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Complex-temperature partition function zeros of the Potts model on the honeycomb
and kagomelattices
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We calculate complex-temperatw@T) zeros of the partition function for thg-state Potts model on the
honeycomb and kagomattices for several values of. These give information on the CT phase diagrams. A
comparison of results obtained for different boundary conditions and a discussion of some CT singularities are
given. Among other results, our findings show that the Potts antiferromagnetgwith andg=5 on the
kagomelattice has no phase transition at either finite or zero temperd®1€63-651X98)06902-5

PACS numbsgps): 05.20-y, 64.60.Cn, 75.10.Hk

[. INTRODUCTION temperature partition function zeros on sufficiently large fi-
nite lattices yield useful information on the CT phase
The 2Dg-state Potts mode[d,2] for variousq have been diagram in the thermodynamic limi{Hereafter, to avoid
of interest as examples of different universality classes fofépPetition, we shall simply refer to zeros of the partition
phase transitions and, for=3,4, as models for the adsorp- 'unction, it being understood that these are complex-
tion of gases on certain substrates. T2 Ising special temperature zerosln making inferences from such finite-

has | d ol 1 ivabl del lattice calculations abous in the thermodynamic limit it is
case nhas long served as a simple exactly solvableé MOCdel g, ,qrtant to vary both the lattice size and the type of bound-

cooperative phenomena. However, &pr 3, the free energy  ry conditions to have an accurate idea of the sensitivity of
of the Potts model has never been calculated in closed forfhe |ocations of the zeros to these choices. Some of the ear-
for arbitrary temperature. It is thus worthwhile to obtain fur- Jiest work on CT properties of spin models dealt with these
ther information about the properties of the Potts model, anderos[5,6]. Another major reason for early interest in these
we shall do this in the present paper via calculations ofproperties of spin models was the fact that unphysical, CT
complex-temperaturéCT) zeros of the partition function of ~singularities complicated the analysis of low-temperature se-
the Potts model for the honeycomb and kagdattices. One  fies expansions to get information about the location and
of the motivations for this work is the recent calculation andeXPonents of the physical phase transifigh A third reason
analysis of long low-temperature series for thetate Potts for interest in these properties is the fact that, as additional

model on these lattices by Jensen, Guttmann, and Efging sources of information about thermodynamic functions, they

o it bl o relate the CT sinqularities in th can expedite progress toward exact solutions. Aside from
ur results enable one to relate tn€ L1 singulanties in thelg,q|_ynderstood exceptiond0], CT singularities of thermo-
modynamic quantities found in R€i3] to positions on the

: . dynamic functions occur on the continuous locus of poihits
CT phase boundaries of the respective models. _where the free energy is nonanalytic. Hence, when investi-
~ The study of statistical mechanical models with magneticyating these singularities, it is useful to do so in conjunction
field [4], temperatur¢5—8], or both[9] generalized from real  with a calculation of the zeros of the partition function to
to Complex values has y|e|ded Interestlng InS|ghtS into thaner the approximate location of the phase boun@@epa-
properties of these models. For a discrete spin model at temating various CT phasd42]. Interestingly, some of these
peratureT and in an external magnetic fiel, the partition  singularities can be related directly to physical singularities:
function Z is, up to a prefactor, a polynomial in the Boltz- by using duality, one can show an exact equivalence of the
mann weightsz(K) and w(h) containing dependence df  free energy of they-state Potts antiferromagnet on a lattice
=BJ andh=gH, whereB=1/(kgT), andJ is the spin-spin A for the full temperature interval €T<> and the free
coupling. It is of interest to study the zeros &f(i) in the  energy of theg-state Potts model on the dual lattice for a
complex u plane for physicall [4]; (ii) in the complexz ~ semi-infinite interval of complex temperaturfes3]. This im-
plane for physicalvanishing or nonvanishingH [5]; and  Plies the existence of two quite different types of CT singu-
(iii ) on theC2 manifold (x,z) when bothK andh are com-  larities: the generic kind, which does not obey universality or

plex [9]. Here we shall concentrate on ca@, i.e., Fisher various scaling relationdl 4,15, and a special kind that does

zeros. In the thermodynamic limit, via a coalescence of ze®P€Y such properties and encodes information of direct

ros, there forms a continuous loctof points where the physical relevance. Although we consider the honeycomb

free energy is nonanalytic. This locus serves as the union (ﬂnd kagomdattices here, we mention that previous calcula-

boundarieswhence the symba) of the various complex- tions of zeros of the partition function for the Potts model

temperature phases. Thus, calculations of complex‘-"’ith g=3 have been done on the triangular and square lat-

tices[16-19.
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A, the partition function can be expressed in a form involv-
ZZE e PNt 21 ing a sum of powers of], which allows a generalization
ton} from positive integelq to real (or, indeed, complexq, and
with the Hamiltonian we shall use the generalization to replat certain places
below. Reviews of the model include Refg,17].
On a finite lattice, they-state Potts model partition func-

