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Zipf's law is not a consequence of the central limit theorem

G. Troll and P. beim Graben
Nichtlineare Dynamik, UniversitaPotsdam D-14415 Potsdam, Germany
(Received 23 April 1997

It has been observed that the rank statistics of string frequencies of many symbolic s{esig@meord
frequencies of natural languagédsllows Zipf's law in good approximation. We show that, contrary to claims
in the literature, Zipf's law cannot be realized by the central limit thegsenThe observation that a log-
normal distribution of string frequencies yields an approximately Zipf-like rank statistics is actually mislead-
ing. Indeed, Zipf's law for the rank statistics is strictly equivalent to a power law distribution of frequencies.
There are two natural ways to perform the infinite size limit for the vocabulary. The first one is the method of
choice in the literature; it makes the upper word length bound tend to infinity and leads in the case of a
multistate Bernoulli process via a central limit theorem to a log-normal frequency distribution. An alternative
and for text samples actually better realizable way is to make the lower frequency bound tend to zero. This
limit procedure leads to a power law distribution and hence to Zipf's law—at least for Bernoulli processes and
to a very good approximation for natural languages where it passeg tiest. For the Bernoulli case we will
give a heuristic prooflS1063-651X98)07102-3

PACS numbds): 05.40:+j, 87.10+e

I. INTRODUCTION There have been many attempts to construct simple sto-
chastic processefBernoulli and Markoy and also other
This paper examines the meaning and the origin of Zipf'smodels generating this la¢e.g.,[6,3,5,4,7). See the Appen-
law [1] in the context of stochastic processes. First, we arelix for a short discussion. The arguments for a specific
going to state Zipf's law for symbolic systems. model were often largely phenomenological: by a least mean
Suppose we are given a finite or infinite string of symbols,square fit the models just yield a reasonable approximation
such as a text in a natural language or a DNA sequence of g zipf's law over some intermediate range of ranks.
gene. Identify a set of constituent segments or building The aim of this paper is first to clarify the meaning of
blocks. These may either suggest themselves in the specifiGipf's law by transforming it to a distribution law. Doing
context, such as proper linguistic words in the case of naturghijs, one can replace least mean square fits by choosing the
text or they may be just the finite strings in the general caseempirical mean and the empirical standard deviation as ap-
We will call them words anyway. Together they form the proximations of the mean and the standard deviation of the
vocabulary. Next, we identify families of finite subvocabu- distribution function and interpret the free parameters in Eq.
laries by introducing a parameter such as a fixed worq1) as functions of the mean and the standard deviation. Fur-
length, an upper length bound or—as we will argue for inthermore, one can now distinguish more easily between dis-
this paper—a lower frequency bound. Determine the multisefribution functions that yield a similar rank statistics. The
of word frequencie$pi}i ., , i.e., we keep multiple instances second aim is to show how Zipf's law can be generated

of frequencies, and order its elements according to their deprecisely and not only approximately by a broad class of
creasing size. Multiple instances of one frequency get constochastic processes.

§ecutive rank§. The new index is called their rank. Zipf's law |t is clear from the algorithmic definition of the rank or-
in the form given by Mandelbrof2] now states that large dering given above that the word frequency distribution is
enough samples close to the parameter limit obey approxiquivalent to the rank statistics. What is done in rank statis-

mately tics is just shift all word frequencies in such a way that they
become equidistant, or in other words such that their distri-

B (1) bution becomes uniform. This means analytically that we are
pr_(AJrr)“” given the Frobenius-Perron operator operating on the densi-

ties (or more generally the measures themselhaesl we are

wherer is the rank of the frequencp,, A, B, andp are  looking for the point map,—r associated with it. Details of
constants B,p>0). A suitable normalization condition the derivation can be found in Sec. Il.
leaves two free parameters, sayand p. Using this transformation formula one finds that Zipf's

The main questions connected with Zipf's law concern itslaw (1) is actually equivalent to an exponential distribution
universality, its origin, and in particular its consequencesof the logarithmed word frequencies, which amounts to a
such as short and long range correlations. It was claimed thgiower law distribution for the word frequencies themselves.
Zipf's law can be found in many symbolic systems in lin- This is sometimes called Zipf's second law. It is at odds with
guistics, genetics, and even beyond symbolic systems in sit& normal distribution suggested [id] and hence incompat-
ations, where the rank ordering of quantities other than probible with the central limit theorem. We are going to show
abilities is examined (e.g., examples in economjcs that for untruncated natural language texts the exponential
Examples treated in this paper are texts in natural languagedistribution is a better approximation than the normal distri-
DNA sequences, and Bernoulli and Markov processes. bution over the whole range of data and is even a good
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1r JESUETPTPrT e more suitable for finite samples of Bernoulli language mod-
P els or actual texts of natural languages where smaller word
frequencies are harder to find although in the case oLthe
—oo |imit they should be included already for moderate
because the letter frequencies vary considerably.

