsL2 by symbolsL1 without changingf
by more than lna2 the degeneracy #w will diverge to infinity
for w→2`. Therefore the standardized distribution functio
M f of log frequencies cannot have an inflection point a
thus does not converge to the normal distribution for cut
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parameterf→2`. If ln a1 and lna2 are incommensurable
then M f does not converge to a staircase function. One c
see that as follows. For an arbitrarily small gap sized.0
there is a Nd.0 s.t. for any n>Nd the frequenciesw
5n1 ln a11n2 ln a2 will fill the interval @n,n11# log a2

leaving only gaps of length<d. Only on these gaps isM f

constant. AsM f(Nd ln a2) will be arbitrarily close to 1 if the
cutoff f is small enough, the limit ofM f cannot contain a
staircase.

Lemma III.1:If the (K11)-state Bernoulli process of ex-
ample II.3 contains at least two incommensurable lo
probabilities of nonspace characters then the standardi
distribution functionM f converges neither to the normal dis
tribution nor to a staircase forf→2`.

Conjecture III.2:If the (K11)-state Bernoulli process of
example II.3 contains at least two incommensurable l
probabilities of nonspace characters then the standardi
distribution functionM f converges to the exponential distri
bution function forf→2`.

We have only the following idea of a heuristic proof fo
K52:

As above one sees that one can restrict oneself to an
terval @ f ,N ln a2#, whereuN ln a2u can be taken arbitrarily
large if u f u is large enough, because the compleme
@N ln a2,0# has arbitrarily smallm f measure. Pointsw
P@ f ,N ln a2# have a representationw5n1 ln a11n2 ln a2

with large n5n11n2 . By swapping steps lna1 by steps
ln a2 ~possible because of incommensurability! one can find
in a small neighborhood ofw a w85n18 ln a11n28 ln a2 with
high weight Binom(n181n28 ,n18). Thus, for any frequencyw
its degeneracy #w is locally determined by a dominant coef
ficient Binom (l ,k). Moving in steps of size2 ln a2 towards
w50 will result in either the dominant coefficient changin
Binom(l ,k)→Binom(l 21,k)5Binom(l ,k)( l 2k)/ l , which
is realized by just canceling one of the more common sy
bols L2 and keeping the number of the rarer symbolsL1

constant or by swappingm of the k rarer symbols intom8
.m more common ones: Binom(l ,k)→Binom(l 1m8

FIG. 9. The empirical distribution functions of the standardize
logarithm of word frequenciesz of a three state Bernoulli process
Admitted are those blank separated words obeying a word bo
~lower curves! and those obeying a frequency bound~upper curves!,
respectively:~i! L<3, ln p>210, ~ii ! L<5, ln p>225, ~iii ! L
<10, lnp>250, ~iv! L<40, lnp>2100.
n
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ed
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2m,k2m). In the first case the factorl of dominant coef-
ficients per step2 ln a2 is roughly constant but decreasin
with every step. The second case, however, will increasl
again. The total effect is that already for moderatef and
subsequent standardizationl is nearly constant for largel ,
whereas for smallerl the accumulation of the largerl terms
dominates so that an approximate exponential distribu
function results. Figures 9 and 10 show the numerical c
vergence of the central limitL→` to the normal distribution
and of the frequency bound limitf→2` to the exponential
distribution. The three-state Bernoulli process taken th
was determined by lna1 /ln a252p.

For a text of a natural language Figs. 11 and 12 show
the frequency bound limitf→2` also leads to a very good
approximation of the exponential distribution, i.e., to Zipf
law. The closest mean square distance is reached forf

nd

FIG. 10. The same as Fig. 9 for the rank statisticsf 85expz.

