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Unified solution of the inverse capacity problem
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China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, China

and Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083, China*
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The inverse specific heat problem has played a significant role in physics. But there is no satisfactory
solution for this inherently ill-posed inverse problem. The present work shows a concise and unified solution
based on the Mo¨bius inversion technique and the Poisson-Abel process. This solution can explain both Debye’s
and Einstein’s approximations very well. All the mathematical deductions are shown in the Appendixes; they
are deduced in an elementary way for physicists.@S1063-651X~98!02302-2#

PACS number~s!: 05.90.1m, 65.40.1g, 02.10.Lh, 02.30.Sa
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I. INTRODUCTION

When establishing the thermodynamics for a system,
key point is to determine the energy spectrum of the qu
particle based on the Hamiltonian operator. Once the ene
spectrum is known, all the thermodynamic quantities can
given by integration. The corresponding inverse problem
to determine the energy spectrum from the thermodyna
quantities. The specific heat of lattice vibrations can be
pressed as

Cv~T!5rkE
0

` ~hn/kT!2ehn/kT

~ehn/kT21!2 g~n!dn, ~1!

where h and k represent the Planck and Boltzmann co
stants, respectively, andr is the number of atoms per un
cell, andg(n), the phonon density of states, is normalized
3Nr:

E
0

`

g~n!dn53Nr. ~2!

The problem is to recover theg(n) based on the experimen
tally measurableCn(T). This problem was proposed and a
proximately solved by Einstein in 1907 and Debye in 19
using trial and error. Their contribution was crucial to t
development of the concept of early quantum theory@1#; it
has also been very important in the field of condensed ma
physics.

The problem of heat capacities of solids is conside
anomalous in classical physics. The problem was to de
mine the energy quantization from the heat capacity cu
@1#. Einstein proposed a harmonic model with single f
quency~Fig. 1!, which was a significant contribution to ear
quantum theory at the beginning of this century@2#. Soon
after that, Debye suggested the continuous medium m
for the low-temperature limit~Fig. 2! @3#. In 1942, this prob-
lem was proposed again by Montroll@4# due to the impor-
tance of phonon density of states for thermodynamic prop
ties of solids, lattice dynamics, electron-phonon interactio
and the optical-phonon spectrum. Lifshitz proposed the
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verse specific heat problem independently in 1954@5#. Mon-
troll and Lifshitz arrived at virtually identical solutions t
this problem despite the fact that the two worked in compl
isolation as a result of World War II. It was repeated
Chambers in 1961@6# and Dai, Xu, and Dai in 1990@7#.
Also, Lifshitz obtained a formal solution by Mellin transform
@5#. In 1959, Weiss gave a general formula of the phon
density of states for low-frequency limit@8#. Recently,
Hughes, Frankel, and Ninham again used Mellin transfo
to obtain an integral representation of solution with t
Weiss formula@9#. Most of the works mentioned above fo
cus on the integral representation of the exact solution. A
result, these solutions are difficult to interpret in terms
intuition in physics.

This work introduces the Mo¨bius inversion formula
@10,11# to obtain a concise and unified solution for this i
teresting inverse problem. This solution makes the disc
sion for various physical situations easier and much m
convenient. Two general formulas for both high-frequen
limit and low-frequency limit are given directly, and the De
bye model and the Einstein model appear as two zero-o
approximations. For convenience, Sec. II provides a b
review of previous work. Section III shows the concise a
unified closed form solution in a series representation. T
general formula for the low-frequency limit is given in Se
IV, the general formula for the high-frequency limit is give

FIG. 1. Einstein approximation.
1302 © 1998 The American Physical Society
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57 1303UNIFIED SOLUTION OF THE INVERSE CAPACITY PROBLEM
in Sec. V. Section VI is the Conclusion and Discussion.
concise deduction of Mo¨bius transform and some diverge
series related to the Riemannz function are introduced in
Appendices A and B.

II. REVIEW OF MONTROLL-LIFSHITZ FORMULA

Let us introduce new variablesx andy such that

ex5
hn

k
, ey5T. ~3!

Then Eq.~1! becomes

C~y!5E
2`

`

F~y2x!G~x!dx5F~y!* G~y!, ~4!

where

C~y!5
he2dy

rk2 Cv~ey! ~5!

and

G~x!5e~12d!xgS kex

h D , ~6!

and the integral kernel is given as

F~u!5
e2~d12!uee2u

~ee2u
21!2

. ~7!