1]
1

,"_ II. ZIPF'S LAW FOR DISTRIBUTIONS

}f A. From word frequency to rank statistics

0.2t In this section we are going to study the relationship be-
] tween the distribution of word frequencies to the rank or-
g . , , , dered frequencies by means of the Frobenius-Perron opera-
2 o ¢ t : } ‘ tor. Our general setting is that of a stationary information
FIG. 1. The empirical distribution functions of the standardizedSOUrCe given by a stochastic pr_ogeéé\',dzA,P), whereA™
logarithm of word frequencies of several texts from German and IS the set of sequences over a finite Agtalled the alphabet
English books are in the neighborhood of the standardized expone@nd F » is the Borel field of subsets o", which is deter-
tial distribution function(upper dashed curyewhereas the distri- mined by the cylinder sets [a, ‘- anln={seAV;s
bution function of codons of a yeast gene is much closer to the=a; for n<i<m}; we assume thaP is a shift-invariant
standardized normal distribution functiglower dotted curve (i.e., stationary probability measure ok, so that we can
identify the cylinder sets with finite strings;[a, - amlm

approximation for small word frequencies. Figures 1 and 2=&n""*@m- LetW now be a subset of strings, called the total
show the standardized word frequency distribution and thyocabulary. _ o -
standardized rank statistics for several English and German 1he simplest case is thaW/ is just the set of all finite
texts and additionally for the codditriplet) distribution for _strmgs, i.e., the str_mlg vocabulary, but we are more interested
the DNA on a yeast chromosome. in the case where it is a true subset. For natural languages the
In certain cases such as for the DNA the normal distribyNatural choice of this subset is formed by linguistic words
tion is clearly the better approximation. Why? Using Ber-and the information source is given by a finite strifig
noulli processes as the simplest models we will show in Secalled the text. We are only interested in the value® ain
Il that they can actually realize two different limit theorems. W. Which we define by the relative frequencies of the words
In the case covered by the central limit theorem the infiniten the textT. For practical purposes this means that the text
size limit for the ensemble of word frequencies is performednust be long enough to permit a reliable estimaté>aind
by making the word length bound tend to infinity. How- ~ Short enough to yield approximately stationary word fre-
ever, there is an alternative way. Instead of parametrizing bfiuencies. o _
the word length one can introduce a lower frequency bound L€t (W;) be a nested sequence of finite subvocabularies
€ as a cutoff. We show numerically and prove heuristically(the ith step vocabulari¢gswvhose union isw. If W is the
that by taking Ine—— in the Bernoulli process one does String vocabulary we choqse the strlng_length as a parameter.
not obtain the normal distribution but the exponential one adn the other case we define two special types of finite sub-

a limit. Performing the limit in this way seems to us to be Vocabularies parametrized by the upper word length baund
and by the lower word probability boung] respectively: let

W, < be the set of words il of lengthl <L andW,,- . the
set of words with probabilitiep=e. We study the families
(W) =(Wi< )L and W;)=(Wp=)..

Denote byU; the multiset(i.e., keeping all instances of
the same elemenof relative frequencies of words W, ,
i.e.,U; has the same cardinality &¢ , which is the vocabu-
lary size denoted by W, . By “#” we denote the number of
elements in the set following this symbol.

Example 11.1:The first information source is determined
by the Luther bible, whose length is about 80° characters;

A is the set of small letters of the German alphabet together
with the blank and punctuation symbols; we define two dif-
ferent total vocabulariesV®=W'"9 s the linguistic vo-
cabulary consisting of all the bible’s proper names and Ger-
_ man words (#/'"9=23679) and W(® is the string

; vocabulary, i.e., the set of all substrings of the Luther bible;
: P(®) and P are determined by the relative frequencies of

FIG. 2. The empirical rank statistids(s) = exp z of the data of ~ WOrds inW®, W, respectively.

Fig. 1 as a function of the normalized rask The exponential Example 11.2:Take the DNA string of chromosome 11 of
distribution appears here as the dashed straightZipf's law), the ~ the yeast Saccharomyces cerevisiae strain S288C with length
normal distribution as the lower dotted curve. ca. 3. 10° over the alphabeia={A,G,C,T} of DNA

1000.