H=-1J 2 50'no'nr_H; 010, (220 tion Z is a polynomial in the Boltzmann weiglat We cal-
(nn’) culate this polynomial by transfer matrix methods. This is a
where o, =1, . .. q are 7 -valued variables on each site challenging numerical problem for large lattices, since the

eA, B=(ksT) %, and (nn’) denotes pairs of nearest- degree of the polynomial is equal to the number of bonds,
neighbor sites. The symmetry group of the Potts Hamiltoniaf\b= (3/2)Ns, where A is the coordination number, and

is the symmetric group og objects,S, . We use the notation there is a very large range in the sizes of the coefficients,
introduced abovex = 8J, h=8H ar?d from q for the highest-degree teral’s to exponentially large

values for intermediate terms. The latter property is obvious
a=z1=¢kK, 2.3y  from the fact that foK=0, i.e.,a=1, the sum of the coef-
ficients inZ is g"s. From this, we then compute the zeros. A
eK—1 general property of the CT phase boundary for any lattice
. (2.9 andq value is invariance under complex conjugatidi- 3
Va asa—a*.
o In addition to the locations of the curves comprising the
The (reduceﬁdlfree energy per site is denoted & —BF T phase boundars inferred in the thermodynamic limit
=limy__...Ns “InZ, whereNs denotes the number of sites in from the zeros calculated on finite lattices, one can extract
the lattice. There are actually types of external fields that further information. As one approaches the thermodynamic

X=

one may define, favoring the respective values, limit, so that one can define a density of zeros, this density
=1, ... q; it suffices for our purposes to include only one. normally behaves near a singular poimtas|[5,7]

The order parametefmagnetization is defined to bem

=(qM—-1)/(q—1), where M={o)=Ilim_df/oh. With g(s)~s'"%, ass—0, (2.6

this definition,m=0 in the symmetric, disordered phase, and

m=1 in the limit of saturated ferromagné&tM) long-range wheres denotes the arclength alorlﬁgavx_/ay fror_nas_ (so that
order. We consider the zero-field model=0. ForJ>0 and s=la—aj ass—0) and ngie the singularity in the free
the dimensionality of interest herd=2, the g-state Potts energy atas is fsng~|a—ay| . [30]' I the_parptlon func-
model has a phase transition from the symmetric, highlion has a zero at some poipg with a multiplicity propor-
temperature paramagnetieM) phase to a low-temperature tional _to the _n_umber of Iattlcgsnesks then this formgla, Eq.
phase involving spontaneous breaking of Sesymmetry (2.6, is m(_)dlfled by the addltl_on of a term proportional to a
and onset of FM long-range order. This transition is continu-J€ta functions(s). In Ref.[11] it was provedas theorem 5
ous for 2<q=<4 and first order fo=5. The critical expo- that for the_ Ising model on a Iatt|ce_W|th odq coordination
nents and universality classes of the cases where the mod@!MmPer, this happens a& —1. In particular, this occurs for
has second-order transitions are well undersf@g0]. The (€ ISing model on the honeycomb latticeee further be-
g-state Potts model has the property of duality2,21,22, low). In Fig. 1 we show illustrative sections of the honey-
which relates the partition function on a lattidewith tem- ~ COMP and kagoméattices.

perature parametea to the partition function on the dual

lattice with temperature parameter 1. PARTITION FUNCTION ZEROS
ON THE HONEYCOMB LATTICE

atq—1

1 ie., Xd:; (2.5 A. Comparison with exact B for Ising case

ag=D(a)=
In order to study the effects of the finite lattice size and of
Other exact results include formulas for the PM-FM transi-different boundary conditions, as well as checking the com-
tion temperature on the square, triangular, and honeycomBUter programs used, it is valuable to calculate the zeros for
lattices[1,2,24, and calculations of the free energy at thetheg=2 Ising case where the resulting locus of zeros can be
phase transition temperature, and of the related latent heat f§Pmpared with the exactly known CT phase boundarps
g=5 [23]. No formula is known for the PM-FM transition

on the kagomdattice, although there have been a number of >< >< >< >
conjectures; for a recent discussion, see IR&f. The case

J<0, i.e., the Potts antiferromagnéiF) has also been of < >< >< ><
interest because of its connection with graph colorings and

the fact that, for certain lattices and valuesmfit exhibits >< >< >< >
nonzero ground-state entropg4,25; for a recent discus-

sion, se€26,27 and references therein. Depending on the < >< >< ><

type of lattice and the value a@f, the model can also have a

phase with AFM long-range order. Fg=3 on the honey- FIG. 1. Honeycomb and kagoniattices to illustrate our con-
comb lattice there is no AFM pha$28,29. For any lattice  ventions for indicating sizes.
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FIG. 2. CT zeros in the complex plane for the Ising §=2 Pott3 model on a honeycomb latticéa) Left, size 9< 12 hexagons and
(fbc,pbo; (b) right, 10x 10 hexagons an¢pbbc,fbo.

noted above, these zeros, like the others to be presented funfinite-temperature poira=1 is the PM phase, and the one
ther below, are calculated by a transfer matrix method. Frongxtending outsidé3 to complex infinity in all directions is
the known expression for the free energy, this boundary waghe FM phasg12].

determined in Ref[31]; it is the locus of solutions to the Before we start to present our results, we have to intro-

equation duce our notation for the sizes and orientations of the lat-
2 3, .4 2 tices. We recall first that thenfinite) honeycomb lattice is a
1-2a+6a’~2a*+a"~2a(1-a)°p=0, @D homopolygonal member, and the kagolattice, a heteropo-
lygonal member, of the class of Archimedean lattices, i.e.,
regular tiling of the plane by one or more types of regular
polygons such that every vertex is equivalent to every other
vertex[36]. An Archimedean lattice is thus uniquely defined
by the ordered sequence of polygons that one traverses in

extending fromé=arg(a) = /3 around througha=—1 to making a circuit of any vertex. In standard mathematical

