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Interface pinning and slow ordering kinetics on infinitely ramified fractal structures
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We investigate the time-dependent Ginzburg-Lan@dDGL) equation for a nonconserved order parameter
on an infinitely ramified(deterministi¢ fractal lattice employing two alternative methods: the auxiliary field
approach and a numerical method of integration of the equations of evolution. In the first case the domain size
evolves with time a4 (t)~tY“w, whered,, is the anomalous random-walk exponent associated with the fractal
and differs from the normal value 2, which characterizes all Euclidean lattices. Such a power-law growth is
identical to the one observed in the study of the spherical model on the same lattice, but fails to describe the
asymptotic behavior of the numerical solutions of the TDGL equation for a scalar order parameter. In fact, the
simulations performed on a two dimensional Sierpinski carpet indicate that, after an initial stage dominated by
a curvature reduction mechanism in the manner of Allen and Catta. Metall.27, 1085(1979], the system
enters in a regime where the domain walls between competing phases are pinned by lattice defects. The lack
of translational invariance determines a rough free-energy landscape, the existence of many metastable
minima, and the suppression of the marginally stable modes, which in translationally invariant systems lead to
power-law growth and self-similar patterns. On fractal structures, as the temperature vanishes the evolution is
frozen since only thermally activated processes can sustain the growth of pinned domains.
[S1063-651%98)01302-9

PACS numbd(s): 64.60.Ht, 61.20.Gy, 64.60.Kw

[. INTRODUCTION contrary, on Sierpinski carpets, whose order of ramification
is infinite [5,6], there exist an order-disorder transition pro-

The study of the relaxation dynamics of a system initiallyvided that the spectral dimensiofy exceeds the critical
in thermal equilibrium and abruptly rendered unstable by avalue 2[7], in accord with the Mermin-Wagner theorg#i.
sudden change of a controlling field has recently drawn con- Interestingly, the study of the spherical model with a non-
siderable attention, not only because many physical propegonserved order parameter has revealed the existence, even
ties may depend on the way a material reaches the equilit®n fractals, of a characteristic length scalé), which in-
rium state, but also because it poses intriguing problems tereases in time in a powerlike fashitugt) ~t*, and of dy-
the theory such as broken ergodicity, aging, and dynamicatamical scaling for the correlation functions. Such a dynami-
scaling[1]. After the quench, i.e., a rapid lowering of the cal exponentz takes the valued,,=In(d+3)/In(2) on
temperature below the critical point of a phase-separatinierpinski gaskets of arbitrary embedding dimensioand
system, the initial, disordered state loses stability and thél,~=2.10 on the planar Sierpinski carpet, whefg is the
system undergoes a coarsening process, during which thandom-walk exponent. These values ofiffer from the
domains corresponding to different equilibrium phases comAllen-Cahn universal valug=2, which characterizes the
pete to grow in magnitude. About twenty years ago, Allendiffusive domain growth on standard lattices. We have
and Cahr{2] realized that when the order parameter is non-shown[3] that in order to fully characterize the static and
conserved, the driving force towards equilibrium stems fromdynamical properties of the spherical model on fractal lat-
the tendency of the system to reduce the curvature of théices two more quantities are requirdd: the fractal dimen-
domain walls and showed that the typical size of the domainsion d; and (ii) the spectral dimensiodg, which for many
L increases in time with a power-law behavigt) ~t*2 In lattices are related td,, via the Alexander-Orbacf®] rela-
spite of the fact that the theory of phase ordering in homodion
geneous systems is fairly well understood, only recently the
ordering kinetics on nontranslationally invariant fractal lat- 2d;
tices has become a subject of investigation. dy,=—/.