The parameterd is chosen such that

0<d<3 ~8!

in order to satisfy

lim
u→6`

F~u!50. ~9!

Using Fourier deconvolution, one has

FIG. 2. Debye approximation.
Ĝ~k!5
Ĉ~k!

F̂~2k!
~10!

and

F̂~2k!5E
2`

` eiskees
e~d12!sds

~ees
21!2

5~11d1 ik !z~11d1 ik !

3G~11d1 ik !. ~11!

Therefore a solution in the integral form is obtained as

g~n!5
1

n E
2`

` ~hn! iknĈ~k!dk

~11d1 ik !z~11d1 ik !G~11d1 ik !
.

~12!

This is the Montroll-Lifshitz formula for the inverse specifi
heat problem. This formula has an integral form with t
kernel on the complex plane, and is difficult to use wh
discussing various concrete situations. Lifshitz mention
the formal expression of the solution based on Mellin tra
form in his work @5#, which has recently been presented
Hughes, Frankel, and Ninham@9#

M @g#~s!5
M @C#~12s!

G~32s!z~22s!
. ~13!

Nevertheless, it is still difficult to relate this solution to th
various physical situations.

III. UNIFIED SOLUTION FOR INVERSE SPECIFIC
HEAT PROBLEM

For solving Eq. ~1!, let us introduce ‘‘coldness’’ as
u5h/kT, thus Eq.~1! becomes@12#

CvS h

kuD5rkE
0

` ~un!2eun

~eun21!2 g~n!dn. ~14!

By using Taylor’s expansion, one can find that

Cv~h/ku!5rk (
n51

` E
0

`

n~un!2e2nung~n!dn

5rku2(
n51

`

nE
0

`

n2g~n!e2nnudn

5rku(
n51

`

~nu!L@n2g~n!;n→nu#,

whereL@ # represents the Laplace transform. Therefore

uL@n2g~n!;n→u#5 (
n51

`

m~n!
Cv~h/nku!

rknu
,

where we have used the Mo¨bius transform~see Appendix A!,
which states if

F~x!5 (
n51

`

f ~nx!, ~15!
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1304 57CHEN NAN-XIAN AND RONG ER-QIAN
then

f ~x!5 (
n51

`

m~n!F~nx!. ~16!

Thus it is given that

g~n!5
1

rkn2 (
n51

`

m~n!L21FCv~h/nku!

nu2 ;u→nG . ~17!

Unlike Einstein’s or Debye’s approximation, this is an exa
closed form solution. The spirit of most previous works is
solve the inverse problem based on the method for di
problems, i.e., the trial and error method. This work
slightly different.

IV. GENERAL FORMULA
FOR LOW-TEMPERATURE LIMIT

If we assume a standard low-temperature expansion o
specific heat in odd powers ofT, we may write

Cv~T!5a3T31a5T51a7T71••• as T→0 ~18!

or

Cv~h/ku!5 (
n52

`

a2n21~h/k!2n21u2~2n21! as u→`.

~19!

Hence,

g~n!5
1

rkn2 (
n51

`

m~n! (
m52

`

a2m21S h

nkD ~2m21!

L21

3Fu2~2m21!

nu2 ;u→nG
5

1

rkn (
m52

` F (
n51

`
m~n!

n2m Ga2m21S h

kD 2m21

L21

3F 1

u2m11 ;u→nG
or

g~n!5
1

rkn (
m52

`
a2m21~hn/k!2m21

~2m!! z~2m!
.

t

ct

he

By using z(2m)5(21)m11$(2p)2m/2@(2m)! #%B2m , we
have

g~n!5
1

rkn (
m52

`
a2m21~hn/k!2m21

~2m!! z~2m!
. ~20!

This is completely the same as Weiss’s formula for the lo
temperature limit@8#. Taking only the first term, the expres
sion above simply gives the Debye model as

g~n!5F S h

kD 3 1

4!z~4!

1

rk
a3Gn25

90a3h3

p2rk4 n2. ~21!