. . . al
6= — /3, while the second is a lima-bean-shaped curve tha®tation[36], such a lattice is denoteti=(Il;p;") wherep;
crosses the positive real axis at the PM-FM critical point,efers to the type of polygon araj denotes the number of
Apyemaes=2+V3=3.72 ... and at théM-AFM critical ~ /mes that it appears consecutively in the product. In this
poir;t ’qéPM AEM 72:a;’& aea=2— J3=0.26794 . .. . notation, the kagoméattice is denoted (36-3-6). The ho-
These two partéqiﬁtersect-eaigﬁ other at multiple pointsiat  MoPolygonal subset of Archimedean lattice®nsisting of
tilings with only one type of regular polygois closed under

these multiple points are singular points®in the sense of g . :
algebraic geometr35]. The phase surrounding the origin in d_ua_llty, but the he’_[eropolygonal Archimedean latti¢esn-
sisting of regular tilings using more than one type of poly-

h I is the AFM phase; th i h ; ; :
the a plane s the phase; the one surrounding t egon) have duals that are not Archimedean lattices. In particu-

lar, the dual of the kagomiattice, called the diced lattice, is
not Archimedean. This mathematical background will be
useful below when we give results for the diced lattice. To
indicate the size of a given lattice for both the honeycomb
and kagomeases, we count the number of hexagons. As an
illustration, the sizes of the honeycomb and kagdattces
in Fig. 1 are 43 and 3x4 hexagons, respectively. The
number of sites in a lattice is also dependent on the boundary
conditions: with periodic boundary conditions in the horizon-
tal direction for example, the sites on the left and right are
identified, while with free boundary conditions they are
counted independently from each other. As is evident from
Fig. 1, a honeycomb lattice of size, in our notation,
NyXNy, is maximally squarelike if one takeN, slightly
larger thanN, .

Since we use duality at many points in this work, we

FIG. 3. CT zeros for the Ising model on the honeycomb latticechose lattices that have natural dual lattices. This excludes
of size 10<10 hexagons an¢pbc,fbg, BC's. lattices that are periodic in both directions, for the following

where — 3/2<p=<3 [32]. This locus is shown in Figs. 2 and
3. Becausey=2 and the honeycomb lattice is bipartite, the
CT phase boundar and also the set of zeros are invariant
under the inversion maf83]. The CT boundary consists of
the union of two parts. The first is an arc of the unit circle
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reason: duality relies on the fact that every closed polygon
divides the lattice into at least two regions. However, a lat- >
tice with periodic boundary conditions in both directions,
and hence with toroidal geometry, has the property that there
exist closed contours that do not divide the surface into two 3
disjunct regions. Since boundary effects are, in general, besIa /
suppressed if one uses periodic boundary conditions in as
many directions as possible, we use boundary conditions thai
are periodic in one direction and free in the other, i.e., cylin- \ ~—~——_
drical boundary conditions. Our notation for the boundary o
conditions(BC'’s) is (fbc,pbg for free and periodic BC's in
the horizontal X) and vertical §) directions, respectively
(see Fig. 1, and(pbc,fbg for periodic and free BC's in thg
andy directions. This notation makes explicit the direction in
which the cylindrical boundary conditions are periodic. FIG. 4. Real roots of Eq3.2), as a function ofj.
Complex-temperature partition function zeros for e
=2 Ising case of the Potts model on the honeycomb lattic
are shown in Fig. 2 for bottifbc,pbg and (pbc,fbg. The
gray curves are the exactly known CT phase boungaiye
comment on several features, as follows.

fay

-1

%e(a)zo half plane have less scatter, lie closer to the exact

boundaryB, and also, in some cases, lie inside the PM-FM

phase boundary. The zeros with Bg&0 are less scattered

than those with thépbc,fbg choice and track the arc of the

) . ) i unit circle well, although they do not, in general, lie on it, as

(i) The partition function has a multiple zero a&—1 a5 the case with the choi¢tbe,pbd. The conclusion from

with multiplicity =N for largeNs. This follows from theo- s comparison with exactly known results is that, if one did

rem ?2 of Ref.[11] and corresponds to the term(l ot know the exact boundai to begin with, one would be

—2z%) “ in the expression for the specific hdatin the FM  gpj6 by combining results on zeros calculated with different

phase given as Ec{3.1_2) in Ref. [31]; the apparen.t addi- boundary conditions, to reconstruct it with reasonable accu-

tional singularity at the infinite-temperature point 1 is not racy.

rele_yant since theT formula does not apply in that' region. The density of zeros off near the physical PM-FM tran-
(i) The zeros lie very close to the arcs protruding into thegjtion, js consistent with vanishing according to E2;6) with

PM phase. a=0, i-e-vg~|a_aPM—FM,q=2| as|a_aPM-FM,q=2|—>o- By

(i) There seems to be some repulsion of the zeros fronyo 5, 1/5 symmetry, the same is true of the PM-AFM tran-

the multiple points ag=*i (similar to what was seen in gjtion. The situation az=—1 is more complicated because

Ref_. 9D . the partition function has an isolated zero of multiplicity
(iv) For the (fbc,pbg case, the zeros on the unit circle gcjing fike the lattice size there; consequently, as discussed
show no radial deviation. . above, the density has a delta function term 5(s) as well
(v) In general, the zeros calculated with the choitie, .4 its ysual ternf2.6), wheres denotes the arclength af
pbo lie closer to the exact boundary curv&sthan those away from the poinz=— 1. The analysis of Ref31] found

calculated with(pbc,ho. that at z=—1, aside from the leading singularity- (1
(vi) The zeros lie on the outer side of the boundary be- z 85! ing singularity (

; +2)~2 in the specific heat, there is also a subleading loga-
tween the PM and FM phase. This can be understood as o i ;
consequence of the fact that with either tifbc,pbd or thmic divergence; it follows that the density of zeros Bn

(pbc,fbg boundary conditions, the sites on the free boundar near toz=—1 has, in addition to thé function term, a term

Xhat vanishes like. The zeros in Figs. 2 and 3 are consistent
have a coordination number of two rather than the udual 9