FIG. 11. The empirical distribution functions of the standardiz
logarithm of word frequenciesz of the Luther bible. Admitted are
only linguistic words with base frequenciesp ~normalized to the
most frequent word! satisfying ~i! p>0.05, ~ii ! p>0.01, ~iii ! p
>0.001,~iv! p>6.431024 ~i.e., words occurring>30 times!, ~v!
p>8.831025 ~i.e., occurring>5 times!, ~vi! p>0.
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1354 57G. TROLL AND P. BEIM GRABEN
corresponding to at leastf abs530 occurrences~part iv of the
figures!, the closest maximum distance for at least 5 occ
rences ~part v!. For still lower frequencies the sequenc
moves away from Zipf’s law presumably because the sta
tics deteriorates for words that are too rare relative to
given text. Thex2 test for the exponential distribution yield
at f abs530 the valuex25196. As P(x2>196)'10% the
hypothesis of an exponential distribution cannot be stati
cally rejected at a significance level of 5%, whereas the n
mal distribution can always be rejected with correspondi
P'0.

This shows that the frequency bound limit leading
Zipf’s law is much better realized in natural texts than th
central limit leading to a normal distribution. We think th
reason for this is that the gaps of missing rare letter wo
that perturb the central limit are much less critical for th
frequency bound limit because their number is overwhelm
by the number of long frequent letter words with simila
frequency.

IV. CONCLUSIONS

We have shown that two clearly distinguishable infini
size limits play a role in the frequency statistics of symbo
systems: the central limit leading typically to a normal di
tribution and the frequency limit leading typically to an ex
ponential distribution. Zipf’s law is realized by the frequenc
limit and not by the central limit as was claimed in the li
erature. Nevertheless, Zipf’s law is only a statistical pheno
enon, which appears already in a Bernoulli process. The
fore it does not reflect any dynamically nontrivial propertie
of the underlying system. In particular, it does not requ

FIG. 12. The same as Fig. 11 for the rank statisticsf 85expz.
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long range correlations or any correlations at all. Moreov
it does not require any pruning~forbidden letter sequences!
or is necessarily destroyed by pruning.
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APPENDIX: SOME MODELS FOR ZIPF’S LAW STUDIED
IN THE LITERATURE

The simplest model for Zipf’s law yielding a power law
distribution of word frequencies has been invented by M
delbrot ~cf. @3,5#!. One of his numerous suggestions was
degenerated Bernoulli process with the same probabilitp
for all letters and a different probabilityq for the space sym-
bol. As all words of lengthi get the same probabilitypiq this
leads to a geometrical distribution of word lengths. T
counting density is just the word numberKi5d(piq) where
K denotes the cardinality of the alphabet. Eliminatingi in
x5piq one obtains a power lawd(x)5(x/q) ln K/ln p of word
probabilities.

Other models of Mandelbrot generating the same po
law distribution for word frequencies simulate the evoluti
of the vocabulary of a language in time such as Mark
processes operating on word length and on the frequenc
word use. Furthermore, Mandelbrot has given a model in
pendent interpretation of Zipf’s law in terms of codin
theory: he asked how the word probabilities must be dist
uted in order to maximize the Shannon entropy of a mess
under the constraints of normalization and fixed avera
coding costs@6,3#. Assuming that coding costs of words a
proportional to the word length, the thermodynamical fo
malism provides a canonical ensemble for word probab
ties. However, this description leads to the first model o
degenerated Bernoulli process by interpreting the recipro
of the partition function as probabilityq of the space symbo
and the Shannon information of a genuine letter as the re
rocal ‘‘temperature of discourse.’’

In @7# Perline proves by using a variant of the central lim
theorem~Anscombe’s theorem! that a nontrivialm-state Ber-
noulli process, i.e., one that has more than one letter p
ability, generates log-normally distributed word frequenc
if one selects only words below a fixed word lengthL and
performs the limit by takingL→` ~for words of the same
lengthL this result is due to@3#!. Instead of examining the
rank statistics induced by the log-normal distribution d
rectly, he addresses the problem of retrieving the rank sta
tics of a Bernoulli process as a ‘‘broken stick’’ problem, i.e
the random division of the unit interval, and gives a
asymptotic formula for the slope of the log-linear rank-si
law in the upper tail of the log-normal distribution.
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