V. GENERAL FORMULA
FOR HIGH-TEMPERATURE LIMIT

Now let us show how to get a general formula for t
high-frequency limit. If the temperature is high enough, w
have

C~T!5a02
a2

T2 1
a4

T42
a6

T6 1••• ~22!

or

C~h/ku!

u2 5
1

u2 Fa02
a2~ku!2

h2 1
a4~ku!4

h4 2
a6~ku!6

h6 1••• G .
~23!

Hence,

C~h/ku!

u2 5
a0

u22
a2k2

h2 1
a4k4u2

h4 2
a6k6u4

h6 1••• ,

C~h/2ku!

2u2 5
a0

2u22
2a2k2

h2 1
23a4k4u2

h4 2
25a6k6u4

h6 1••• ,

C~h/3ku!

3u2 5
a0

3u22
3a2k2

h2 1
33a4k4u2

h4 2
35a6k6u4

h6 1••• ,

C~h/nku!

nu2 5
a0

nu22
na2k2

h2 1
n3a4k4u2

h4 2
n5a6k6u4

h6 1•••

5 (
m50

`

~21!ma2m~k/h!2mu2~m21!n2~m21!.

According to Eq.~17!,
g~n!5
1

rkn2 (
n51

`

m~n!L2FCv~h/nku!

nu2 ;u→n G
5

1

rkn2 (
n51

`

m~n!L21F a0

nu2G2
1

rkn2 (
n51

`

m~n!L21Fna2k2

h2 G1
1

rkn2 (
n51

`

m~n!L21Fn3a4k4u2

h4 G2•••

5
1

rkn2 H F (
n51

`
m~n!

n GL21Fa0

u2G2F (
n51

`

nm~n!GL21Fa2k2

h2 G1F (
n51

`

n3m~n!GL21Fa4k4u2

h4 G2•••J
5

1

rkn2 H 1

z~1!
L21Fa0

u2G2
1

z~21!
L21Fa2k2

h2 G1
1

z~23!
L21Fa4k4u2

h4 G2•••J .
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57 1305UNIFIED SOLUTION OF THE INVERSE CAPACITY PROBLEM
Consideringz(1)5`, we have

g~n!5
1

rkn2 (
n51

`
a2n

z~122n! S k

hD 2n

d~2n22!~n!. ~24!

This is the general representation of Eq.~17! for the high-
frequency limit. In the above deduction, the relation for ge
eralized functions,

L21@um;u→n#5d~m!~n!, ~25!

was used in which$d (m)(n)% are derivatives of the genera
ized even functiond~n!. Also, a definition of Riemann’sz
function

1

z~s!
5 (

n51

`
m~n!

ns ~s>1! ~26!

has been extended tos being negative integers. At this poin
it can be considered as a symbolic operation, since the s
mation in Eq.~26! is divergent. However, we find that th
result for the high-temperature limit or the high-frequen
limit is certainly reasonable from the physical point of vie
It seems quite ridiculous that we had extended Eq.~26! to

1

z~s!
5 (

n51

`
m~n!

ns ~s521,22,23, . . . !

5 (
n51

`

m~n!ns ~s51,2,3, . . . !. ~27!

This apparently unreasonable effectiveness can be un
stood as the result of a generalized function~see Appendix
B!.

A. Einstein’s single peak approximation

Einstein’s approximation would be the most importa
check for our general high-frequency formula. In this ca
Eq. ~24! can be rewritten as

g~n!5
k

rh2n2

a2

@2z~21!#
Fd~n!1

nE
2

2
d~2!~n!1•••G

5
k

rh2n2

a2

@2z~21!#
d~n2nE!

5
12ka2

rh2nE
2 d~n2nE!. ~28!

Thus the Einstein frequency can be given directly as

nE5
k

h S 2a4@2z~21!#

a2z~23! D 1/2

5
k

h S 20a4

a2
D 1/2

. ~29!

This indicates that the Einstein frequency is only depend
on the second and third expansion coefficients in Eq.~22!. In
the solution~29!, we have considered that@13# anda2m.0,
and

z~122m!52B2m/2m.
-

m-

er-

t
,

nt

From B251/6, B4521/30, B651/42, B8521/30, B10
55/66, . . . wehave

z~21!521/12, z~23!51/120, z~25!521/252,

z~27!51/240, z~29!521/132, . . . . ~30!