The present author in collaboration with PdBi4] con-
sidered the role of deterministic fractal supports, with finite
and infinite order of ramification, on the ordering process Unfortunately, the analytically soluble spherical model
employing the so-called spherical model, which has the addoes not yield predictions that can be extrapolated to the
vantage of rendering analytical approaches possible. It washysically interesting case of the scalar order parameter. In
found by means of an explicit solution that the sphericalfact, the lack of sharp, well-defined interfaces between dif-
model on fractal lattices of finite order of ramification, suchferent phases renders the spherical model physically inad-
as the Sierpinski gasket of arbitrary embedding dimensionequate to describe the phase-separation process of an Ising
does not display a finite-temperature phase transition; on thgystem.
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The purpose of the present paper is to investigate the We shall writeA,, as a difference operator in analogy
phase-separation process on fractals with infinite ramificawith the discrete representation of the Laplacian on Euclid-
tion order, such as the Sierpinski carpet family, for a non-ean lattices. Periodic boundary condition are assumed, unless
conserved scalar order parameter. We expect the latter to lexplicitly stated. The operataX is defined as\,,=1 if x,y
very sensitive to the presence of inhomogeneities in contragtre nearest-neighbor celld,,=—2Z,, and A,,=0 other-
with vector fields. The choice of a Sierpinski carpet has beenvise, where 2Z,<4 counts the number of nearest neigh-
suggested by the fact that it represents perhaps the simpldsérs of the sitex.
example of a nonstochastic fractal lattice, with infinite rami- At temperaturél;=0, the free energy has two equivalent
fication order[5,10]. In Sec. Il we introduce the Ginzburg- minima b=+ \/% In the case of the spherical model we
Landau (GL) model on the fractal lattice. In Sec. Il we showed that the critical temperature vanishes when the spec-
consider an auxiliary field approadiil] and discuss its tral dimension is less than 2, while in the scalar case the
asymptotic behavior. In Sec. IV we present numerical resultgritical temperature of a Sierpinski carpet is fifit€]. In the

of the exact equations of motion and monitor in several waysollowing, we shall concentrate on the dynamical properties
the growth process. In Sec. V, after stressing the similaritiegor deep quenche®;<T..

between the auxiliary field method and the spherical model,
we draw the conclusions.
lll. AUXILIARY FIELD APPROACH

Il. GINZBURG-LANDAU MODEL ON A FRACTAL In this section the so-called auxiliary field method

LATTICE [1,11,13, which has provided insight into the ordering dy-
We shall consider a scalar fieldi, whose properties de- namics of translationally invariant systems, will be applied to
pend on a standard Ginzburg-Landau free-energy functiond® nonconserved order-parameter dynamics on the Sierpin-

and defined at every lattice cell, whose coordinate we repre3ki carpet. S
sent byx: In this approach one replaces the physical figldby an

auxiliary fieldm, , which varies in a smoother fashion across
D r N g N the interfaces and renders approximations feasible.

H{o =~ EZ DD yyby— 52 d2+ ZZ dr, (D) One chooses a nonlinear transformation fregg(t) to a

b x X new fieldmy(t) in such a way that the latter obeys an equa-
tion simpler than the original one. If such an equation is
linear, the statistical properties of, are equivalent to those
of free Gaussian fields and analytical work can be performed.
?ollowing the presentation of De Siena and Zannifi],
one way of determining the transformation is to require that
the auxiliary field linearizes the local part of the original
._equation of evolutiori.e., a zero-dimensional version of Eq.
?3), obtained by settingD=0]. For convenience, unless
tated explicitly, we shall assume the stiffness conskant
nd the kinetic coefficierf to be 1. The auxiliary fielan, is

wherer >0 andg>0 are the quadratic and quartic couplings
of the GL theory while the first term is proportional to the
surface energy. We shall focus on the dynamical propertie
of the GL model on the two-dimensional deterministic Sier-
pinski carpet(SC) of fractal dimension(Hausdorff dimen-
sion) d;=In8/In3.

of LXL cells, withL=3", into 3X3 blocks of equal size
and the cells contained in the central block are discarde
Dividing again each of the remaining blocks intx3 sub-_ introduced via the mapping
blocks and discarding all the central elements as many times
as necessary to have the smallest subblocks constituted of a
single cell, one obtains a structure Bf cells, whereN m,
=L, dx=p(my) = —— .
i i i [1+(g/r)mi]
We make the assumption that the evolution towards equi- x
librium of the order parametep, at the sitex is given by the

Ginzburg-Landau equation In order to obtain the equation of motion for the auxiliary
field m,, we need to consider the nonlocal term
I¢x() _HloM)]

4

; Axy¢<my>=% B(m,) = Zp(my), (5)

