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Complex-temperature partition function zeros of the Potts model on the honeycomb
and kagomélattices

Heiko Feldmann,* Robert Shrock,† and Shan-Ho Tsai‡

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840
~Received 27 August 1997!

We calculate complex-temperature~CT! zeros of the partition function for theq-state Potts model on the
honeycomb and kagome´ lattices for several values ofq. These give information on the CT phase diagrams. A
comparison of results obtained for different boundary conditions and a discussion of some CT singularities are
given. Among other results, our findings show that the Potts antiferromagnet withq54 and q55 on the
kagomélattice has no phase transition at either finite or zero temperature.@S1063-651X~98!06902-5#

PACS number~s!: 05.20.2y, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

The 2Dq-state Potts models@1,2# for variousq have been
of interest as examples of different universality classes
phase transitions and, forq53,4, as models for the adsorp
tion of gases on certain substrates. Theq52 Ising special
case has long served as a simple exactly solvable mod
cooperative phenomena. However, forq>3, the free energy
of the Potts model has never been calculated in closed f
for arbitrary temperature. It is thus worthwhile to obtain fu
ther information about the properties of the Potts model,
we shall do this in the present paper via calculations
complex-temperature~CT! zeros of the partition function o
the Potts model for the honeycomb and kagome´ lattices. One
of the motivations for this work is the recent calculation a
analysis of long low-temperature series for theq-state Potts
model on these lattices by Jensen, Guttmann, and Enting@3#.
Our results enable one to relate the CT singularities in th
modynamic quantities found in Ref.@3# to positions on the
CT phase boundaries of the respective models.

The study of statistical mechanical models with magne
field @4#, temperature@5–8#, or both@9# generalized from rea
to complex values has yielded interesting insights into
properties of these models. For a discrete spin model at t
peratureT and in an external magnetic fieldH, the partition
function Z is, up to a prefactor, a polynomial in the Boltz
mann weightsz(K) and m(h) containing dependence onK
5bJ andh5bH, whereb51/(kBT), andJ is the spin-spin
coupling. It is of interest to study the zeros ofZ ~i! in the
complexm plane for physicalT @4#; ~ii ! in the complexz
plane for physical~vanishing or nonvanishing! H @5#; and
~iii ! on theC2 manifold (m,z) when bothK andh are com-
plex @9#. Here we shall concentrate on case~ii !, i.e., Fisher
zeros. In the thermodynamic limit, via a coalescence of
ros, there forms a continuous locusB of points where the
free energy is nonanalytic. This locus serves as the unio
boundaries~whence the symbolB) of the various complex-
temperature phases. Thus, calculations of comp
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temperature partition function zeros on sufficiently large
nite lattices yield useful information on the CT pha
diagram in the thermodynamic limit.~Hereafter, to avoid
repetition, we shall simply refer to zeros of the partitio
function, it being understood that these are compl
temperature zeros.! In making inferences from such finite
lattice calculations aboutB in the thermodynamic limit it is
important to vary both the lattice size and the type of bou
ary conditions to have an accurate idea of the sensitivity
the locations of the zeros to these choices. Some of the
liest work on CT properties of spin models dealt with the
zeros@5,6#. Another major reason for early interest in the
properties of spin models was the fact that unphysical,
singularities complicated the analysis of low-temperature
ries expansions to get information about the location a
exponents of the physical phase transition@8#. A third reason
for interest in these properties is the fact that, as additio
sources of information about thermodynamic functions, th
can expedite progress toward exact solutions. Aside fr
well-understood exceptions@10#, CT singularities of thermo-
dynamic functions occur on the continuous locus of pointsB
where the free energy is nonanalytic. Hence, when inve
gating these singularities, it is useful to do so in conjunct
with a calculation of the zeros of the partition function
infer the approximate location of the phase boundaryB sepa-
rating various CT phases@12#. Interestingly, some of thes
singularities can be related directly to physical singulariti
by using duality, one can show an exact equivalence of
free energy of theq-state Potts antiferromagnet on a latti
L for the full temperature interval 0<T<` and the free
energy of theq-state Potts model on the dual lattice for
semi-infinite interval of complex temperatures@13#. This im-
plies the existence of two quite different types of CT sing
larities: the generic kind, which does not obey universality
various scaling relations@14,15#, and a special kind that doe
obey such properties and encodes information of dir
physical relevance. Although we consider the honeyco
and kagome´ lattices here, we mention that previous calcu
tions of zeros of the partition function for the Potts mod
with q>3 have been done on the triangular and square
tices @16–19#.

II. MODEL

The ~isotropic, nearest-neighbor! q-state Potts model on a
lattice L is defined by the partition function
1335 © 1998 The American Physical Society
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Z5 (
$sn%

e2bH ~2.1!

with the Hamiltonian

H52J (
^nn8&

dsnsn8
2H(

n
d1sn

, ~2.2!

wheresn51, . . . ,q are Zq-valued variables on each siten
PL, b5(kBT)21, and ^nn8& denotes pairs of neares
neighbor sites. The symmetry group of the Potts Hamilton
is the symmetric group onq objects,Sq . We use the notation
introduced above,K5bJ, h5bH, and

a5z215eK, ~2.3!

x5
eK21

Aq
. ~2.4!