In fact, Einstein’s solutiond(n2nE) corresponds to the hea
capacity spectrum@7#

x2ex

~ex21!2 512
x2

12
1

x4

240
2

x6

6084
1••• ~x5TE /T!.

~31!

Substituting this expression into Eq.~29!, we obtain

nE5
k

h S 20TE
4/240

TE
2/12 D 1/2

5
kTE

h
. ~32!

This shows the success of the general formula~22! for the
high-frequency limit.

B. Two peak approximation

If there are twod peaks atn1 andn2 in phonon spectra,
then it is given that

n1
2 1n2

2

2!
52

a4z~21!

2a2z~23! S k

hD 2

5A ~33!

and

n1
4 1n2

4

4!
5

2a6z~21!

a2z~25! S k

hD 4

5B. ~34!

Hence, we have

n1
2 1n2

2 52A ~35!

or

n1
4 1n2

4 12n1
2 n2

2 54A2. ~36!

Thus

2n1
2 n2

2 54A2224B ~37!

or

~n1
2 2n2

2 !2548B24A2. ~38!

Therefore

n1
2 2n2

2 562A12B2A2. ~39!

Finally, we have

n65~A6A12B2A2!1/2. ~40!

Based on Eq.~40! with the experimental fitting parameters
the general formula~22!, the peak width for high frequency
in the phonon frequency spectrum can be estimated by
culating n12n2 , and hence the main characterization
optical branches can be obtained. A more complicated s
ation can be discussed in a similar way.
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1306 57CHEN NAN-XIAN AND RONG ER-QIAN
VI. CONCLUSION AND DISCUSSION

The apparently obscure Mo¨bius inversion formula has
been applied successfully to the inverse specific heat p
lems, which have played a very important role in the dev
opment of physics, and which have been studied by Einst
Debye, Montroll, Landau, Lifshitz, Chambers, and so o
Now this quite interesting and difficult problem is solve
unexpectedly by the Mo¨bius technique in this concise man
ner. This cannot be considered as an isolated and occas
situation@14#. The wide use of the number theory techniq
reflects the arrival of the digital information age, and t
quantum age. In addition, a power series representation
the Riemannz function has been extended to negative in
ger points in a Poisson-Abel process, which is very useful
physical applications. This might become a typical techniq
to deal with some inherently ill-posed inverse problems
stead of some numerical methods such as the maximum
tropy method and the regularization method.
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APPENDIX A: A CONCISE DEDUCTION
OF THE MÖ BIUS TRANSFORM

From

F~x!5 f ~x!1 f ~2x!1 f ~3x!1•••1 f ~nx!1•••

5T1f ~x!1T2f ~x!1•••1Tnf ~x!1•••

5~T11T21•••1Tn1••• ! f ~x!, ~A1!

we have

f ~x!5
1

T11T21•••1Tn1•••
F~x!

5
1

Pp~T11Tp1Tp21Tp31••• !
F~x!. ~A2!

Thus it is given that

f ~x!5
1

Pp@1/~T12Tp!#
F~x!5F)

p
~T12Tp!GF~x!.

~A3!

Therefore we have

f ~x!5FT11 (
$p1p2p3 ,...,pr %

~21!rTp1
Tp2

Tp3
•••TprGF~x!

5F~x!1 (
$p1p2p3 ,...,pr %

~21!rF~p1p2p3•••prx!.

~A4!

Let us denote the last expression as
b-
l-
n,
.

nal

or
-
r
e
-
n-

i

n,
f

f ~x!5 (
n51

`

I ~n!TnF~x!5 (
n51

`

I ~n!F~nx!, ~A5!

where

m~n![I ~n!5H 1, n51
~21!r , n5p1p2 ,...,pr

0 otherwise.
~A6!

In this deduction, we did not make any assumption about
Möbius function; instead, we used the definition of the M¨-
bius function found in standard textbooks.

APPENDIX B: SOME SPECIAL RELATIONS
BETWEEN z„s… AND µ„n…

For the reader’s convenience, some mathematical n
are attached in this section. First, we define two converg
series as@15#

f ~x,s!5 (
n51

`

m~n!nsxn, s.1 and xP~0,1!, ~B1!

and

q~x,s!5 (
n51

`

nsxn, s.1 and xP~0,1!. ~B2!