10.

0.1




57 ZIPF'S LAW IS NOT A CONSEQUENCE OF TH.. .. 1349

basesW is the string vocabulary; there is a special vocabu-tiple values in the multiseW, by perturbing them by an
lary W, _3= A3 consisting of what is called codofisase trip-  amount that is small relative to the minimal nonvanishing
lets) in genetics; #V,;;=4', i.e., 64 for the codons. spacing of neighboring values W; . The precise form of the
Example 11.3 (Perline 96)Here we take the +1)-state  perturbation is arbitrary. Essential is only that we arrive at a
Bernoulli process; the alphabet is the state et genuine seW,; and corresponding; with distribution func-
={L1,....Lx,0}, K=2, “[0" is the space character, with tjon M, . Alternatively, if we do not have additional symme-
probabilities a=(ay,....ax+1), %a=1, maxa=ac:1, tries enforcing degeneracy, we may interpret multiple occur-
which is supposed to be nongenerate in the sense th@énces of a frequency iN; as a finite size effect, i.e., we
{a;,....ac} contains at least Zdifferent elements; again interpret the multiseV; as an imprecise measurement of the
W) is the set of those substrings that are delimited by theimit frequency setv where all frequencies differ. The in-
space character and is supposed to simulate the linguistigerse rank mays * exists in any case.
vocabulary of a text in a natural languags? is the sub- Now, SupposeS :vi—>[0,1] is a rank map of’z“i The

string vocabulary, where we might ignore the space charaq,—ank ordered log-frequency curve is given P (x),x):x
ter.

Example 11.4 (Kanter, Kessler 95T he stochastic process
taken here is a Markov process, its state setAs
={0,1,...N—1}, N=2'; each statenc A is connected to
just two statesmg=2m modN, m;=2m modN+1. The

eV;}. Let » be the counting measure omA;
=11, ... . AW HAW;, i.e, vi({s})=1/#W, for se A; and O
on all other singletons of0,1]. Its distribution function is
Ni(s)=A4i(s), s[0,1], whereA;(s) is the closest element

transition matrixS; is determined by giving these 2 transi- =S n AiL.J{O}' OnceV is f|x_ed, the ra'?k map is determined

tions probabilitiest, 1—x, respectively, independent af, by its action on meaSLEes: its Frobenius-Perron opeﬂégt;lor

whereas transition matri®, does the same with probabilities transforms the measuye; to the counting measure :

1-x,X, respectively: The actual trial choosgsandS, with -

probabilities(biag B and 1- B, respectively. Psmi(A)=vi(A) for each setACA;, @
Next we define a probability space @h. We introduce _ _

the random variablé/; :\W,—U; , which associates to each Where Psii(A)=7(S *(A)) by definition of the

word w its probability p; take as ano algebra onU; the  Frobenius-Perron operator for measures. We ext8nd

power set and as a measure the counting measure. In thgonotonically decreasing but otherwise arbitrarily[691].

following we are more interested in the random variableHence, we get forseA; and A=[s,1] the equation

InY;, which we standardize introducingZ;=(InY; Mi(s,fl(s))I 1—N;(s) or Mi: 1-S onA;.

—m)/oi:Wi—V;, wherem is the mean and; the standard Now we leti —o. Then the counting distributioN; tends

deviation of InY;, V;=Z;(W;) as multiset. to the continuous uniform distribution d6,1], whose distri-
Let M; be the distribution function and; the probability  pution function is the identity map. Therefore

distribution ofZ; , i.e., we have

#geV;,q=x} S—S=1-M 2

my) eR. (2

M;(x)=u;({Z;=x})= ~
00 =wi{Zi=x}) pointwise becausél;— M. If the limit distribution M is

continuous it is surjective, hence the right inverse exists and
We assume now that the distribution functiods con-  we also have the existence of the inverse rank map

verge pointwise to a distribution functidvi with probability . .
distribution u: S *(s)=M"*(1-s) for s€]0,]]. (6)

Lo Remark Il.1:Observe that this formula remains valid also
Vxe R:M;(x) M (X). (3)  for not standardized distribution’®, and M. Furthermore,
Eq. (6) is equivalent to
The limit distribution .« can only then be continuous if the _
vocabulary size W; tends to infinity. Psp(A)=v(A) ™