The ~reduced! free energy per site is denoted asf 52bF
5 limNs→`Ns

21lnZ, whereNs denotes the number of sites

the lattice. There are actuallyq types of external fields tha
one may define, favoring the respective valuessn
51, . . . ,q; it suffices for our purposes to include only on
The order parameter~magnetization! is defined to bem
5(qM21)/(q21), where M5^s&5 limh→0] f /]h. With
this definition,m50 in the symmetric, disordered phase, a
m51 in the limit of saturated ferromagnet~FM! long-range
order. We consider the zero-field model,H50. ForJ.0 and
the dimensionality of interest here,d52, the q-state Potts
model has a phase transition from the symmetric, hi
temperature paramagnetic~PM! phase to a low-temperatur
phase involving spontaneous breaking of theSq symmetry
and onset of FM long-range order. This transition is contin
ous for 2<q<4 and first order forq>5. The critical expo-
nents and universality classes of the cases where the m
has second-order transitions are well understood@2,20#. The
q-state Potts model has the property of duality@1,2,21,22#,
which relates the partition function on a latticeL with tem-
perature parametera to the partition function on the dua
lattice with temperature parameter

ad[D~a!5
a1q21

a21
, i.e., xd5

1

x
. ~2.5!

Other exact results include formulas for the PM-FM tran
tion temperature on the square, triangular, and honeyc
lattices @1,2,22#, and calculations of the free energy at t
phase transition temperature, and of the related latent hea
q>5 @23#. No formula is known for the PM-FM transition
on the kagome´ lattice, although there have been a number
conjectures; for a recent discussion, see Ref.@3#. The case
J,0, i.e., the Potts antiferromagnet~AF! has also been o
interest because of its connection with graph colorings
the fact that, for certain lattices and values ofq, it exhibits
nonzero ground-state entropy@24,25#; for a recent discus-
sion, see@26,27# and references therein. Depending on t
type of lattice and the value ofq, the model can also have
phase with AFM long-range order. Forq>3 on the honey-
comb lattice there is no AFM phase@28,29#. For any lattice
n
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-
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-
b
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L, the partition function can be expressed in a form invo
ing a sum of powers ofq, which allows a generalization
from positive integerq to real ~or, indeed, complex! q, and
we shall use the generalization to realq at certain places
below. Reviews of the model include Refs.@2,17#.

On a finite lattice, theq-state Potts model partition func
tion Z is a polynomial in the Boltzmann weighta. We cal-
culate this polynomial by transfer matrix methods. This is
challenging numerical problem for large lattices, since
degree of the polynomial is equal to the number of bon
Nb5(D/2)Ns , where D is the coordination number, an
there is a very large range in the sizes of the coefficie
from q for the highest-degree termaNb to exponentially large
values for intermediate terms. The latter property is obvio
from the fact that forK50, i.e.,a51, the sum of the coef-
ficients inZ is qNs. From this, we then compute the zeros.
general property of the CT phase boundary for any latt
andq value is invariance under complex conjugation:B→B
asa→a* .

In addition to the locations of the curves comprising t
CT phase boundaryB inferred in the thermodynamic limi
from the zeros calculated on finite lattices, one can extr
further information. As one approaches the thermodyna
limit, so that one can define a density of zeros, this den
normally behaves near a singular pointas as @5,7#

g~s!;s12a, as s→0, ~2.6!

wheres denotes the arclength alongB away fromas ~so that
s5ua2asu as s→0) and where the singularity in the fre
energy atas is f sing;ua2asu22a @30#. If the partition func-
tion has a zero at some pointz0 with a multiplicity propor-
tional to the number of lattice sitesNs then this formula, Eq.
~2.6!, is modified by the addition of a term proportional to
delta functiond(s). In Ref.@11# it was proved~as theorem 6!
that for the Ising model on a lattice with odd coordinatio
number, this happens atz521. In particular, this occurs for
the Ising model on the honeycomb lattice~see further be-
low!. In Fig. 1 we show illustrative sections of the hone
comb and kagome´ lattices.

III. PARTITION FUNCTION ZEROS
ON THE HONEYCOMB LATTICE

A. Comparison with exactB for Ising case

In order to study the effects of the finite lattice size and
different boundary conditions, as well as checking the co
puter programs used, it is valuable to calculate the zeros
theq52 Ising case where the resulting locus of zeros can
compared with the exactly known CT phase boundaryB. As

FIG. 1. Honeycomb and kagome´ lattices to illustrate our con-
ventions for indicating sizes.
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FIG. 2. CT zeros in the complexa plane for the Ising (q52 Potts! model on a honeycomb lattice.~a! Left, size 9312 hexagons and
~fbc,pbc!; ~b! right, 10310 hexagons and~pbc,fbc!.
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noted above, these zeros, like the others to be presented
ther below, are calculated by a transfer matrix method. Fr
the known expression for the free energy, this boundary
determined in Ref.@31#; it is the locus of solutions to the
equation

122a16a222a31a422a~12a!2p50, ~3.1!

where23/2<p<3 @32#. This locus is shown in Figs. 2 an
3. Becauseq52 and the honeycomb lattice is bipartite, th
CT phase boundaryB and also the set of zeros are invaria
under the inversion map@33#. The CT boundary consists o
the union of two parts. The first is an arc of the unit circ
extending fromu5arg(a)5p/3 around througha521 to
u52p/3, while the second is a lima-bean-shaped curve
crosses the positive real axis at the PM-FM critical poi
aPM-FM,q52521A353.732 . . . and at thePM-AFM critical
point, aPM-AFM,q525aPM-FM,q52

21 522A350.267949 . . . .
These two parts intersect each other at multiple points at6 i ;
these multiple points are singular points ofB in the sense of
algebraic geometry@35#. The phase surrounding the origin
the a plane is the AFM phase; the one surrounding

FIG. 3. CT zeros for the Ising model on the honeycomb latt
of size 10310 hexagons and~pbc,fbc!D BC’s.
ur-
m
s

t
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e

infinite-temperature pointa51 is the PM phase, and the on
extending outsideB to complex infinity in all directions is
the FM phase@12#.

