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Unified solution of the inverse capacity problem
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The inverse specific heat problem has played a significant role in physics. But there is no satisfactory
solution for this inherently ill-posed inverse problem. The present work shows a concise and unified solution
based on the Maius inversion technique and the Poisson-Abel process. This solution can explain both Debye’s
and Einstein’s approximations very well. All the mathematical deductions are shown in the Appendixes; they
are deduced in an elementary way for physicig$d.063-651X98)02302-2

PACS numbsg(s): 05.90+m, 65.40+¢, 02.10.Lh, 02.30.Sa

I. INTRODUCTION verse specific heat problem independently in 1&4Mon-
troll and Lifshitz arrived at virtually identical solutions to
When establishing the thermodynamics for a system, théhis problem despite the fact that the two worked in complete
key point is to determine the energy spectrum of the quasiisolation as a result of World War 1l. It was repeated by
particle based on the Hamiltonian operator. Once the energ@hambers in 19616] and Dai, Xu, and Dai in 19907].
spectrum is known, all the thermodynamic guantities can bélso, Lifshitz obtained a formal solution by Mellin transform
given by integration. The corresponding inverse problem ig5]. In 1959, Weiss gave a general formula of the phonon
to determine the energy spectrum from the thermodynamidensity of states for low-frequency limit8]. Recently,
quantities. The specific heat of lattice vibrations can be exHughes, Frankel, and Ninham again used Mellin transform

pressed as to obtain an integral representation of solution with the
- Weiss form'ula[9]. Most of the yvorks mentioned abqve fo-
C.(T)=rk = (hv/kT)% (v)dv o) cus on the integral representation of the exact solution. As a
v o (eMKT—1)2 9 ' result, these solutions are difficult to interpret in terms of

intuition in physics.
where h and k represent the Planck and Boltzmann con- This work introduces the Muus inversion formula
stants, respectively, andis the number of atoms per unit [10,1]] to obtain a concise and unified solution for this in-
cell, andg(y), the phonon density of states, is normalized toteresting inverse problem. This solution makes the discus-
3Nr: sion for various physical situations easier and much more
convenient. Two general formulas for both high-frequency
* _ limit and low-frequency limit are given directly, and the De-
fo g(»)dv=3Nr. 2) bye model and the Einstein model appear as two zero-order
approximations. For convenience, Sec. Il provides a brief
The pr0b|em is to recover tl‘ﬁy) based on the experimen_ review of previous work. Section Il shows the concise and
tally measurabl€ ,(T). This problem was proposed and ap- unified closed form solution in a series representation. The
proximately solved by Einstein in 1907 and Debye in 1912general formula for the low-frequency limit is given in Sec.
using trial and error. Their contribution was crucial to the !V, the general formula for the high-frequency limit is given
development of the concept of early quantum thedryy it
has also been very important in the field of condensed matter
physics.

The problem of heat capacities of solids is considered
anomalous in classical physics. The problem was to deter-
mine the energy quantization from the heat capacity curve
[1]. Einstein proposed a harmonic model with single fre-
guency(Fig. 1), which was a significant contribution to early
guantum theory at the beginning of this cent{ig}. Soon
after that, Debye suggested the continuous medium model
for the low-temperature limitFig. 2) [3]. In 1942, this prob-
lem was proposed again by Montr¢#] due to the impor-
tance of phonon density of states for thermodynamic proper-
ties of solids, lattice dynamics, electron-phonon interactions,
and the optical-phonon spectrum. Lifshitz proposed the in- Ve y

P

*Mailing address. FIG. 1. Einstein approximation.
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- . C(k)
2\ G(k)=~ (10
DN O(—k)
and
. - eiSkeese(5+2)Sds
| CI>—k=J —————=(1+5+ik){(1+6+ik
: (=] ey = )¢ )
\ XT(1+ 8+ik). (11
|
: Therefore a solution in the integral form is obtained as
| oA
. 1 (= (hv)*"C(k)dk
| , e
" v J oo (14+8+ik)Z(1+ 6+ik)I (14 6+ik)
> (12
FIG. 2. Debye approximation. This is the Montroll-Lifshitz formula for the inverse specific

heat problem. This formula has an integral form with the
in Sec. V. Section VI is the Conclusion and Discussion. Akernel on the complex plane, and is difficult to use when
concise deduction of Maius transform and some divergent discussing various concrete situations. Lifshitz mentioned
series related to the Riemarinfunction are introduced in the formal expression of the solution based on Mellin trans-
Appendices A and B. form in his work[5], which has recently been presented by
Hughes, Frankel, and Ninhaff]