: L . with this.
=3 for sites on an infinite honeycomb lattice. Hence, the

ordering effect of the spin-spin interactions is commensu-

rately reduced, thereby reducing the finite-lattice manifesta- B.g=3 case
tions of the ordered, FM phase, i.e., shifting the PM-FM  For general, from duality and a star-triangle relation, an
boundary outwards. equation yielding the value of the PM-FM transition point

has been derivef22], viz., x3—3x—+/q=0, or, in terms of

Note that for the(fbc,pbg choice, there is one site per g,
hexagon at the boundary with only two instead of the usual
A=3 bonds. For thépbc,fbd BC's, there are two of these a®-3a’-3(q—-1)a—g*+3q—1=0. (3.2
sites for each of the hexagons on the upper and lower bound-
aries. This motivated us to formulate a third kind of bound-For 0<q<4, this equation has threglistincy real roots,
ary condition: starting from thépbc,fog choice, we added Wwhile for >4 (and the formal valueg=0) it has one real
bonds connecting the boundary sites with fewer than thregoot. The motion of the real roots as a functiorgaf plotted
bounds so that all sites on the lattice have the same coordin Fig. 4.
nation numbeA =3. We denote this choice dpbc,fbg , . For g=3, the solutions are
The zeros calculated with this third choice of boundary con-
ditions are plotted in Fig. 3. The main difference relative to alyq:3=apM_FM,q:3:1+2\/§cos{w/18)=4.41147 cey
the previous two choices of BC's is that the zeros in the 3.3
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_2 .
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2 -1 0 1 2 3 4 Re (2)

Re (a) FIG. 7. CT partition function zeros in tha plane for theq

=3 Potts model on a honeycomb lattice of size @ hexagons and

FIG. 5. CT partition function zeros in tha plane for theq -
boundary conditions of typébc,fbg , .

=3 Potts model on a honeycomb lattice of size 8 hexagons and
boundary conditions of typé&bc,pbg.
comprisingB (as inferred for the thermodynamic limit from
8pq-3=1— \/§co$w/18)+3sir(7r/18)= —0.184795 . .. the_sg zeros on finite latticesross the real z_ixis. Hence, one
(3.4) anticipates that a CT phase boundary might cross the real
axis at the value of the middle rod,,-3;=—0.188... .

and From the zeros in Figs. 5—7, one can indeed infer that in the
thermodynamic limit a CT phase boundary curve could cross
azq-3=1— J3cog 7/18) — 3sin(w/18)= — 1.226@ . . . . the real axis at this point. Since the specific heat exponent

(3.5 has the known valuex=1/3 for this model[2], it follows
) ) ) . ) from Eq. (2.6) that the density of zeros near the physical
The pointapy.gvq-3 IS the physical PM-FM critical point. - pp_gM transition point vanishes likg(s)~s23, wheres is
As discussed in Ref.29), if one follows the roots of EqQ. he arclength or3 away from this point. This is consistent
(3.2) asq is changed continuously, one sees that the middl§,iih, the calculated zeros.
roota, decreases from the PM-AFM critical point—2\/§ for Further, we see arcs protruding into the PM phase, ending
q=2 through 0 aig,=(3+ \/5)l2:2618 ... tothenega-  at complex conjugate (c.c) points ae,a=0.37(2)
tive value (3.4) for q=3. This reflects the fact that &  +1 29(3), where the numbers in parentheses refer to the
increases from 2 tq,, the physical AFM phase is squeezed estimated uncertainties in the final digits. Evidently, these
out. - . are the analogues far=3 of the exactly known arcs for the
Our zeros of the partition function for thg=3 case on |gjng q=2 case. While the arcs in the Ising case have end-
the honeycomb lattice are shown in Figs. 5-7 for the thregyints on the unit circle at angles= + 7/3, the endpoints in
types of boundary conditions discussed before. the q=3 case lie slightly farther out from the origin, at
In all three plots, the rootapy.py,q-3 andagg-s Corre- |5 1~1 3 and have slightly larger anglés- = 75°. We find
spond very well to points where the CT phase boundariegt this trend is true for largey values also, i.eae and
arg(@a.) increase with increasing.

3 O TEL A In addition, there are at least two more points at which
1 e curves of zeros cross the realaxis, ata=a,=—2.77(3)
2 : . and ata=—0.652). In Ref. [13] it was shown that if the
S0 g-state Potts antiferromagnet on the dual latticg has a
R : PM-AFM transition atapy.apm,a, then the dual image of
Im(a) 0 ’ ; ':'-"Q this, namer,D(apM_AFM,Ad)za/,A, is the leftmost point in
Lad the a plane whereB3 crosses the real axis. Since the PM-
_1 . AFM point satisfies @EapM_AFM,Ad<1, it follows that the
A o dual imagea, , satisfies—~<a, ,<—(q—1). In particu-
-2 L ’ lar, for g= 3, this connection was used, in conjunction with a
1. e ) precisely measured value @py.arm,t,q=3 0N the triangular
-3 S (t) lattice [37] to infer the value of, for the model on the
-2 -1 0 1 2 3 4 honeycomb (hc) lattice: anc, q=3=D(apm-arm,q=3) =
Re (a) —(2.76454-0.00015), i€, Zng/q-3=Ancsqe3=

—(0.36172:0.00002). Our zeros are in agreement with this
FIG. 6. CT partition function zeros in tha plane for theq result. This point also manifests itself as a singularity evident