Before we start to present our results, we have to int
duce our notation for the sizes and orientations of the
tices. We recall first that the~infinite! honeycomb lattice is a
homopolygonal member, and the kagome´ lattice, a heteropo-
lygonal member, of the class of Archimedean lattices, i
regular tiling of the plane by one or more types of regu
polygons such that every vertex is equivalent to every ot
vertex@36#. An Archimedean lattice is thus uniquely define
by the ordered sequence of polygons that one traverse
making a circuit of any vertex. In standard mathemati
notation@36#, such a lattice is denotedL5() i pi

ai) wherepi

refers to the type of polygon andai denotes the number o
times that it appears consecutively in the product. In t
notation, the kagome´ lattice is denoted (3•6•3•6). The ho-
mopolygonal subset of Archimedean lattices~consisting of
tilings with only one type of regular polygon! is closed under
duality, but the heteropolygonal Archimedean lattices~con-
sisting of regular tilings using more than one type of po
gon! have duals that are not Archimedean lattices. In parti
lar, the dual of the kagome´ lattice, called the diced lattice, i
not Archimedean. This mathematical background will
useful below when we give results for the diced lattice.
indicate the size of a given lattice for both the honeyco
and kagome´ cases, we count the number of hexagons. As
illustration, the sizes of the honeycomb and kagome´ lattices
in Fig. 1 are 433 and 334 hexagons, respectively. Th
number of sites in a lattice is also dependent on the bound
conditions: with periodic boundary conditions in the horizo
tal direction for example, the sites on the left and right a
identified, while with free boundary conditions they a
counted independently from each other. As is evident fr
Fig. 1, a honeycomb lattice of size, in our notatio
Nx3Ny , is maximally squarelike if one takesNx slightly
larger thanNy .

Since we use duality at many points in this work, w
chose lattices that have natural dual lattices. This exclu
lattices that are periodic in both directions, for the followin

e
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reason: duality relies on the fact that every closed polyg
divides the lattice into at least two regions. However, a
tice with periodic boundary conditions in both direction
and hence with toroidal geometry, has the property that th
exist closed contours that do not divide the surface into
disjunct regions. Since boundary effects are, in general,
suppressed if one uses periodic boundary conditions in
many directions as possible, we use boundary conditions
are periodic in one direction and free in the other, i.e., cy
drical boundary conditions. Our notation for the bounda
conditions~BC’s! is ~fbc,pbc! for free and periodic BC’s in
the horizontal (x) and vertical (y) directions, respectively
~see Fig. 1!, and~pbc,fbc! for periodic and free BC’s in thex
andy directions. This notation makes explicit the direction
which the cylindrical boundary conditions are periodic.

Complex-temperature partition function zeros for theq
52 Ising case of the Potts model on the honeycomb lat
are shown in Fig. 2 for both~fbc,pbc! and ~pbc,fbc!. The
gray curves are the exactly known CT phase boundaryB. We
comment on several features, as follows.

~i! The partition function has a multiple zero atz521
with multiplicity }Ns for largeNs. This follows from theo-
rem 6 of Ref. @11# and corresponds to the term}(1
2z2)22 in the expression for the specific heatC in the FM
phase given as Eq.~3.12! in Ref. @31#; the apparent addi
tional singularity at the infinite-temperature pointz51 is not
relevant since the formula does not apply in that region.

~ii ! The zeros lie very close to the arcs protruding into
PM phase.

~iii ! There seems to be some repulsion of the zeros f
the multiple points ata56 i ~similar to what was seen in
Ref. @9#!.

~iv! For the ~fbc,pbc! case, the zeros on the unit circ
show no radial deviation.

~v! In general, the zeros calculated with the choice~fbc,
pbc! lie closer to the exact boundary curvesB than those
calculated with~pbc,fbc!.

~vi! The zeros lie on the outer side of the boundary
tween the PM and FM phase. This can be understood
consequence of the fact that with either the~fbc,pbc! or
~pbc,fbc! boundary conditions, the sites on the free bound
have a coordination number of two rather than the usuaD
53 for sites on an infinite honeycomb lattice. Hence,
ordering effect of the spin-spin interactions is commen
rately reduced, thereby reducing the finite-lattice manifes
tions of the ordered, FM phase, i.e., shifting the PM-F
boundary outwards.

Note that for the~fbc,pbc! choice, there is one site pe
hexagon at the boundary with only two instead of the us
D53 bonds. For the~pbc,fbc! BC’s, there are two of these
sites for each of the hexagons on the upper and lower bo
aries. This motivated us to formulate a third kind of boun
ary condition: starting from the~pbc,fbc! choice, we added
bonds connecting the boundary sites with fewer than th
bounds so that all sites on the lattice have the same coo
nation numberD53. We denote this choice as~pbc,fbc! D .
The zeros calculated with this third choice of boundary c
ditions are plotted in Fig. 3. The main difference relative
the previous two choices of BC’s is that the zeros in
n
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Re(a)>0 half plane have less scatter, lie closer to the ex
boundaryB, and also, in some cases, lie inside the PM-F
phase boundary. The zeros with Re(a)<0 are less scattere
than those with the~pbc,fbc! choice and track the arc of th
unit circle well, although they do not, in general, lie on it,
was the case with the choice~fbc,pbc!. The conclusion from
this comparison with exactly known results is that, if one d
not know the exact boundaryB to begin with, one would be
able, by combining results on zeros calculated with differ
boundary conditions, to reconstruct it with reasonable ac
racy.