Here 7,(t) represents a Gaussian white noise with zero
average and variance

(1 (D 7y (1)) =2T T 8, 8(t—t") where the sunk,,, is restricted to th&, nearest-neighbors
T oy ' of the sitex. Assuming thaip, is a slowing varying function
whereT; is the temperature of the final equilibrium stafe, ©Of Mx, one can expand the field at a nearest neighborysite
is a kinetic coefficient, and,, the Kronecker symbol. in a Taylor series
By substituting Eq.(1) into Eq. (2) we find that¢,, at
any time after the quench, changes according to the equation 1
) ¢(my) =p(my) + ¢’(mx)(my_ m,) + 2 ¢”(mx)(my_ mx)z
dy(t 3
o =T[DAydy (1) +1 (1) =g (1) ]+ (). (3) + (higher-order terms ®)
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having indicated with primes the derivatives ¢§ with re-
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wherevy is thexth component of the eigenvector associated

spect tom, and neglected higher-order terms in the expanwith the eigenvalue, of the operatoA. There is an eigen-

sion. Collecting together the terms from th& nearest
neighbors one obtains
1
; Axyd’yzd’,(mx); Axymy"_zd’”(mx)% (mx_my)z-
J
()

The equation of motion for the auxiliary fielt, reads

amy(t) 1
- =§ Ayymy+rm,— EQ(mX)Ey: Ayy(me—m,)2
(8
To obtain Eq.(8) we have used the identities
_ 3
m—— $(my) +9/r p(my) ©
@' (my)
and

¢"(my) 3(g/r)my
=- =— . 10
sm) tegnom o 80

To proceed further, we consider a mean-field-like approxi-

mation for the last term in Eq8):

1
2 A><y(m>(_my)22 NE A><y(mx_my)2
y X,y

1
=— ZNE A,ym,m, . (12)
Xy
Introducing the abbreviation
1
Do(t) == 552 AxyMmy., (12)
Xy

the equation of evolution for the auxiliary fietd,(t) reads

amy(t)
at

=§y} A,ymy+rm,—Q(m,)Dy(1). (13)

Upon neglecting the last term in EqL3), i.e., setting

Q(m)=0, we recover the Kawasaki-Yalabik-Gunton theory

[14]. Alternatively, we expand the functionQ(m,)
=3(g/r)m, to first order in the coupling constarngt and
write [11]
amy(t)
at

=§y} Ayymy (1) + r—3%Do(t) my(t). (14)

The fieldm, thus evolves according to an equation similar to
the one found in the spherical model and in the Hartree-like
approximation, the nonlinear term being treated self-

consistently.
In order to obtain the properties of the fiald, we con-
sider the eigenvalue problem

23

— Ay vy =€,y , (195

value ;=0 associated with the uniform mode whose eigen-
vector has all elements equal. The asymptotic behavior of the
solution of Eq.(14) depends on the distribution of the small-
est eigenvalues. After expanding the fief as a linear su-

perposition of modes of amplitud?aa,
N—1

m(t)= >, m,(vg,

a=0

(16)

one finds that each component evolves independently as,

17

The quantityB(t) must be calculated self-consistently from
the governing equatiofi4):

m,(t)=m,(0)exH — €,t+B(t)].

aB(t)

at —r_3g<Do(t)>o- (18

where the averagé ), is over the initial conditions of the

field m,. Using Eq.(12) and the eigenfunction expansion of
my(t), we computgDq(t)), as

1 ~
(Do(D)o= 2 €alMa(0)|exe —2¢,t-+2B(1)].
(19

For N—«~ a continuum density of states approximation
p(€)=poe®?~1 is appropriate and one can write

<Do(t)>o:Af deep(e)e™ 2728, (20

where /A is proportional to the amplitude of the fluctuations
of the fieldm, at the instant=0. One ends with a closed
equation forB(t),

aB(t)

_ 9 2B(t) f —2et
ot r 3re A | deep(e)e™“<.

(21)

From Eq.(21) one sees that the quantiB(t) must be-
have as

ds+

2It
2 Int.

B(t)~

(22)

Thus, asymptotically the quanti§Dy(t)) goes to a con-
stant valuer?/3g, while the equal-time correlation function
diverges as

1 N
N (MBmy(t)o~t. (23

It is possible now to compute the correlation function

<mx(t)my(t)>O:Af dep(e)e™ 2280y, (e)v] (e).
(24)

A scaling form for the above quantity isee[15])
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FIG. 1. Peak ofC(0,t) (measured irr/g units), employing the auxiliary field method, plotted versus time in arbitrary units. The line

represents the power-law growtfs?, with d,=1.86.
(M (t)my(t))o~texp{ — (R/tHw)dw/(dw=11} = (25)

whereR=|r,—r,| is the distance between the siteandy.