The evaluation of the generalized function

(
n51

`

ns ~s.1!

and

(
n51

`

m~n!ns ~s.1!

can be defined as the Poisson-Abel principal value
Poisson-Abel generalized sum as

(
n51

`

ns5 lim
x→1

q~x,s! ~B3!

and

(
n51

`

m~n!ns5 lim
x→1

f ~x,s!. ~B4!

From now on, all the divergent series will be considered
Poisson-Abel generalized sums without explanation.

1. Relation betweenz„s… and µ„n… †3‡

The Riemannz function is defined as

z~s!5 (
n51

`
1

ns , s.1. ~B5!

The relation ofz(s) andm(n) has been proved to be
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1

z~s!
5 (

n51

`
m~n!

ns , s.1. ~B6!

2. A special relation between two divergent sums

In Eqs.~B5! and ~B6!, both series

(
n51

`
1

ns and (
n51

`
m~n!

ns

are convergent ifs.1, and both are divergent ifs<1. But
there is an important and unreasonable effective relation
tween the two divergent sums. That is,

F (
n51

`

nsG21

5 (
n51

`

m~n!ns, s.0. ~B7!

This pseudotheorem can be proved the same way as b
provided that the Poisson-Abel process is used. In fact,
s.0 we have

lim
0,x→12

F (
n51

`

m~n!nsxnGF (
m51

`

msxmG
5 lim

0,x→12
F (

m,n51

`

m~n!~mn!sxn1mG
5 (

k51

` F lim
0,x→12

(
nuk

m~n!xn1k/nGks51. ~B8!

3. Other two pseudotheorems onz„s…

The first theorem states that

(
n51

`

ns5 H0,
z~122k!,

s52k
s52k21.0 ~B9!

and the second one states that

(
n51

`

m~n!n2k215
1

z~122k!
, k51,2,3, . . . . ~B10!

Proof. Taking the integral representation ofG(s) for ar-
bitrary s as

1

G~z!
5

21

2p i È ~01 !

e2t~2t !2zdt ~B11!

in which the integral path is from infinity on the real axi
surrounding the origin counterclockwise once, and back
infinity on the real axis as in Fig. 3. Now let us consider t
case ofz5m11, wherem is a positive integer. Introducing
the variable

t5~n11!x, ~B12!

we obtain that
e-

ore
r

o

15
2G~z!

2p i È ~01 !

e2t~2t !2zdt

5
2G~m11!

2p i È ~01 !

e2~n11!x@x~n11!#2~m11!~n11!dx

5
2m!

2p i È ~01 !

e2~n11!x~n11!2mx2~m11!dx ~B13!

→~n11!m5
2m!

2p i È ~01 !

e2~n11!xx2~m11!dx.

~B14!

Taking the summation, we get that

lim
0,y→121

(
n50

`

~n11!myn11

5
2m!

2p i È ~01 !

x2~m11! (
n50

`

e2~n11!xdx

5
2m!

2p i È ~01 !

x2~m11!e2x(
n50

`

e2nxdx

5
2m!

2p i È ~01 !

x2~m11!
e2x

12e2x dx. ~B15!

The integration in the right-hand side has a pole of ra
(m12) at x50. Thus

1

2p i È ~01 !

x2~m11!
e2x

12e2x dx

5Resx50Fx2~m11!
e2x

12e2xG
5

1

~m11!!

]~m11!

]x~m11! F xe2x

ex21Gx50. ~B16!

Based on the generating function of Bernoulli numbersBn ,

t

et21
5 (

n50

`
tn

n!
Bn , ~B17!

we have

lim
0,x→121

(
n50

`

~n11!mxn1152m!
Bm11

~m11!!
5

2Bm11

m11
.

~B18!

Therefore for any natural numberm

FIG. 3. Integral loop.
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lim
0,x→12

(
n51

`

nmxn5H 0, m52k.0

z~1-2k!, m52k-1.0.
~B19!

Notice thatB2k2150. Thus the first theorem is proved.
Combining Eq.~B7! with Eq. ~B9!, we get that
d

. A

a

lim
0,x→12

(
n51

`

m~n!n2k21xn5
1

z~122k!
, k51,2,3,••• .

~B20!

That is the reason for the interesting equation~27!.
,
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