The density of zeros onB near the physical PM-FM tran
sition is consistent with vanishing according to Eq.~2.6! with
a50, i.e., g;ua2aPM-FM,q52u as ua2aPM-FM,q52u→0. By
thea→1/a symmetry, the same is true of the PM-AFM tra
sition. The situation atz521 is more complicated becaus
the partition function has an isolated zero of multiplici
scaling like the lattice size there; consequently, as discus
above, the densityg has a delta function term}d(s) as well
as its usual term~2.6!, wheres denotes the arclength onB
away from the pointz521. The analysis of Ref.@31# found
that at z521, aside from the leading singularity;(1
1z)22 in the specific heat, there is also a subleading lo
rithmic divergence; it follows that the density of zeros onB
near toz521 has, in addition to thed function term, a term
that vanishes likes. The zeros in Figs. 2 and 3 are consiste
with this.

B. q53 case

For generalq, from duality and a star-triangle relation, a
equation yielding the value of the PM-FM transition poi
has been derived@22#, viz., x323x2Aq50, or, in terms of
a,

a323a223~q21!a2q213q2150. ~3.2!

For 0,q,4, this equation has three~distinct! real roots,
while for q.4 ~and the formal valuesq<0) it has one real
root. The motion of the real roots as a function ofq is plotted
in Fig. 4.

For q53, the solutions are

a1,q535aPM-FM,q535112A3cos~p/18!54.41147 . . . ,
~3.3!

FIG. 4. Real roots of Eq.~3.2!, as a function ofq.
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57 1339COMPLEX-TEMPERATURE PARTITION FUNCTION . . .
a2,q53512A3cos~p/18!13sin~p/18!520.1847925 . . .
~3.4!

and

a3,q53512A3cos~p/18!23sin~p/18!521.22668 . . . .
~3.5!

The pointaPM-FM,q53 is the physical PM-FM critical point.
As discussed in Ref.@29#, if one follows the roots of Eq.
~3.2! asq is changed continuously, one sees that the mid
root a2 decreases from the PM-AFM critical point 22A3 for
q52 through 0 atqz5(31A5)/252.618 . . . to thenega-
tive value ~3.4! for q53. This reflects the fact that asq
increases from 2 toqz , the physical AFM phase is squeeze
out.

Our zeros of the partition function for theq53 case on
the honeycomb lattice are shown in Figs. 5–7 for the th
types of boundary conditions discussed before.

In all three plots, the rootsaPM-FM,q53 anda3,q53 corre-
spond very well to points where the CT phase bounda

FIG. 5. CT partition function zeros in thea plane for theq
53 Potts model on a honeycomb lattice of size 836 hexagons and
boundary conditions of type~fbc,pbc!.

FIG. 6. CT partition function zeros in thea plane for theq
53 Potts model on a honeycomb lattice of size 836 hexagons and
boundary conditions of type~pbc,fbc!.
le

e

s

comprisingB ~as inferred for the thermodynamic limit from
these zeros on finite lattices! cross the real axis. Hence, on
anticipates that a CT phase boundary might cross the
axis at the value of the middle root,a2,q53520.1848 . . . .
From the zeros in Figs. 5–7, one can indeed infer that in
thermodynamic limit a CT phase boundary curve could cr
the real axis at this point. Since the specific heat expon
has the known valuea51/3 for this model@2#, it follows
from Eq. ~2.6! that the density of zeros near the physic
PM-FM transition point vanishes likeg(s);s2/3, wheres is
the arclength onB away from this point. This is consisten
with the calculated zeros.

Further, we see arcs protruding into the PM phase, end
at complex conjugate ~c.c.! points ae ,ae* 50.37(2)
61.29(3)i , where the numbers in parentheses refer to
estimated uncertainties in the final digits. Evidently, the
are the analogues forq53 of the exactly known arcs for the
Ising q52 case. While the arcs in the Ising case have e
points on the unit circle at anglesu56p/3, the endpoints in
the q53 case lie slightly farther out from the origin, a
uaeu.1.3, and have slightly larger anglesu;675°. We find
that this trend is true for largerq values also, i.e.,uaeu and
arg(ae) increase with increasingq.

In addition, there are at least two more points at wh
curves of zeros cross the reala axis, ata5al 522.77(3)
and ata520.65(2). In Ref. @13# it was shown that if the
q-state Potts antiferromagnet on the dual latticeLd has a
PM-AFM transition ataPM-AFM,Ld

, then the dual image o

this, namely,D(aPM-AFM,Ld
)5al ,L , is the leftmost point in

the a plane whereB crosses the real axis. Since the PM
AFM point satisfies 0<aPM-AFM,Ld

,1, it follows that the

dual imageal ,L satisfies2`,al ,L<2(q21). In particu-
lar, for q53, this connection was used, in conjunction with
precisely measured value ofaPM-AFM,t,q53 on the triangular
(t) lattice @37# to infer the value ofal for the model on the
honeycomb ~hc! lattice: ahc,l ,q535D(aPM-AFM,t,q53)5
2(2.7645460.00015), i.e., zhc,l ,q535ahc,l ,q53

21 5
2(0.3617260.00002). Our zeros are in agreement with th
result. This point also manifests itself as a singularity evid
from low-temperature series for the specific heatC, magne-
tization m, and susceptibilityx, which yield the valuez5