Il. REVIEW OF MONTROLL-LIFSHITZ FORMULA

_ M[C](1-5)
Let us introduce new variablesandy such that MLgl(s)= ['(3—s){(2-5s)° (13
« hv y Nevertheless, it is still difficult to relate this solution to the
e=1 =T () various physical situations.
Then Eq.(1) becomes I1l. UNIFIED SOLUTION FOR INVERSE SPECIFIC
HEAT PROBLEM
C(y)zj O(y—x)G(x)dx=>(y)*G(y), (4) For solving Eq. (1), let us introduce “coldness” as
- u=h/kT, thus Eq.(1) becomeq12]
where ( ) = (uv)2e”
C,l—]|=rk dv. 14
Y ol ku . ng(V) v (14
Cly)= C.(e) 5 . . :
Y rk? ( By using Taylor's expansion, one can find that
and L
C,(h/ku)=rk >, f n(uv)2e ""g(v)dv
keX n=1J0
G(x)=e'"7%g —) (6) -
=rku?>, nf v2g(v)e "dy
and the integral kernel is given as n=1 Jo
e (0+2uge™" =rku nu)L[»?g(v);v—nu
o= e @ 2 (NWL[»?g(v);v—nul],
(€° '~1)
whereL[ ] represents the Laplace transform. Therefore
The parameteb is chosen such that
) - C,(h/nku)
0<6<3 (8) uL[v g(V):VHU]ZHZl /L(n)w,
in order to satisfy where we have used the Mins transform(see Appendix A
lim ®(u)=0. ) which states if

Uu— *+oo

F(x)=nzl f(nx), (15)

Using Fourier deconvolution, one has
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then

f(x)=n21 w(NF(nX). (16)
Thus it is given that
1 < C,(h/nku
9(v)=1-2 ngl ,u(n)L_l[(n—uz);u—w . 1)

Unlike Einstein’s or Debye’s approximation, this is an exact
closed form solution. The spirit of most previous works is to
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By using Z(2m)=(—1)™"Y(27)2™2[(2m)! ]}B,,, we
have

©

>

m=2

1

_ aom—1(hv/k)*™ 1
g(v)= Ky

(2m)iZ(2m) 20

This is completely the same as Weiss'’s formula for the low-
temperature limif8]. Taking only the first term, the expres-
sion above simply gives the Debye model as

h\s 1 1 , 90azh®
9(v)= E) 100 kB T v @D

solve the inverse problem based on the method for direct

problems, i.e., the trial and error method. This work is
slightly different.

IV. GENERAL FORMULA
FOR LOW-TEMPERATURE LIMIT

V. GENERAL FORMULA
FOR HIGH-TEMPERATURE LIMIT

Now let us show how to get a general formula for the
high-frequency limit. If the temperature is high enough, we
have

If we assume a standard low-temperature expansion of the

specific heat in odd powers df, we may write a, ag
C(T)=a + +- (22
Cy(T)=a;T3+asTo+a;T7+-- asT—0 (18 . T2 T
” C(h/ku) 1 ay(ku)2 ay(ku)?  ag(ku)®
C,(h/ku)= > ay,_1(h/k)2""1u=@=1 a5 y—oo, I R
n=2
(19) (23)
Hence, Hence,
1 = i h\@m-b C(h/ku) ap ak® ask'u? agk®u?
g(v)= k2 &= M(n)m§=:2 a2m1(m<) L w2 W n? h? ho )
u-em-u C(h/i2ku) ay 2ak* 2%a,k*u® 2%agk°u’
T U T 207 2uZ e h? ht !
1 - i w(n) . h 2m*1L_l C(h/3ku) _a, 3ak®  3%aku®  3°agk®u’
rkv @2 41 n®™ |72tk 32 3w n? h? ho ’
1 C(h/nku) a, nak?® n3ak*u® ndagkbu®
*lupm BT T A h?
or o
) — z (_1)ma2m(k/h)Zmu2(mfl)n2(mfl).
1 Aom_1(hw/k)2m-1 m=0
gv)==— 2 : _
rkv m=2  (2m)!{(2m) According to Eq.(17),
|
- _[C,(h/nku)
9= 7 2 ML | —— o=
= ag = nak?] 1 & n3a,k*u?
-1 1
>, u(n)L” [nu 2 ML o+ oz 2 (L —
1 - n - 2 - ak*u?
> ( I T SEIY T o A SO I Ll
n= U n=1 h = h
1 1 1 - a2k2 1 _Jaskiu?
T rki? |21 Uf {(-1) =3 h? ‘
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Considering{(1)=c, we have From B,=1/6, B,=—1/30, Bg=1/42, Bg=—1/30, Byq
, =5/66, ... wehave
1 < a, K\
9= 2 g(l—nzm (H) 522 (p). (249 ((—1)=-1/12, {(—3)=1/120, ¢(—5)=-1/252,