Next we are going to introduce rank statistics. The ran- e .
dom variableZ is realized by a sequencey ;. ;; of fre- for each Borel seAC[0,1]. If the limit distribution M is

guencies. Usually, the rank map is regarded as a permutelticizrf’r"F'n'“'ouS one knows t_hat the convergencd\/bflls au}q-
on the index sefl; which orders the Sequencqjljeji ac- matically uniform. In this case we also ha® "*—S

cording to size. For our purposes it is more convenient t ointwise. In the following figures, both the rank maps
introduce the n.ormalized rank=r/#J; as the values of a (s)=exg(s) and the distribution functioM;(z) are plot-
I

tonicallv d . K o the int 01 ted. One sees readily that the uniform convergence of distri-
monotonically decreasingini map $into the interval0,1], butions contrasts with only pointwise convergence of rank
which satisfiesy);<qy iff s;=S/(q;)=S5(qy) = sk, so thatg;

. _ maps.
is ther;th largest value of qj)‘]i' We do this because we Definition 11.1: The generalized rank map for a distribu-

want to extend the rank map to the real line where it is morejon 4 is given by Eq.(7) or equivalently(6).
amenable to analytic calculations. The problem with this  Thus, we have shown the following:
definition of the rank map is that we have defined it on a Lemma Il.1: For the sequence of random Variab@s

sequence or equivalently on a multisét={q;};.;. But  which converges in distribution the rank maps converge
there is an easy solution. We remove the degeneracy of mupointwise to the rank map of the limit distribution.
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B. What distribution generates Zipf's law?

We show here that Zipf's law for the rank statistics is
equivalent to a power law of the word frequency distribution.

Let X be a real valued random variabjglaying the role of
InY; aboveg with meanm, standard deviatiorr, and distri-

bution functionEy. Furthermore, suppose the inverse rank

mapf:=S(;(1px of the random variable* obeys Zipf's law
with parameterd\=—-1, B>0, p>0, i.e.,

B
(S+A)P"

—1 —
expx(s) -

€S)
What is the form ofEx? The logarithm of the frequencies
obey Eq.(6):

x:=In S;(s)=In B—p In(s+A)=Ex*(1-s). (9
Solving the first part of this double equation ®and setting
the result into the second part yieldEx(X)=1+A
—BY exp(—x/p) for x>C, 0 otherwise, whereC e RU
{—o} is determined as the left border of the supporEgf,
i.e., Ex(x)=0 for all x<C. The requiremenEy(«)=1 im-
pliesA=0 andEy(C)=0 amounts t@B = e®; calculating the
mean and the standard deviation yiel@s=m—o and p
=, and consequently

1—e X=mtalo for x>m—o

Ex(x) (10

|0 otherwise
for the distribution ofX. For the random variable* with
realizationé=e* we receive the power functioBex(§)=1
—em=alog~1lo for ¢=eM 7 and 0O otherwise. Its density is
eexpx(f):Eéxpx(g):(llo') e(m—(r)/og—l—llo' for &=e™ 7, and

0 otherwise. Using the moments of Zipf's law can be
written as

exp(m—o)

5 1y

Sopx(S)= , se]o,1].

Now assume conversely that¥is exponentially distrib-
uted [Eq. (10)]. Then InS;x(9)=S(9=Ex(1-9)=
—olInstm—g, i.e., Zipf's law. In a log-log plot Zipf's rank
curve will be a line: witht=Ins, £(t):=In f(e)=—ot+m
—o wheret e ] —,0]. The limit casep=0 is equivalent to a
uniform distribution.

Now, take the log-frequency random variableYjrfor X.
Zipf's hypothesis is thaiS;i1 obeys approximately Zipf's
law. As eZi:Yill"i exp(—m/a;) we find that the limit distri-
bution function of Z; is exponential, i.e.,M(x)=1
—e~ 1) for x> —1,0 otherwise if and only if its limit rank
map obeys Zipf's law in its standardized form

o _ 1
lim Sextzﬁs)zsextz(s):e—s, se€]0,1]. (12

This is of course also true for discrete random variables.
Theorem 11.2:The empirical rank statistics of word fre-

G. TROLL AND P.
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C. What rank curve is generated by a process obeying
the central limit theorem?