FIG. 7. CT partition function zeros in thea plane for theq
53 Potts model on a honeycomb lattice of size 836 hexagons and
boundary conditions of type~pbc,fbc!D .
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20.36360.003@3#. Using duality and the weakly first orde
nature of the physical PM-AFM transition of theq53 Potts
antiferromagnet, it follows that the free energy also has
same weakly first order singularity atahc,l ,q53. The low-
temperature series analysis of Ref.@3# found evidence for a
continuous transition at this point, with exponentsa l 50.5,
b l 50.11, andg l 51.15. We have repeated the series ana
sis with dlog Pade´ approximants~PA’s! and differential ap-
proximants~DA’s! @38#. Our DA results also yielda.0.5;
our PA’s did not locate the singularity with sufficient prec
sion to infer a reliable value fora. Given the duality and the
fact thata5a8 for the physical PM-AFM transition of the
q53 Potts AF on the triangular lattice, it follows that th
singularity in the free energy of theq53 Potts model on the
honeycomb lattice atal must also be the same as a
proached from the right or left. Since the singularity in t
internal energy at a singular pointas is Using;ua2asu12a,
one normally assigns the formal valuea51 to a first order
transition. A possible way of reconciling these results is
observe that if a first-order transition occurs superimpo
with a divergent specific heat, then one could get a value
a,1 in fitting the transition. For example, consider an illu
trative internal energy function that behaves near a ph
transition point like

U~T!;Uanalytic1c1,1Q~T2Tc!1c2,1uT2Tcu1/2 ~3.6!

for T↘Tc , and similarly forT↗Tc , with the coefficients
replaced byc1,2 andc2,2 . Here,Uanalytic denotes terms tha
are analytic nearTc and Q(x) is the step function,Q(x)
51 if x.0 and 0 otherwise. As one approachedTc from
above~below!, a high-temperature~low-temperature! series
analysis would givea51/2, but the transition would still be
first order because of the discontinuous term. A one-si
version of this behavior occurs in the six-vertex model
the ferroelectric compound potassium dihydrogen phosp
~KDP! @39#; in that case, the form~3.6! applies for the high-
temperature side, whileU is a constant on the low
temperature side.

Another source of information ona is the density of ze-
ros. However, it is difficult to use this to obtain an accura
value ofa. For example, Ref.@19# included calculations of
zeros for theq-state square-lattice Potts model not just
the valuesq53,4 where the PM-FM transition is continuou
but also for the valuesq55 and 6, where this PM-FM tran
sition is first order; see Figs. 3 and 4 therein. For these ca
one would formally seta51 as mentioned above, so th
Eq. ~2.6! would predict that the densityg of zeros should
remain essentially constant up to the endpoint of the dis
bution ~of course, the positivity of the coefficients of th
terms in the partition function means that for a finite lattic
there cannot be any zeros on the positive real axis in thea or
z plane!. This is consistent with the plots of zeros for the
q55 and 6 cases, but it would be difficult to extract
accurate estimate ofa from those plots. Below we sha
present a similar plot for another case where the PM-
transition is known to be first order, namely theq55 Potts
model on the honeycomb lattice, and a similar comment
plies to this plot.

Further CT singularities and their relation with the boun
aryB will be discussed elsewhere@40#. Our calculations also
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suggest that there are several unphysical O phases that
lap with parts of the negative reala axis. There may be othe
O phases that do not touch the real axis, but the resolutio
not high enough to make a definitive statement here@12#.

Concerning the sensitivity of the zeros to lattice bound
conditions, several remarks are in order. The zeros in
Re(a)>0 half plane are relatively insensitive to the
boundary conditions. However, certain features of the ze
in the Re(a),0 half-plane do show such sensitivity. This
similar to what was found from a comparative study of d
ferent boundary conditions for the zeros ofZ for the q-state
Potts model on the square lattice for several values oq
@17,19# ~see also Ref.@41#!.

We have carried out similar calculations of zeros for t
q54 Potts model on the honeycomb lattice, and these
be reported in Ref.@40#.

C. q55 case

It is also of interest to investigate a value ofq in the range
where the PM-FM transition is first order, i.e.,q>5. We
have done this for the valueq55, and we show a resulting
plot of zeros in Fig. 8. Here, Eq.~3.2! has the single rea
root, which is the PM-FM critical point,

aPM-FM,q555221/3351/2~1151/2!1/3

121/3351/2~1151/2!21/31155.5298 . . . .

~3.7!

Since the Potts antiferromagnet withq53 andq54 on the
triangular lattice has, respectively, a finite-temperature P
AFM phase transition@42,37# and a zero-temperature critica
point @25#, it is expected that forq>5, the model is disor-
dered for all temperatures. This, together with the connec
discussed in Ref.@13#, would imply that the leftmost point a

FIG. 8. CT zeros ofZ in the a plane for theq55 Potts model
on a honeycomb lattice of size 736 hexagons and boundary con
ditions of type~fbc,pbc!.
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whichB crosses the real axis for theq55 Potts model on the
honeycomb lattice isal ,24. Our zeros are consistent wit
this.

D. Further discussion

It is a general feature of the maximal~or sole! real solu-
tion of Eq.~3.2!, i.e.,aPM-FM, that it increases monotonicall
with q for q>0. This is evident in Fig. 4 and reflects th
basic thermodynamic property that asq increases, the spin
become ‘‘floppier,’’ and one must go to lower temperature
obtain FM long-range order. In addition to the features
ready discussed, we note that~i! the leftmost point whereB
crosses the reala axis al moves to the left asq increases;
and~ii ! the points whereB crosses the imaginary axis mov
out from the origin asq increases. Both of these features c
be understood, as discussed directly above, by the redu
in the size of the~FM! ordered phase asq increases.