=3 Potts model on a honeycomb lattice of size® hexagons and from low-temperature series for the specific h€atmagne-

boundary conditions of typ&bc,fbg. tization m, and susceptibilityy, which yield the valuez=
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—0.363+0.003[3]. Using duality and the weakly first order 4 R X
nature of the physical PM-AFM transition of tleg=3 Potts -’
antiferromagnet, it follows that the free energy also has the

same weakly first order singularity @t -3. The low-
temperature series analysis of Rig] found evidence for a 2
continuous transition at this point, with exponents=0.5,

B,=0.11, andy,=1.15. We have repeated the series analy-

sis with dlog PadepproximantgPA’s) and differential ap- Imia) o L e
proximants(DA’s) [38]. Our DA results also yieldv=0.5; S
our PA's did not locate the singularity with sufficient preci- e VT

sion to infer a reliable value fak. Given the duality and the

fact thata= ' for the physical PM-AFM transition of the -2
g=3 Potts AF on the triangular lattice, it follows that the
singularity in the free energy of ttegg=3 Potts model on the
honeycomb lattice ak, must also be the same as ap- .. .
proached from the right or left. Since the singularity in the | A B :
internal energy at a singular poiat is Using~|a— agdt e,
one normally assigns the formal valae=1 to a first order Re (a)
transition. A possible way of reconciling these results is to
observe that if a first-order transition occurs superimpose
with a divergent specific heat, then one could get a value oci
a<1 in fitting the transition. For example, consider an illus-

trative internal energy function that behaves near a phase )
transition point like suggest that there are several unphysical O phases that over-

lap with parts of the negative realaxis. There may be other
U(T)~ U anayiict C14+O(T—To)+Cy | T-T¥2 (3.6) O phases that do not touch the real axis, but the resolution is

not high enough to make a definitive statement H&gs.
for T\ T., and similarly forT 7T, with the coefficients Concerning the sensitivity of the zeros to lattice boundary
replaced byc; — andc,_ . Here,U gyt denotes terms that  conditions, several remarks are in order. The zeros in the
are analytic neaff, and ®(x) is the step function® (x) Re(@)=0 half plane are relatively insensitive to these
=1 if x>0 and 0 otherwise. As one approachgd from boundary conditions. However, certain features of the zeros
above(below), a high-temperatur@ow-temperaturgseries  in the Re@) <0 half-plane do show such sensitivity. This is
analysis would giver=1/2, but the transition would still be similar to what was found from a comparative study of dif-
first order because of the discontinuous term. A one-sideferent boundary conditions for the zerosfor the g-state
version of this behavior occurs in the six-vertex model forPotts model on the square lattice for several values of
the ferroelectric compound potassium dihydrogen phosphaté 7,19 (see also Ref41]).

FIG. 8. CT zeros o in the a plane for theq=5 Potts model
n a honeycomb lattice of sizeX hexagons and boundary con-
itions of type(fbc,pbg.

(KDP) [39]; in that case, the forn(83.6) applies for the high- We have carried out similar calculations of zeros for the
temperature side, whildJ is a constant on the low- =4 Potts model on the honeycomb lattice, and these will
temperature side. be reported in Ref.40].

Another source of information oa is the density of ze-
ros. However, it is difficult to use this to obtain an accurate
value of @. For example, Ref[19] included calculations of C.g=5 case
zeros for theg-state square-lattice Potts model not just for |t is also of interest to investigate a valuecpin the range
the valuesy= 3,4 where the PM-FM transition is continuous, where the PM-FM transition is first order, i.&=5. We
but also for the valueg=5 and 6, where this PM-FM tran- have done this for the valug=5, and we show a resulting
sition is first order; see Figs. 3 and 4 therein. For these casegjot of zeros in Fig. 8. Here, Eq3.2) has the single real
one would formally seix=1 as mentioned above, so that root, which is the PM-FM critical point,
Eq. (2.6) would predict that the density of zeros should
remain essentially constant up to the endpoint of the distri-
bution (of course, the positivity of the coefficients of the apmpmgq-s=2 X 5Y41+5Y313
terms in the partition function means that for a finite lattice, _ _
there cannot be any zeros on the positive real axis iratbe +21x 514519 1P+ 1=5528 . .. .
z plane. This is consistent with the plots of zeros for these (3.7
g=5 and 6 cases, but it would be difficult to extract an
accurate estimate o from those plots. Below we shall
present a similar plot for another case where the PM-FMSince the Potts antiferromagnet witix3 andg=4 on the
transition is known to be first order, namely the=5 Potts triangular lattice has, respectively, a finite-temperature PM-
model on the honeycomb lattice, and a similar comment apAFM phase transitiofi42,37 and a zero-temperature critical
plies to this plot. point [25], it is expected that fog=5, the model is disor-
Further CT singularities and their relation with the bound-dered for all temperatures. This, together with the connection
ary B will be discussed elsewhefd0]. Our calculations also discussed in Ref.13], would imply that the leftmost point at
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Re (a) Re (a)
FIG. 9. CT zeros o in the a plane for the Ising model on a FIG. 10. CT zeros of in the a plane for the Ising model on a
kagomelattice with 4<6 hexagons anpbc,fbg boundary condi-  kagomelattice with 4x6 hexagons an¢pbc,fbd , boundary con-
tions. ditions.

which 5 crosses the real axis for tige=5 Potts model on the  \here — 3/2<p=3 [32]. Because the coordination number
honeycomb lattice is,< —4. Our zeros are consistent with f the kagomdattice is even, this locus is symmetric under
this. a——a. In Ref.[11], the locus was plotted in the and u