Suppose the empirical distribution function converges
pointwise to the normal distribution:

i—o

X
VxeR:M;(Xx) —— No,1(X):f e‘yz/zdy. (13

Examples 11.3 and 1.4 satisfy this condition. For example
11.3 this does not follow directly from the central limit theo-
rem because the word length is not fixed. Taking the word
length as another random variable Perline show§7inby
using a variant of the central limit theorefdnscombe’s
theorem, cf. theorem 3.1 if8]) that the word frequencies
generated by the nondegenerate Bernoulli process of ex-
ample 11.3 converge in distribution to the normal distribu-
tion:

M|§|_—>N0,1 for L—oo. (14)

The stationary probability densities of the Markov process of
example 1.4 also seem to be approximately normally distrib-
uted if the number of states is large enough. For an important
special cas®=0 of this Markov process this is straightfor-
ward: The stationary probabilities are given [id] as p;
=ql/(1+q)* for all words containingj 1's and N=2"\.
However, from this one sees immediately that théoga-
rithm of the probabilities are equidistant and occ}@rtﬂmes,

so that the probabilities themselves are binomially distrib-
uted. ForL tending to infinity the binomial distribution con-
verges to the normal distribution by the theorem of de
Moivre and Laplace.

We know already that the log-normal distribution does
not imply Zipf's law analytically. This leads to two ques-
tions: (i) Does the log-normal distribution yield at least a
good approximation of Zipf's law®i) Does the log-normal
distribution yield a good approximation of the empirical dis-
tribution function of word frequencies?

1. Does the log-normal distribution yield a good approximation
to Zipf's law?

The rank statistics for the normal distribution is given by

Eq. (6) as
In f(s)=Ng1(1—s) for se]0,1. (15)

By Eg.(12) a good approximation to Zipf's standardized law
requires thatr: = (t) = Ngj(l— e')~—t—1, which is satis-
fied if {’=—1 and for{(t~0)~ — 1. Observe that~0 cor-
responds tos~1, that is to a high rank. However, as
(1) =In[1-Ng4(7)], we get

No(7)

Né,l( ) (18

JO=UH (==

Using the error function one can find an asymptotic expan-
sion of this expression for large, which corresponds to

quencies converges to Zipf's law if the empirical distributionlarge word frequenciesz’ (7)~— (1/7)[1—(1/72) = ---].
of log-frequencies converges in distribution to the exponenHowever, this is only in the neighborhood efl for 3
tial distribution. The convergence of distribution functions is — 7+ 1=0, i.e., 7~—0.75488, which is not in the

automatically uniform.

asymptotic region. Of course, it is possible to approximate
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1 2 3 z

FIG. 3. The empirical distribution functions of the standardized
logarithm of word frequencies of the Luther bible. Admitted are
only linguistic words of lengthi) L<2, (ii) L<3, (iii) L<5, (iv)
L=<7. The upper dashed curve is the standardized exponential, th

FIG. 5. The empirical distribution functions of the standardized
logarithm of word frequencieg of the Luther bible(dash-dotted
line) and of the yeast DNAcontinuous ling Admitted are only
s(?rings(blanks are canceleaf fixed length(i) L=2, (ii) L= 3, (iii)
L=5, (iv) L=7.

Zipf's law in a certain region by a Ie_ast mean square fit. This Still, the answer is not yet complete, because we have
has_ been the sta_nda_rd pr(_)cedure in the _Ilter_ature but the S€ampled all words, whereas the central limit of Etg) re-
lection of 'ghg region is arbnrayy and the fit will lead to even quires neglecting words of lengths above a cutoff parameter
larger deviations in other regions. L. It is reasonable to suspect that the statistics for longer
word lengthsL eventually deteriorates in a given finite text.
Therefore one might get a better approximation to the normal
distribution for intermediatd.. Figures 3, 4, 5, and 6 show

It is usually argued that the rank statistics of a broad rangénapshots for word lengtis=2,3,5,7 for the linguistic vo-
of samples obeys Zipf's law, i.e., the rank statistics is apcabulary of the Luther bible and the string vocabulary of the
proximately linear in a log-log plot. So it is claimed, for Luther bible together with the yeast DNA, respectively.
instance, by Kanter and Kessler that both the bible and th¥Vhereas for the linguistic vocabulary the normal distribution
codons of the yeast DNA satisfy Zipf's law. However, in the can be seen even for=2,3 only with some imagination, it
empirical distribution functions the qualitative differencesis much more visible fo. =2,3 in the string vocabulary of
are immediately apparent. Figures 1 and 2 show the worthe Luther bible as a transient state. For larger5,6,7 the
frequency distribution and rank statistics for several Engliskexponential distribution takes over again. This is in contrast
and German textsby Martin Luther, Immanuel Kant, to the central limit for DNA substrings, where one sees very
Charles Dickens, Frank Baum, and Charles Daywind ad-  distinctly the normal distribution as high limit.
ditionally the codon(triplet) distribution for the DNA on There is no point going much beyornd=7 because the
chromosome Il of the yeast Saccharomyces cerevisiae straimord number #V(1) as a function of word length reaches
S288C which was sequenced at Manchester Biotechnologys maximum atl =7 for both the linguistic words and the
Centre, UMIST, UK, 1992. All texts are clearly rather expo- substrings of the Luther bible, so that fior 7 the topologi-
nentially than normally distributedin particular for values cal entropy sequencé—In#W()/I deviates qualitatively
corresponding to larger word frequengi@ghereas the DNA  from a Bernoulli process.
is well approximated by a normal distribution over the whole  Of course, there is na priori reason why a Bernoulli
range. process(example 1.3 should be a good model for natural