Because of the duality relation, these partition functi
zeros, in thea plane, of theq-state Potts model on the hon
eycomb lattice also yield equivalent zeros of the same mo
on the dual, triangular lattice in the plane of the variablead
given in Eq.~2.5!. A comparison of the plots calculated wit
different boundary conditions is valuable since this give
measure of the effects of these boundary conditions~see also
Refs.@16,41#!.

IV. PARTITION FUNCTION ZEROS
ON THE KAGOMÉ LATTICE

A. Comparison with exactB for Ising q52 case

For our calculations of zeros of Potts model on t
kagomélattice, two of the boundary conditions that we u
are ~pbc,fbc! and ~pbc,fbc! D , where nowD54. The third
can be described as follows: we start on the lattice that is
dual to kagome´, namely the diced lattice, and impos
~pbc,fbc! boundary conditions; then we transform the resu
back to the kagome´ lattice by the duality map ona, Eq.~2.5!.
To save space, for each value ofq, we only show results for
the first two of these choices of boundary conditions. F
q52 these are given in Figs. 9 and 10. The exact CT ph
boundaryB is given by the locus of solutions of the equatio

a8118a4124a212124~11a2!~12a2!2p50, ~4.1!

FIG. 9. CT zeros ofZ in the a plane for the Ising model on a
kagomélattice with 436 hexagons and~pbc,fbc! boundary condi-
tions.
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where23/2<p<3 @32#. Because the coordination numb
of the kagome´ lattice is even, this locus is symmetric und
a→2a. In Ref. @11#, the locus was plotted in thez and u
5z2 planes~see also Ref.@43#!. Here it is shown as the gra
curves in thea plane, consisting of a ‘‘dumbell’’ part and a
complex conjugate pair of circular arcs which intersect
dumbell at four multiple points~the analytic expressions fo
which are given in Ref.@11#!. The inside of the dumbel
region is the PM phase, the c.c. regions between the nar
neck of the dumbell and the circular arcs are O phases,
the region outside ofB and extending to complex infinity is
the ~CT extension of the! FM phase. The PM-FM critical
point is given by akag,PM-FM,q5252akag,l ,q52531/4(2
2A3)21/252.542 . . . . Just as there is no physical AFM
phase ~owing to the frustration of the Ising AF on th
kagomélattice!, so also there is no complex-temperature e
tension thereof. Comparing the zeros calculated with the
ferent boundary conditions, we find that with the~pbc,fbc!
choice, the zeros on the neck of the dumbell and on the o
circular arcs track the exact curves well, while those on
right ~left! lie slightly outside~inside! the CT phase bound
aries. With the~pbc,fbc! boundary conditions, not all site
have even coordination number, so thatZ contains some odd
powers ofa, and hence thea→2a symmetry of the exact
boundary is not precisely maintained by the zeros. In pa
ing, we note that because the sites on the upper and lo
boundaries have odd coordination numberD53, theorem 6
of Ref. @11# implies thatZ(z521)50, and this zero~which
is multiple! is evident in Fig. 9. For the~pbc,fbc! D boundary
conditions, ~i! most of the zeros near to the dumbell l
closer to the exact curves, but the zeros near the arcs
farther away from them, as compared with the situation
the ~pbc,fbc! choice; and~ii ! Z, and hence its zeros, is in
variant under the negationa→2a, in contrast to case with
the ~pbc,fbc! case;~iii ! because all sites have even coordin
tion number, there is no zero inZ at z521. For both types
of boundary conditions, the density of zeros in the vicinity
the PM-FM critical pointakag,PM-FM,q52 decreases in a man
ner consistent with the form from Eq.~2.6! with a50 for the
2D Ising model, viz.,g;s as s→0, wheres the arclength
alongB away fromaPM-FM,q52.

FIG. 10. CT zeros ofZ in the a plane for the Ising model on a
kagomélattice with 436 hexagons and~pbc,fbc!D boundary con-
ditions.



e

on
t,
fo
r
n
e
io
t

iti
e.
hi

ig

e

that
the

ent

nt

M

he
red

at

i-
an-

del
d

e

e

e

1342 57HEIKO FELDMANN, ROBERT SHROCK, AND SHAN-HO TSAI
B. q53 case

We show our zeros ofZ for the q53 Potts model on the
kagomélattice in Figs. 11 and 12. In this case we use lattic
of sizesNx3Ny with Ny larger thanNx in order to compen-
sate for the fact that the free boundaries are in they direction
and free, as contrasted with periodic, boundary conditi
introduce greater finite-size effects. The zeros suggest tha
the thermodynamic limit, the inferred CT phase diagram
the q53 kagome´ lattice may involve somewhat simple
boundary curves than was the case for the same model o
honeycomb lattice. There is a high-temperature PM phas
low-temperature FM phase, and there are strong indicat
of a third CT phase whose right-hand boundary crosses
real axis ata50, corresponding to a zero-temperature cr
cal point of theq53 Potts antiferromagnet on this lattic
This is in good agreement with the known property that t
model does have such aT50 critical point ~which can be
related to theT50 critical point of theq54 Potts antiferro-
magnet on the triangular lattice! @44,45#. The inferred posi-
tion where the CT boundary crosses the real axis on the r
is atakag,PM-FM,q5352.84(4). This is in accord, to within the
uncertainty, with the value ofakag,PM-FM,q5352.87646(4)
@i.e., zkag,PM-FM,q5350.347650(5)# obtained from series
analysis @3#. The left-hand boundary of the third phas
crosses the real axis at abouta520.96(3). From Fig. 12,
where the boundary between the~CT extensions of the! PM

FIG. 11. CT zeros ofZ in thea plane for theq53 Potts model
on a kagome´ lattice of size 438 hexagons and~pbc,fbc! boundary
conditions.