D. Further discussion =72 planes(see also Ref43)). Here it is shown as the gray
curves in thea plane, consisting of a “dumbell” part and a

tion of Eq.(3.2), i.e.,apy.ey, that it increases monotonically complex conjugate pair of .circular arcs .which inte_rsect the
with q for g=0. This is evident in Fig. 4 and reflects the dumbell at four multiple pointéthe analytic expressions for
basic thermodynamic property that @sncreases, the spins Which are given in Ref[11]). The inside of the dumbell
become “floppier,” and one must go to lower temperature to"€9ion is the PM phase, the c.c. regions between the narrow
obtain FM long-range order. In addition to the features al-neck of the dumbell and the circular arcs are O phases, and
ready discussed, we note tHat the leftmost point wherés the region outside oB and extending to complex infinity is
crosses the real axisa, moves to the left ag increases; the (CT extension of theFM phase. The PM-FM critical
and i) the points whereB crosses the imaginary axis move point is given by aygpm-rmg—2= — akag, q—2= 3" (2
out from the origin ag| increases. Both of these features can— J3) Y¥2=254 ... . Just as there is no physical AFM
be understood, as discussed directly above, by the reductigrghase (owing to the frustration of the Ising AF on the
in the size of thaFM) ordered phase ag increases. kagomelattice), so also there is no complex-temperature ex-
Because of the duality relation, these partition functiontension thereof. Comparing the zeros calculated with the dif-
zeros, in thea plane, of theg-state Potts model on the hon- ferent boundary conditions, we find that with tfsbc,fog
eycomb lattice also yield equivalent zeros of the same modaihoice, the zeros on the neck of the dumbell and on the outer
on the dual, triangular lattice in the plane of the variadde circular arcs track the exact curves well, while those on the
given in Eq.(2.5). A comparison of the plots calculated with rignt (left) lie slightly outside(insid® the CT phase bound-

different boundary conditions is valuable sincc_e this gives &yries. With the(pbc,fbd boundary conditions, not all sites
measure of the effects of these boundary conditieee also  4ye even coordination number, so tEatontains some odd

Refs.[16,41). powers ofa, and hence tha— —a symmetry of the exact
boundary is not precisely maintained by the zeros. In pass-
IV. PARTITION FUNCTION ZEROS ing, we note that because the sites on the upper and lower
ON THE KAGOME  LATTICE boundaries have odd coordination numbet 3, theorem 6
A. Comparison with exact 3 for Ising q=2 case of Ref.[11] implies thatZ(z= —1)=0, and this zerdgwhich

For our calculations of zeros of Potts model on theiS multiple) is evident in Fig. 9. For thépbc,ho , boundary

kagomielattice, two of the boundary conditions that we use €onditions, (i) most of the zeros near to the dumbell lie
are (pbc,fbd and (pbc,ibd 5, where nowA=4. The third closer to the exact curves, but the zeros near the arcs lie
can be described as follows: we start on the lattice that is thrther away from them, as compared with the situation for
dual to kagome namely the diced lattice, and impose the (Pbc.fbo choice; and(ii) Z, and hence its zeros, is in-
(pbe,fbo boundary conditions; then we transform the resultsv&riant under the negatiom— —a, in contrast to case with
back to the kagomiattice by the duality map oa, Eq.(2.5). t_he(pbc,fbc) case;(u!) because all sites have even coordina-
To save space, for each valueqfwe only show results for tion number, there is no zero i atz=—1. For both types

the first two of these choices of boundary conditions. ForOf Poundary conditions, the density of zeros in the vicinity of
q=2 these are given in Figs. 9 and 10. The exact CT phasf® PM-FM critical pointa.g pu-rvg-2 decreases in a man-

boundaryB is given by the locus of solutions of the equation N€r consistent with the form from E¢@.6) with =0 for the
2D Ising model, viz.,g~s ass—0, wheres the arclength

a®+18a*+24a%+21-4(1+a%)(1-a%)?p=0, (4.1  alongB away fromapy.ry,q—2-

It is a general feature of the maxim@r sole real solu-
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FIG. 11. CT zeros o in thea plane for theq=3 Potts model Re(a)
on a kagomeattice of size 48 hexagons an¢pbc,fbg boundary FIG. 13. CT zeros oF for the q=4 Potts model on a kagome
conditions. lattice of size 4<8 hexagons antpbc,fog boundary conditions.

B.q=3 case and the FM phases is probably best represented, we infer that

We show our zeros of for the q=3 Potts model on the the leftmost point where this CT phase boundary crosses the
kagomelattice in Figs. 11 and 12. In this case we use latticegeal axis is atay,g, q-3=—2.546). This point is mani-
of sizesN, X N, with N, larger thanN, in order to compen- fested as a singularity in thermodynamic quantities evident
sate for the fact that the free boundaries are inytilérection  in low-temperature series analysis, which obtaRg, -3
and free, as contrasted with periodic, boundary conditions= —2.486(3) [i.€., Zxag, q-3= —0.4023(5). Although the
introduce greater finite-size effects. The zeros suggest that, T phase boundary is not symmetric under —a as was
the thermodynamic limit, the inferred CT phase diagram fortrue forq=2 on this lattice, one can still discern a remnant
the g=3 kagomelattice may involve somewhat simpler of the dumbell shape that occurred for the-2 case. As
boundary curves than was the case for the same model on thefore for the honeycomb lattice with=3, theg~s** de-
honeycomb lattice. There is a high-temperature PM phase, @rease in the density of zeros in the vicinity of the PM-FM
low-temperature FM phase, and there are strong indicationgritical point is consistent with the calculated zeros.
of a third CT phase whose right-hand boundary crosses the
real axis ata=0, corresponding to a zero-temperature criti- C. Caseq=4
cal point of theq=3 Potts antiferromagnet on this lattice.