lower dotted curve the normal distribution function.

2. Does the log-normal distribution yield a good approximation
of the empirical distribution function of word frequencies?

100.

0.001 0.01 0.1 1

0.1

L0001 0.001 ©0.01 0.1 s

FIG. 4. The same as Fig. 3 for the rank statisfits expz. FIG. 6. The same as Fig. 5 for the rank statisfits exz
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FIG. 7. The empirical distribution functions of the standardized
logarithm of word frequencieg of the Luther bible recoded in a
phonetic 5 letter alphabet. Admitted are only strigtanks are
canceledl of fixed length(i) L=2, (ii) L=3, (iii) L=5, (iv) L=7.

languages whose letter probabilities are obviously not inde
pendent. Choosing such a model and taking the word lengt

limit L—oo results only therefore in the normal distribution
because those short words that are made up completely

rare letters produce both the smallest word frequencies an
he

small numbers of letter permutations and thus generate t
left branch of the normal distribution. However, it is pre-
cisely these words that are missing in natural texts. For in
stance, the rarest 4 letters in English az™ " q,” * X,

and “j.” They are a few hundred times rarer than the most

common letter ‘e.” The Random House Unabridged, one of
the largest unabridged dictionaries of American English
contains only 21 words with 2 “x,” 1 with 3 %X,” 1 (a
hyphenated proper namevhich contains all three letters
“z,” " q, j." These vocabulary gaps are probably the
reason why the central limit alssee next sectignyields

exponential rather than normal distributions for natural texts ) k o
dhe binomial coefficient.

of the examined sizes of up to a few Mbytes. The differenc

of DNA sequences to natural languages on the level of the

Bernoulli processes is that their lettghe bases in genetics
frequencies vary much less and word gaps do not occur.

One way to test this hypothesis is to recode the text by
choosing a coarser code with a more balanced letter fre-
quency than the Latin alphabet. By this method the gaps o

rare letter words can be closed without changing the distri
bution of word lengths. In Figs. 7 and 8 we toa 5 letter

0.001 0.1!&01

FIG. 8. The same as Fig. 7 for the rank statisfits expe.

BEIM GRABEN

phonetic encoding. As predicted, the convergence to a nor-
mal distribution is now much better.

Ill. AN ALTERNATIVE WAY TO PERFORM
THE INFINITE SIZE LIMIT

In this section we ask the question of whether Zipf's law
can already be produced by a Bernoulli process. This ques-
tion is important because if the answer is yes, then one can-
not deduce the existence of any correlations for a stochastic
process which obeys Zipf's law. At first glance this question
seems to have been answered to the negative, because the
Bernoulli process leads to the log-normal distribution, which
as we have argued can be numerically and analytically dis-
tinguished from Zipf' law. However, as we have already
stressed in the introduction there is an alternative way to
perform the limit in 3.

Instead of parametrizing by the upper bound of word
lengths we choose a lower bourdf word frequencies as
cutoff parameter. That is we neglect words that are rarer than

fixed frequency parameter and study the subvocabularies

i)=(Wp=c). for e—~0 or rather for technical reasons

yvi) = (Wi p=) for the cutoff parametef— —c. What are

e consequences for a Bernoulli process?
Take example I.3 with state sea={L,,L,,[0} and
probabilitiesa=(a;,a,,a3), Za;=1, max@)=as. It is easy
to prove that the distribution of log frequencies of words in
(Winp=f) cannot converge to a normal distribution fbr-
—oo, First, assume that the log probabilitiesanand Ina,
are incommensurablg.e., Ina,/In a, is irrationa). Then for
each normalized log probabiliiy (normalized by subtracting

In ag) there is at most one pain(,n,) of natural numbers,

such thate=n; Ina;+n,In a, describing the normalized
log probability of all words withn; symbolsL; andn, sym-
bols L, and ending by definition with the blank symhial.
Their number #, which we call degeneracy &f, is given by

n,+n, ,
#goZ#(p(nl,nz):( n, )z:B|nom(n1+n2,nl).
17

In &, and Ina, are commensurable then

Ho= Ef:nllnal+n2 In azBinom(nl+ ny,Ny).