This is the general representation of Ef7) for the high- {=7)=1/240, ¢(=9)=-1/132... . (30
frequency limit. In the above deduction, the relation for gen-|n fact, Einstein’s solutio(»— vg) corresponds to the heat

eralized functions, capacity spectruri7]

L™ [u™u—v]=86"(»), (25) x%e x2  x* Xt

=1-—+-—— =+ (X=Tg/T).
(e —1)2 E
was used in whicH 5™ (v)} are derivatives of the general- (e-1) 12240 6084 (31)
ized even function&(v). Also, a definition of Riemann’'g
function Substituting this expression into E@9), we obtain
1 & un _k [20T2/240 Y% kTe
(5 & o = 26 "Thl Tz ] The (32

has been extended $obeing negative integers. At this point This shows the success of the general form@a for the
it can be considered as a symbolic operation, since the sunfigh-frequency limit.

mation in Eq.(26) is divergent. However, we find that the

result for the high-temperature limit or the high-frequency B. Two peak approximation

limit is certainly reasonable from the physical point of view. |t ihere are twos peaks at, andv_ in phonon spectra
It seems quite ridiculous that we had extended @) to then it is given that - - ’

1 < wn 42 au(—1) [k\2
= s=—-1-2-3,... — b
{(s) nzl e ) 2! —a,/(—3) (h) A (33
- and
=2 wn® (s=123...). 27
n=1 v+t _ 2ag4(—1) (k)4—B 34
This apparently unreasonable effectiveness can be under- 4! a{(—=95) \h '
stood as the result of a generalized functisee Appendix
B). Hence, we have
V2 + 12 =2A (35

A. Einstein’s single peak approximation

Einstein’s approximation would be the most importantOr
check for our general high-frequency formula. In this case, A4 12,2 02 —aA2 (36)
Eq. (24) can be rewritten as A A '

2 Thus
(1= s e | B0+ 8w+
===y |0 T2 20212 =4N2— 248 (37)
k ay 5 ) or
T Th2. 2T V= Ve
=1 (12— 1% )2=48B— 4A%, (39
12ka,
=——>— 8(v—vE). (28)  Therefore
rhevg
212 =+212B— A2 39
Thus the Einstein frequency can be given directly as Vel 39
Finally, we have
Kk (2ad L 1)) k(20 T
VETh T a(—3) “hl a, (29 v.=(Ax12B—A?)12 (40)

This indicates that the Einstein frequency is only dependenBased on Eq40) with the experimental fitting parameters in
on the second and third expansion coefficients in(Bg). In  the general formul#22), the peak width for high frequency
the solution(29), we have considered thft3] anda,,,>0, in the phonon frequency spectrum can be estimated by cal-
and culating v, —v_, and hence the main characterization of
optical branches can be obtained. A more complicated situ-
{(1—-2m)= —By,/2m. ation can be discussed in a similar way.
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VI. CONCLUSION AND DISCUSSION * *
f(x)= Zl (M) TF(x)= 21 I(N)F(nx),  (A5)

The apparently obscure Mas inversion formula has
been applied successfully to the inverse specific heat prob-
lems, which have played a very important role in the develwhere
opment of physics, and which have been studied by Einstein,

Debye, Montroll, Landau, Lifshitz, Chambers, and so on. 1, n=1
Now this quite interesting and difficult problem is solved wm=l(n)=1{ (=1 n=pips,...p (AB)
unexpectedly by the Maius technique in this concise man- 0 otherwise.

ner. This cannot be considered as an isolated and occasional

situation[14]. The wide use of the number theory technique!n this deduction, we did not make any assumption about the
reflects the arrival of the digital information age, and theMobius function; instead, we used the definition of the-Mo
quantum age. In addition, a power series representation fd¥us function found in standard textbooks.

the Riemanry function has been extended to negative inte-

ger points in a Poisson-Abel process, which is very useful for APPENDIX B: SOME SPECIAL RELATIONS

physical applications. This might become a typical technique BETWEEN ¢(s) AND p(n)

to deal with some inherently ill-posed inverse problems in-

stead of some numerical methods such as the maximum en- For the reader’'s convenience, some mathematical notes
tropy method and the regularization method. are attached in this section. First, we define two convergent

series ag15]
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f(x,s)=n§1 u(nn3x", s>1 and xe(0,1), (Bl)