This is in good agreement with the known property that this Forq=4, we present our results in Figs. 13 and 14. The
9 9 .. Wh property main differences between the locus of zeros, as compared
model does have such®=0 critical point (which can be

related to theT =0 critical point of theg=4 Potts antiferro- with the case ofj=3 is, first, that the crossing that occurs at

magnet on the triangular lattic44,45. The inferred posi- a=0 forq=3 is shifted to a negative valua=-0.21(2)

tion where the CT boundary crosses the real axis on the rigﬁcf)r q=4. This demgnstr_ates that tige=4 Potts ant|ferro-_
: _ S - magnet on the kagomattice has no PM-AFM phase transi-
IS atayag pm-Fmg=3=2.844). This is in accord, to within the

g ! tion (or any hypothetical non-symmetry-breaking phase tran-
uncertainty, with the value 08y,gpm-Fvg=3=2.87646(4) e 2 o ; :
[i.e., Ziagmmrmg_s—0.347650(5) obtained from series sition) at finite temperature or any critical point®t0. This

) ; conclusion also follows fog=>5 since increasing beyond
analysis [3]. The left-hand boundary of the third phase . X ;
crosses the real axis at ab ~0.963). From Fig. 12, 4 has the effect of making the spins floppier and the model

where the boundary between tH&T extensions of thePM more disordered. Fay=6, this conclusion has been proved

! X RIS avsn % P R AR N
1.5 e s 1.5
1 1
0.5 eseet, 0.5 o
I '\ .\‘
Im(a) 0 . Im(a) 0 ]
o... .o‘.
-0.5 oesned . -0.5 .."'-.,,-:.j
_1 _l
L~ ~.' * -1.5 . .
S5 TeentrT o TTI e o O Phenee et et
) -1 0 1 2 -2 -1 0 1 2 3
Re (a) Re (a)

FIG. 12. CT zeros of for the q=3 Potts model on a kagome FIG. 14. CT zeros oF for the q=4 Potts model on a kagome
lattice of size 4<8 hexagons an¢pbc,fbg, boundary conditions. lattice of size 4<8 hexagons an¢pbc,fbg , boundary conditions.
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rigorously [28]. Second, it appears that the previously pre-
sumably closed inner ring of zeros has now opened at its
leftmost point, which would imply that now there would be
only two phaseswith their CT extensionsthe PM and FM.
The values inferred fo8y,g pm-Fmg=4 @Nd Ayag q=4 are in
accord with the values obtained from series analy8is
Since the specific heat critical exponedat=2/3 for theq

=4 Potts model on 2D lattices, E(R.6) gives g~s* for

the manner in which the density of zeros vanishes as one
approaches the PM-FM critical point along the CT phase
boundary. In particular, this implies that the decrease in den-
sity should be less rapid fay=4 than forqg=3, and, indeed,
this is evident from a comparison of our plots of zeros for
these two cases on the kagotattice.

D. Partition function zeros on the diced lattice

As with the honeycomb lattice and its dual, the triangular
lattice, our zeros, in tha plane, of the partition function for
the g-state Potts model on the kagonhatice also yield
equivalent zeros of the same model on the lattice that is dual
to the kagoméattice, in the plane of the variabg, given in
Eqg. (2.5. Henceforth, we shall suppress the subsadifin
aq . This dual lattice is called the diced lattice; as discussed
above, it is not an Archimedean latti86]; rather, it is a
tiling of the plane with identical rhombi such that, as one FIG. 15. CT zeros of for the Ising model on a diced lattice,
traverses a circuit along the edges of each rhombus, orsbtained via duality from a kagomattice of size 4<8 hexagons
passes vertices with coordination number 3,6,3,6 in seand(pbc,fhg, boundary conditions.
guence. Thus, in standard mathematical notation, the diced
lattice is the lattice[3-6-3-6] dual to the (36-3-6) AFM phases are disjoint, the respective complex-
(=kagomg lattice. Some relevant properties of the diced lat-temperature extensions of these phases are analytically con-
tice are noted ifTable 1l of) Ref.[27]. Although the faces of nected. The reason for this is that, in contrast to bipartite
the diced lattice are identical, the vertices are (tiois is the ~ Archimedean lattices, the two sublatticks and A of the
dual of the property that the vertices of an Archimedeardiced lattice do not occupy the same fraction of the total
lattice are identical but the faces are, in general, not, since dattice. Thus, reverting to conventional Ising model notation
Archimedean lattice can consist of more than one type ofor this discussion, let us defird,  andM,  as the mag-
regular polygop In particular, the diced lattice has vertices netizations of the sublattice’s; and A g andM ;¢ andM giaq
of two different types: one with an odd degree as the uniform and staggered magnetizations, all per unit
(=coordination numbgrA =3, and the other with even de- area of the total lattice, with
gree,A=6. Indeed, the diced lattice is bipartite, and its two

sublattices, which we may denate; and A ¢, are comprised Munir=Mp,+ My, 4.2
of the vertices with degred =3 and A=6, respectively.
The vertices in thél 3 and A g sublattices occupy the respec- Mstag= M, =My, 4.3

tive fractionsf,=2/3 andfg=1/3 of all the vertices. This is

quite different from bipartite Archimedean lattices, where thelf the present lattice had been Archimedean, with each sub-

vertices on each of the two sublattices occupy the same fradattice occupying a fraction 1/2 of the total, thih,,,would

tion, f=1/2, of the total number of vertice@s a conse- vanish identically not just in the PM phase but also in the

guence of the fact that on an Archimedean lattice, all vertice&M phase, andM ,,;; would vanish identically not just in the

are equivalent PM phase but also the AFM phase, so that the FM and AFM
For our discussion of the CT phase diagrams of thephases, and their complex-temperature extensions, could not

g-state Potts model witly=3,4 on the diced lattice, it is be analytically connected with each other. However, because

instructive to begin by discussing tlie=2 case, for which the sublattices of the diced lattice occupy different fractions

one can use exact results on the free energy. The CT phasé the total lattice, it follows that in the limit of complete

diagram is shown in Fig. 15. The exact CT phase boun8ary sublattice spin orderindvl , ,=2/3 andM , =1/3 and hence,