FIG. 12. CT zeros ofZ for the q53 Potts model on a kagoḿ
lattice of size 438 hexagons and~pbc,fbc!D boundary conditions.
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and the FM phases is probably best represented, we infer
the leftmost point where this CT phase boundary crosses
real axis is atakag,l ,q53522.54(6). This point is mani-
fested as a singularity in thermodynamic quantities evid
in low-temperature series analysis, which obtainsakag,l ,q53
522.486(3) @i.e., zkag,l ,q53520.4023(5)#. Although the
CT phase boundary is not symmetric undera→2a as was
true for q52 on this lattice, one can still discern a remna
of the dumbell shape that occurred for theq52 case. As
before for the honeycomb lattice withq53, theg;s2/3 de-
crease in the density of zeros in the vicinity of the PM-F
critical point is consistent with the calculated zeros.

C. Caseq54

For q54, we present our results in Figs. 13 and 14. T
main differences between the locus of zeros, as compa
with the case ofq53 is, first, that the crossing that occurs
a50 for q53 is shifted to a negative value,a520.21(2)
for q54. This demonstrates that theq54 Potts antiferro-
magnet on the kagome´ lattice has no PM-AFM phase trans
tion ~or any hypothetical non-symmetry-breaking phase tr
sition! at finite temperature or any critical point atT50. This
conclusion also follows forq55 since increasingq beyond
4 has the effect of making the spins floppier and the mo
more disordered. Forq>6, this conclusion has been prove

FIG. 13. CT zeros ofZ for the q54 Potts model on a kagoḿ
lattice of size 438 hexagons and~pbc,fbc! boundary conditions.

FIG. 14. CT zeros ofZ for the q54 Potts model on a kagoḿ
lattice of size 438 hexagons and~pbc,fbc!D boundary conditions.
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rigorously @28#. Second, it appears that the previously p
sumably closed inner ring of zeros has now opened a
leftmost point, which would imply that now there would b
only two phases~with their CT extensions!, the PM and FM.
The values inferred forakag,PM-FM,q54 and akag,l ,q54 are in
accord with the values obtained from series analysis@3#.
Since the specific heat critical exponenta52/3 for the q
54 Potts model on 2D lattices, Eq.~2.6! gives g;s1/3 for
the manner in which the density of zeros vanishes as
approaches the PM-FM critical point along the CT pha
boundary. In particular, this implies that the decrease in d
sity should be less rapid forq54 than forq53, and, indeed,
this is evident from a comparison of our plots of zeros
these two cases on the kagome´ lattice.

D. Partition function zeros on the diced lattice

As with the honeycomb lattice and its dual, the triangu
lattice, our zeros, in thea plane, of the partition function for
the q-state Potts model on the kagome´ lattice also yield
equivalent zeros of the same model on the lattice that is d
to the kagome´ lattice, in the plane of the variablead given in
Eq. ~2.5!. Henceforth, we shall suppress the subscriptd on
ad . This dual lattice is called the diced lattice; as discus
above, it is not an Archimedean lattice@36#; rather, it is a
tiling of the plane with identical rhombi such that, as o
traverses a circuit along the edges of each rhombus,
passes vertices with coordination number 3,6,3,6 in
quence. Thus, in standard mathematical notation, the d
lattice is the lattice@3•6•3•6# dual to the (3•6•3•6)
~5kagomé! lattice. Some relevant properties of the diced l
tice are noted in~Table II of! Ref. @27#. Although the faces of
the diced lattice are identical, the vertices are not~this is the
dual of the property that the vertices of an Archimede
lattice are identical but the faces are, in general, not, sinc
Archimedean lattice can consist of more than one type
regular polygon!. In particular, the diced lattice has vertice
of two different types: one with an odd degre
~5coordination number! D53, and the other with even de
gree,D56. Indeed, the diced lattice is bipartite, and its tw
sublattices, which we may denoteL3 andL6, are comprised
of the vertices with degreeD53 and D56, respectively.
The vertices in theL3 andL6 sublattices occupy the respe
tive fractionsf 352/3 andf 651/3 of all the vertices. This is
quite different from bipartite Archimedean lattices, where t
vertices on each of the two sublattices occupy the same f
tion, f 51/2, of the total number of vertices~as a conse-
quence of the fact that on an Archimedean lattice, all verti
are equivalent!.

For our discussion of the CT phase diagrams of
q-state Potts model withq53,4 on the diced lattice, it is
instructive to begin by discussing theq52 case, for which
one can use exact results on the free energy. The CT p
diagram is shown in Fig. 15. The exact CT phase boundarB
@42,11# is shown as the dark solid curve. Using duality a
thez→2z symmetry of the boundary for the Ising model o
the kagome´ lattice ~the latter of which follows from the even
coordination number of that lattice!, it follows that theB in
Fig. 15 for the Ising model on the diced lattice is the same
B in the v plane for the model on the kagome´ lattice, where
v5(12z)/(11z). Note that although the physical FM an
-
ts
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AFM phases are disjoint, the respective comple
temperature extensions of these phases are analytically
nected. The reason for this is that, in contrast to bipar
Archimedean lattices, the two sublatticesL3 and L6 of the
diced lattice do not occupy the same fraction of the to
lattice. Thus, reverting to conventional Ising model notati
for this discussion, let us defineML3

and ML6
as the mag-

netizations of the sublatticesL3 andL6 andMunif andM stag
as the uniform and staggered magnetizations, all per
area of the total lattice, with

Munif5ML3
1ML6

, ~4.2!

M stag5ML3
2ML6

. ~4.3!