The above correlation function yields the following average

value for the droplet sizé as a function of time:

(L2(t))oct?dw, (26)

Knowing the evolution of the fieldn,(t), it is possible to
determine the properties of the original fiekd(t). Recalling
thatm, has a Gaussian distribution at all times, one writes

1 [mf m?2

+ y
1—9? So(X)  So(y)

1
Pm(mxat;my!t): Z_exp{ -

m

DYWL UL T J , @7
[So(X)So(y)]H2
whereZ,, represents a normalization factor
Zn=2mSo(X)So(y) (1= 77, (28)
with
So(X)=(m5(t))q (29
and
Go(X,y;t)=(my(t)my(t))o, (30)
Go(x,Y;t) (31

NS

The average value of the original fieltl(t) can be cal-
culated from

(d0)= [ am [ dmPo(m, m, H@m,), (32

while its correlatorG(x,y;t) =(¢x(t) (1)) is given by

G(X,Y:t):J dme dmyPp(my.t;my,t) g(m,) g(m,).
(33

Using the form of the distribution functio®,, and Eqg.
(33), one finds for the correlation function of thkifield the
result(see[13])

<¢x(t)¢y(t)>=f dmxf dmyPy(my,t;my,t)
X sgr(my)sgnmy)

2 5
:;(ﬁcoexsm Ly(X,¥)]. (34

Substituting Eqs(23), (25), and(31) into Eq. (34), one ob-
tains

(Du(D) By(1)) = %qsﬁoexsin‘l[exp— (R/tYdw)dw/(dy=1)7,
(35

which predicts a smooth decay of the correlation at long
distances and the existence of dynamical scaling behavior in
the late-stage growth.

To check the above results we have solved the equations
of evolution (14) numerically on a Sierpinski carpet of size
243%x 243 and monitored the growth by measuring the fluc-
tuation of the homogeneous component of the order param-
eter

1 N 2
C<o,t>=ﬁ(§ ¢x<t>) ,

which is the zero component of the structure factor and
grows in time, as shown in Fig. 1, with an apparent exponent
v=0.93, in agreement with the spherical model re$dlt
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FIG. 2. Morphology of the domains obtained by solving nu- FIG. 3. Same as Fig. 2, but &t 250 (in arbitrary units.

merically the equations for the auxiliary field method on a latticetq |abel the individual clusters formed by nearest-neighbor

243x243. Notice that the droplet structure is not strongly affectedg||s characterized by the same sign of the order parameter.
by the presence of the holes, i.e., the interfaces are not pinned. T'Guantitative measures of the droplet properties are their
snapshot refers to timets=25 in the same arbitrary units as in | 155ses and the radii of gyration. The masss defined as

Fig. 1. the number of cells belonging to a droplet, while the radius

of gyration is defined as
which givesv=d¢/2, with d;=1.86. The morphology of the

field ¢, obtained by inserting the solutiom,(t) into the
nonlinear mapping4) is shown in Figs. 2—4 and reveals the
existence of large droplets growing in time in a fashion simi- B
lar to that observed on compact supports, as if the fractality
affects only the mass-to-size ratio of the domains, but does
not suppress the diffusive motion of the walls. In this sense
the auxiliary field method agrees quite well with the behavior
of the spherical model. In the next section we shall compare
these findings with a direct simulation of the Langevin equa-
tion.

IV. NUMERICAL RESULTS

We have investigated numerically the nonconserved dy-
namics on the Sierpinski carpet starting from a disordered
state, generated assigning to each cell a random number un
formly distributed in the interval] —0.125,0.12% and as-
sumedr=g=1. In order to integrate numerically E() we R
adopted a Euler discretization scheme with time sidp
=0.01 and Sierpinski carpets of different linear sides
=27,81,243 with periodic boundary conditions. We have
checked that our results do not change appreciably if we
decreasét further. We also considered several temperatures , ‘ , ‘ , ,
guenches and runs up te- 1000. The averages for the vari- - ' ' ‘ : ‘ ‘ %2 Eevation
ous quantities presented below refer to 50 independent ran-
dom initial configurations. In order to measure the droplet FIG. 4. Configuration of the auxiliary field &t 2500 (in arbi-
size we have applied the Hoshen-Kopelman algorifiG]  trary units.
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FIG. 5. Average size of the droplets lattice unitg versus timet (in arbitrary unit$ calculated from the numerical solution of the
Ginzburg-Landau equation. The data represent the averages over 50 sets of random initial conditions and noiselessT eyDaitties
upper curve refers to a periodic system 5856, while the lower curve to a Sierpinski carpet of size 243.