[42,17 is shown as the dark solid curve. Using duality andpesides the obvious resul ,,«((a==)=1, one has

thez— —z symmetry of the boundary for the Ising model on

the kagomdattice (the latter of which follows from the even Mni(@a=0)=13, (4.9
coordination number of that lattigeit follows that theBB in
Fig. 15 for the Ising model on the diced lattice is the same as Mgada=»)=3, (4.5

B in thev plane for the model on the kagortaitice, where
v=(1-2)/(1+2). Note that although the physical FM and Mgada=0)=1. (4.6
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FIG. 17. CT zeros o for the q=4 Potts model on a diced
FIG. 16. CT zeros o for the q=3 Potts model on a diced lattice with (pbc,fbg boundary conditions and of size equivalent to
lattice with (pbc,foo boundary conditions and of size equivalent to 4X8 hexagons on a kagontatice.
4x 8 hexagons on a kagontattice.
=3 Potts model on the kagontattice, it follows, using the
That is, the uniform magnetizatioM s does not vanish duality connection, that thg=3 Potts model has a phase
even in the region of complete sublattice magnetizations ofransition from the PM phase to the FM-AFM phase at the
opposite sign, af =0 for J<0, i.e.,a=0, and the staggered POINt &gicedg-3,pm-arm=0.13938). This constitutes the left
magnetizationM g, does not vanish even in the limit of border of the physical PM phase on the positive eealis.
complete sublattice magnetizations of the same sig, at Moreover, again by duality, from the PM-FM transition
=0 for J>0, i.e.,a=. Hence, there exist paths that con- point of the model on the kagomattice, determined from
nect the pointa== anda=0 in the complexa plane. Of  Series analysis in Ref3] to be atz.=0.34765@5), it fol-
course, if one restricts to the physical temperature intervalows that the position of the PM-FM transition of tioe=3
O<a=w, then the physical FM and AFM phases cannot bePotts model on the diced lattice is @yced pm-Fvg=3
analytically connected, since they are separated by the PN 2.5987€4). As in theq=2 case, and for the same reason,
phase, where botM ,,;; and M g4 vanish identically. How- although the physical FM and_ AFM phases are disjunct, their
ever, the complex-temperature extensions of the FM an§omplex-temperature extensions are analytically connected.
AFM phases are analytically connected, as is shown by th¥/e thus again label this extension as the(&JFM phase.
existence of the paths alluded to above. The other CT phases include the extension of the PM phase
The CT phase diagram is thus as folloveee Fig. 15 and an O phase in the RB(<0 half-plane. Our finding that
First, there is a symmetric, high-temperature PM phaséhe CT phase boundary for thg=3 Potts model on the
around the pointa=1 that includes the intervah,<a  kagomelattice has a component that passes throagtD,

<aIl on the real axis, where corresppndi_ng to a ze.ro—temperature critical point in that
model, implies, by duality, that the boundary of the O phase
a;=3(1+\3)[1-(2\3-3)¥3=0.4352 ... . (4.7 :gf:haet r;wgd_elzon the diced lattice crosses the geakis on the

We show our zeros for thg=4 Potts model on the diced

tice in Fig. 17. For this case, from the value
Ayag PM-FMg=4=3.1561(5) obtained from series analysis in
Ref. [3], we deduce, using duality, that the PM-FM critical

Second, there is the single complex-temperature extension ?aft
the two different physical FM and AFM phases; this exten-
sion includes the intervals *<a<a, anda; *<a<o on
the real axis(see Eq.(4.12 in Ref.[11]) and extends out- : . LT _
N . point for the diced lattice iSAgiced pm-FMa=a= 2.855Z5).
ward to complex infinity in thea plane. We label this phase Further, from the value obtained for t?ﬂe CT singularit
as CTA)FM. Third, there is a complex-conjugate pair of O ' 9 Y,

. : —4,=—0.42+-0.01[3], we have deduced, again using
agq=4/

phases. 'In Fig. 15 we have shown th? ze.rols co'mputed wit uality, that theq=4 Potts antiferromagnet on the diced lat-

one particular set of boundary conditions; in this case an

. - ice has no finitéF phase transition and also is not critical at
also with the other types of boundary conditions, these Zero% _y since P

agree well with the exact resultéThis is dual to the same
statement for the=2 kagomelattice) D(axagq-a,) = —(0.18+0.02 4.9
Proceeding to the cases that have not been exactly solved, o

in Fig. 16 we show our zeros for tlig= 3 Potts model on the is negative[13]. There is thus no AFM phase for=4. Be-
diced lattice, obtained via duality from those on the kagomecause increasing the value®for a fixed temperature makes
lattice. For this andj=4, we show results with only one set the spins floppier, this result implies that there is also no
of boundary conditions, since the other boundary condition®A\FM phase for g=5. In the context of the complex-
yield similar results. As noted in Ref13], from the finding  temperature phase diagram, the point in E4.8) corre-

in Ref. [3] of a CT singularity atz,= —0.4023(5) in theg  sponds to the point where the two arcs close in the thermo-
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dynamic limit and the left-hand boundary of the PM phasemation about the complex-temperature phase diagrams and
crosses the real axis in Fig. 17. In this figure one also sees singularities of these models.
a curve inB in the Re@) <0 half-plane.
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