The limit casea; =a, leads to Mandelbrot’'s modésee Ap-
pendiX where all words of the same length get the same
probability. This will result in an exponential distribution of
¢ for any f. If on the other handa;<a, then
f>maxXx#¢;pe[f,f+In a,]} is monotonically decreasing.
This means that on the scale ofdn the degeneracy¢tis a
monotonically decreasing function gfbecause one can add
another symbol ; (there is no string length bound npto a
string that realizes the global maximum up to soiveithout
moving beyondf —In a,. As for small enouglf it is pos-
sible to swap symbolk, by symbolsL; without changingf

by more than Ira, the degeneracygtwill diverge to infinity

for ¢— — . Therefore the standardized distribution function
M; of log frequencies cannot have an inflection point and
thus does not converge to the normal distribution for cutoff



FIG. 9. The empirical distribution functions of the standardized

logarithm of word frequencies of a three state Bernoulli process.

Admitted are those blank separated words obeying a word bound

(lower curve$ and those obeying a frequency boung@per curves
respectively: (i) L<3, Inp=-10, (ii) L<5, Inp=-25, (iii) L
<10, Inp=-50, (iv) L<40, Inp=-100.

parameterf — —oo. If In &; and Ina, are incommensurable
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FIG. 10. The same as Fig. 9 for the rank statisfits expe.

m,k—m). In the first case the factor of dominant coef-
ficients per step-In a, is roughly constant but decreasing
with every step. The second case, however, will increase
again. The total effect is that already for moderétand
subsequent standardizatianis nearly constant for largk
whereas for smallelr the accumulation of the largérterms

thenM; does not converge to a staircase function. One cadominates so that an approximate exponential distribution

see that as follows. For an arbitrarily small gap s&e0
there is aNs>0s.t. for anyn=N; the frequenciese
=n,; Ina;+n, In a, will fill the interval [n,n+1]log a,
leaving only gaps of lengtk= 6. Only on these gaps i¥l;
constant. AV ;(N; In a,) will be arbitrarily close to 1 if the
cutoff f is small enough, the limit oM; cannot contain a
staircase.

function results. Figures 9 and 10 show the numerical con-
vergence of the central limit— < to the normal distribution
and of the frequency bound limft— —oo to the exponential
distribution. The three-state Bernoulli process taken there
was determined by la, /In a,=2.

For a text of a natural language Figs. 11 and 12 show that
the frequency bound limit— —< also leads to a very good

Lemma I11.1:If the (K+ 1)-state Bernoulli process of ex- approximation of the exponential distribution, i.e., to Zipf's
ample 1.3 contains at least two incommensurable logdaw. The closest mean square distance is reached fdr an
probabilities of nonspace characters then the standardized
distribution functionM; converges neither to the normal dis-
tribution nor to a staircase fdr— — .

Conjecture III.2:1f the (K+1)-state Bernoulli process of
example 1.3 contains at least two incommensurable log
probabilities of nonspace characters then the standardize
distribution functionM; converges to the exponential distri-
bution function forf — —oo.

We have only the following idea of a heuristic proof for
K=2:

As above one sees that one can restrict oneself to an ir
terval[f,N In a,], where|N In a,| can be taken arbitrarily
large if |f| is large enough, because the complemen
[N In a,,0] has arbitrarily smallu; measure. Pointsp
e[f,N In a,] have a representatiop=n, In a;+n, In a,
with large n=n;+n,. By swapping steps la; by steps
In a, (possible because of incommensurabjlioyie can find
in a small neighborhood af a ¢’ =nj In a;+n3 In a, with
high weight Binom(;+n;,n;). Thus, for any frequency
its degeneracy &is locally determined by a dominant coef-
ficient Binom (,k). Moving in steps of size-In a, towards

¢=0 will result in either the dominant coefficient changing FIG. 11. The empirical distribution functions of the standardized

Binom_(l ,k)—>3inom(| a 1’|_<) =Binom(l,k)(I—k)/I, which logarithm of word frequencies of the Luther bible. Admitted are
is realized by just canceling one of the more common symgny jinguistic words with base frequencigs (normalized to the