If the present lattice had been Archimedean, with each s
lattice occupying a fraction 1/2 of the total, thenM stagwould
vanish identically not just in the PM phase but also in t
FM phase, andMunif would vanish identically not just in the
PM phase but also the AFM phase, so that the FM and A
phases, and their complex-temperature extensions, could
be analytically connected with each other. However, beca
the sublattices of the diced lattice occupy different fractio
of the total lattice, it follows that in the limit of complete
sublattice spin ordering,ML3

52/3 andML6
51/3 and hence,

besides the obvious result,Munif(a5`)51, one has

Munif~a50!5 1
3 , ~4.4!

M stag~a5`!5 1
3 , ~4.5!

M stag~a50!51. ~4.6!

FIG. 15. CT zeros ofZ for the Ising model on a diced lattice
obtained via duality from a kagome´ lattice of size 438 hexagons
and ~pbc,fbc!D boundary conditions.
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That is, the uniform magnetizationMunif does not vanish
even in the region of complete sublattice magnetizations
opposite sign, atT50 for J,0, i.e.,a50, and the staggere
magnetizationM stag does not vanish even in the limit o
complete sublattice magnetizations of the same sign, aT
50 for J.0, i.e., a5`. Hence, there exist paths that co
nect the pointsa5` and a50 in the complexa plane. Of
course, if one restricts to the physical temperature inte
0<a<`, then the physical FM and AFM phases cannot
analytically connected, since they are separated by the
phase, where bothM unif and M stag vanish identically. How-
ever, the complex-temperature extensions of the FM
AFM phases are analytically connected, as is shown by
existence of the paths alluded to above.

The CT phase diagram is thus as follows~see Fig. 15!:
First, there is a symmetric, high-temperature PM ph
around the pointa51 that includes the intervala1,a
,a1

21 on the real axis, where

a15 1
2 ~11A3!@12~2A323!1/2#50.43542 . . . . ~4.7!

Second, there is the single complex-temperature extensio
the two different physical FM and AFM phases; this exte
sion includes the intervals2`<a,a1 and a1

21,a<` on
the real axis„see Eq.~4.12! in Ref. @11#… and extends out-
ward to complex infinity in thea plane. We label this phas
as CT~A!FM. Third, there is a complex-conjugate pair of
phases. In Fig. 15 we have shown the zeros computed
one particular set of boundary conditions; in this case
also with the other types of boundary conditions, these ze
agree well with the exact results.~This is dual to the same
statement for theq52 kagome´ lattice.!

Proceeding to the cases that have not been exactly so
in Fig. 16 we show our zeros for theq53 Potts model on the
diced lattice, obtained via duality from those on the kago´
lattice. For this andq54, we show results with only one se
of boundary conditions, since the other boundary conditi
yield similar results. As noted in Ref.@13#, from the finding
in Ref. @3# of a CT singularity atzl 520.4023(5) in theq

FIG. 16. CT zeros ofZ for the q53 Potts model on a diced
lattice with ~pbc,fbc! boundary conditions and of size equivalent
438 hexagons on a kagome´ lattice.
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53 Potts model on the kagome´ lattice, it follows, using the
duality connection, that theq53 Potts model has a phas
transition from the PM phase to the FM-AFM phase at t
point adiced,q53,PM-AFM50.1393(8). This constitutes the left
border of the physical PM phase on the positive reala axis.
Moreover, again by duality, from the PM-FM transitio
point of the model on the kagome´ lattice, determined from
series analysis in Ref.@3# to be atzc50.347650(5), it fol-
lows that the position of the PM-FM transition of theq53
Potts model on the diced lattice is atadiced,PM-FM,q53
52.59876(4). As in theq52 case, and for the same reaso
although the physical FM and AFM phases are disjunct, th
complex-temperature extensions are analytically connec
We thus again label this extension as the CT~A!FM phase.
The other CT phases include the extension of the PM ph
and an O phase in the Re(a),0 half-plane. Our finding that
the CT phase boundary for theq53 Potts model on the
kagomélattice has a component that passes througha50,
corresponding to a zero-temperature critical point in t
model, implies, by duality, that the boundary of the O pha
in the model on the diced lattice crosses the reala axis on the
left at a522.

We show our zeros for theq54 Potts model on the diced
lattice in Fig. 17. For this case, from the valu
akag,PM-FM,q5453.1561(5) obtained from series analysis
Ref. @3#, we deduce, using duality, that the PM-FM critic
point for the diced lattice isadiced,PM-FM,q5452.8552(5).
Further, from the value obtained for the CT singulari
zkag,q54,l 520.4260.01 @3#, we have deduced, again usin
duality, that theq54 Potts antiferromagnet on the diced la
tice has no finite-T phase transition and also is not critical
T50, since

D~akag,q54,l !52~0.1860.02! ~4.8!

is negative@13#. There is thus no AFM phase forq54. Be-
cause increasing the value ofq for a fixed temperature make
the spins floppier, this result implies that there is also
AFM phase for q>5. In the context of the complex
temperature phase diagram, the point in Eq.~4.8! corre-
sponds to the point where the two arcs close in the ther

FIG. 17. CT zeros ofZ for the q54 Potts model on a diced
lattice with ~pbc,fbc! boundary conditions and of size equivalent
438 hexagons on a kagome´ lattice.
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dynamic limit and the left-hand boundary of the PM pha
crosses the reala axis in Fig. 17. In this figure one also se
a curve inB in the Re(a),0 half-plane.

V. CONCLUSIONS

We have calculated complex-temperature zeros of
partition function for theq-state Potts model on the hone
comb and kagome´ lattices. These results give useful info
th
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mation about the complex-temperature phase diagrams
singularities of these models.
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