China. -
q(x,s)= 2, n", s>1 and xe(0,1). (B2
n=1
APPENDIX A: A CONCISE DEDUCTION
OF THE MO BIUS TRANSFORM The evaluation of the generalized function
From *
> nt (s>1)
F(x)=f(x)+f(2x)+f(3x)+---+f(nx)+--- n=1
=TFX)+Tof(X)+ -+ Tf(X)+ - and
=(T+ T+ -+ T+ )f(X), (Al) *
> w(mn® (s>1)
we have n=1
can be defined as the Poisson-Abel principal value or
f(x)= T T4 F Tt F(x) Poisson-Abel generalized sum as
1 e 2]
= F(x). (A2 n®=1limq(x,s) (B3)
(T +Tp+Tp+Tpat+--) ) (A2) nzl Xﬁlq
Thus it is given that and
00 =, =77 F 0= 1 (T To) [0, S w(nne=limf(x,s). (B4)
P P P (A3) n=1 X—1

From now on, all the divergent series will be considered as
Poisson-Abel generalized sums without explanation.

Therefore we have

f0)=Ti+ D (DT Ty Tp Ty

F(x) -
(PiPoprt i} 1. Relation betweenZ(s) and p(n) [3]

The Riemanry function is defined as

=F(X)+ > (—1)F(pipaPs - PiX).
{P1P2P3.-- pr} i
S

{(s)=2, s>1. (B5)
n=1 N

(A4)

Let us denote the last expression as The relation ofZ(s) and w(n) has been proved to be
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o

s>1. (B6)

1ns’

2. A special relation between two divergent sums
In Egs.(B5) and(B6), both series

2 is and 2 m(n)
n=1 N

FIG. 3. Integral loop.

i nd —TI'(z) (o+) _ _
1= = e Y(—t) "zt
are convergent is>1, and both are divergent g<1. But B
there is an important and unreasonable effective relation be- —T'(m+1) ) () ()
tween the two divergent sums. That is, =~ | € [x(n+1)] (n+1)dx
N —m! [0+
> 0S| =2 wnns, s>0. (B7) =5 e~ (M 1X(n 4 1)~ My—(M+Lgy (B13)
= n=1 ©
This pseudotheorem can be proved the same way as before —m! [(0+) (M Dxe—(m+1)
provided that the Poisson-Abel process is used. In fact, for —(n+1)" “om ). € X dx.
s>0 we have (B14)
~ Taking the summation, we get that
lim 2 u(n)n3x" E mex™
0<x—1" n=1 =1 il
lim >, (n+1)myn+1
0<ya1’1n:0
= lim 2 p(n)(mn)sx+m .
0<x—1-LMN=1 —mbOR) —(n+1
X— — o X (m )2 e (n )XdX
© 0 n=0
— H n+k/n|s—
—kgl lim 7; p(n)x 1k =1. (B8) “ml oo o
0<x—s1 = x~(M+la XE e~ "Xdx
27T| © n=0
3. Other two pseudotheorems org(s) —m! [(0+) C(m+1) e X q (815
= X — dx.
The first theorem states that 2l Je 1-e™”
* =2k The integration in the right-hand side has a pole of rank
s
Zl [ {(1-2k), s=2k—1>0 (B9) (m+2) atx=0. Thus
1 (oo . e
and the second one states that = (m+1) — dx
27 Jo 1-e
}w‘, M(n)nz“’l:; k=1,2,3 (B10) Cmen &
= {(1-2k)’ I =ReS=q 1-e
Proof. Taking the integral representation b{s) for ar- 1 dMY [ xe X
bitrary s as = M+ D)1 o™ D | -1 x=0. (B16)
1 —_1 (Oﬂe‘t(—t)_zdt (B11) Based on the generating function of Bernoulli numbgs
I'(z) 2@ )« i
LS L (B17)
in which the integral path is from infinity on the real axis, -1 & nt 7™
surrounding the origin counterclockwise once, and back to
infinity on the real axis as in Fig. 3. Now let us consider theWe have
case ofz=m+1, wherem is a positive integer. Introducing w0 B B
the variable , 1 m+1 _ ~ Bmt1
lim >, (n+1)™x"*1=—m! = .
~ 0ex_1-10=0 (m+1)! m+1
t=(n+1)x, (B12 (B19)

we obtain that Therefore for any natural numbar
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” 0, m=2k>0 ” 1
; my,n_ ; 2k—1,,n_ —
O<'lT1_n21 "X ca-20, m=2k-1>0. 0<'fjl_n21 I M
(B19 (B20)
Notice thatB,,_,=0. Thus the first theorem is proved.
Combining Eq.(B7) with Eqg. (B9), we get that That is the reason for the interesting equati@n).
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