3 z

bols L, and keeping the number of the rarer symbbls
constant or by swapping of the k rarer symbols intan’
>m more common ones: Binomhk)— Binom(l+m’

most frequent word satisfying (i) p=0.05, (ii) p=0.01, (iii) p
=0.001,(iv) p=6.4x 10" (i.e., words occurring=30 times, (v)
p=8.8x 10 ° (i.e., occurring=5 times, (vi) p=0.
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long range correlations or any correlations at all. Moreover,
it does not require any prunindorbidden letter sequences
or is necessarily destroyed by pruning.
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APPENDIX: SOME MODELS FOR ZIPF'S LAW STUDIED
IN THE LITERATURE

The simplest model for Zipf's law yielding a power law
distribution of word frequencies has been invented by Man-
delbrot (cf. [3,5]). One of his numerous suggestions was a
degenerated Bernoulli process with the same probaljlity
for all letters and a different probability for the space sym-
bol. As all words of length get the same probability'q this

FIG. 12. The same as Fig. 11 for the rank statistics expe. leads to a geometrical distribution of word lengths. The

counting density is just the word numbiét=d(p'qg) where
corresponding to at lea$f,=30 occurrencefpart iv of the K denotes the cardinality of the alphabet. Eliminating
figureg, the closest maximum distance for at least 5 occurx=p'q one obtains a power lad(x) = (x/q)" P of word
rences (part V). For still lower frequencies the sequence probabilities.
moves away from Zipf's law presumably because the statis- Other models of Mandelbrot generating the same power
tics deteriorates for words that are too rare relative to théaw distribution for word frequencies simulate the evolution
given text. They? test for the exponential distribution yields Of the vocabulary of a language in time such as Markov
at f,—30 the valuey?=196. As P(x2=196)~10% the Processes operating on word length and on the frequency of
hypothesis of an exponential distribution cannot be statistiWord use. Furthermore, Man_de’lbrot has given a model inde-
cally rejected at a significance level of 5%, whereas the norP€ndent interpretation of Zipf's law in terms of coding

mal distribution can always be rejected with correspondin heor_y: he asked hO\.N t.he word probabilities must be distrib-
P~0. ted in order to maximize the Shannon entropy of a message

. I . under the constraints of normalization and fixed averaged
This shows that the frequency bound limit leading to di ina th di f d
Zipf's law is much better realized in natural texts than the° mgt'costli? ,3;|{.hAssur3|r;g ¢ ,?r;[ Ct(; 'r][% COStS(’jO wor SI ?re
. ; o . roportion word length, rmodynami r-
central limit leading to a normal distribution. We think the proportionat 1o the word 'eng © nermodynamicat 1o

o o malism provides a canonical ensemble for word probabili-
reason for this is that the gaps of missing rare letter wordgeg owever, this description leads to the first model of a

that perturb the central limit are much less critical for the yegenerated Bernoulli process by interpreting the reciprocal
frequency bound limit because their number is overwhelmegy the partition function as probability of the space symbol

by the number of long frequent letter words with similar nq the Shannon information of a genuine letter as the recip-
frequency. rocal “temperature of discourse.”

In [7] Perline proves by using a variant of the central limit
theorem(Anscombe’s theorejthat a nontriviaim-state Ber-
noulli process, i.e., one that has more than one letter prob-

We have shown that two clearly distinguishable infinite ability, generates log-normally distributed word frequencies
size limits play a role in the frequency statistics of symbolicif one selects only words below a fixed word lendgthand
systems: the central limit leading typically to a normal dis-performs the limit by takind-—« (for words of the same
tribution and the frequency limit leading typically to an ex- lengthL this result is due t¢3]). Instead of examining the
ponential distribution. Zipf's law is realized by the frequency rank statistics induced by the log-normal distribution di-
limit and not by the central limit as was claimed in the lit- rectly, he addresses the problem of retrieving the rank statis-
erature. Nevertheless, Zipf's law is only a statistical phenomtics of a Bernoulli process as a “broken stick” problem, i.e.,
enon, which appears already in a Bernoulli process. Therghe random division of the unit interval, and gives an
fore it does not reflect any dynamically nontrivial propertiesasymptotic formula for the slope of the log-linear rank-size
of the underlying system. In particular, it does not requirelaw in the upper tail of the log-normal distribution.

0.1 . . . 1 0.1[0‘0001 0.001 0.01 0.1 ‘55
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