Another quantity with good self-averaging properties is
RZ:ME [(X,—Xe.m) 2+ (Y~ Yem)?]. the surface energy densitiig. 11), whose time dependence
z we studied and compared with the Euclidean case. For com-
pact supports this quantity decays as the inverse of the do-
The sum is over the lattice sites belonging to a dropletmain sizelL ~1(t), while on the carpet it displays slow relax-
(X;,Y,) is the position of the lattice sites and K. m ,Yc.m.) ation and eventually freezes.
is the position of its center of mass. To compute the mean Based on these results, one is led to the conclusion that,
value of R?(t) as a function of time we averaged over all after the early regime, the average domain size and other
droplets and over all initial configurations.

The growth law for the average size of the droplets is ,’W
reported in Fig. 5 and the data are compared with those re j’B mf' m , ﬁ

ferring to a Euclidean square lattice of the same linear size f
We observe that the growth is much slower in the first sys-
tem than in the second. In Figs. 6—8 typical snapshots of the —
system are shown: The domain walls, separating opposite o’ ﬁ"‘
phases, sit on locations where the surface energy cost i ‘1;-""
lower and thermal fluctuations are needed to push the systerg‘mh
out of these minima. Further evidence of the absence of
power-law growth stems from the study 6{0,t), which is ': ﬁ
compared in Fig. 9 with the corresponding quantity in the a
Euclidean case, known to grow 42 g
Since in the late stage the characteristic width of the in-r el
terfaces does not change appreciably with time, another in = g4 g 85
dependent measure of the domain structure is given by thtl} e
ratio between the total number of sites and the number of
sitesN,, covered by interfaces, the so-called inverse perim-

eter densityf17]: % ‘
‘w
P(t) = Ngites/Np - F i Ef “9‘ %

By assigning a perimeter site every time the absolute value- : ; ; : ‘ ;
of ¢ is less than the value 0.75, one obtains an estimake of - : : : |

that is not too sensitive to the above threshold. WRi(¢)
displays power-law growth in translationally invariant struc-
tures and grows proportionally to(t), in the fractal case it FIG. 6. Instantaneous configurations a10 (in arbitrary unit$
saturates at a constant value for low-temperature quenches @she field obtained by solving numerically the Langevin equation
shown in Fig. 10. on a Sierpinski carpet 243243.

L | I
-0.6 -0.4 -0.2 [¢] 0.2 0.4 0.6 .8
Elevation
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0.

8 s
Elevation C  fion

FIG. 7. Same as Fig. 6, but & 100 (in arbitrary units. FIG. 8. Configuration of the scalar field &t 1000(in arbitrary
units). Notice that the walls remain frozen at positions where the

indicators do not grow with a power-law behavior, as foungSUrface energy is at a local minimum.

in Euclidean lattices and in the spherical model on the same

fractal support. At zero temperature one finds a breakdowwurvature provides the main driving mechanism, while at
of the self-similar dynamical scaling, in contrast with the later times the growth becomes much slower and eventually
compact case. Notice that the crossover from a diffusive andtops since the height of the barriers that the domain walls
curvature driven dynamics to a thermally activated,have to surmount increases with the domain size. The dy-
Arrhenius-like, dynamics is not disorder induced as in thenamics selects configurations in which regions of opposite
case of Ising diluted mode[48-21]. During the early stage magnetization are separated by boundaries formed by a large
the domains coarsen almost linearly with time because thaumber of voids. Since these configurations are associated
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FIG. 9. Amplitude of the homogeneous component of the order-parameter fluctuation versygtamigitrary unitg in the case of
nonconserved scalar order-parameter dynamics on a Sierpinski carpeR238diamond$ and compact square lattice of the same size
(crosses
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FIG. 10. Dimensionless inverse perimeter density versus time in arbitrary units for compact and fractal supports. The symbols are the
same as in Fig. 9.

with low surface tension, the interfaces remain trapped. R2~w2~D,
Interestingly, the crossover time from a power-law growth

regime, during which the trapping is not effective, to a fro-

zen state is independent of the value of the stiffness constamthich gives a crossover time

D. This is understood by recalling that during the early stage

the domain size grows diffusively as D 724w

RZNDtZIdW.

Therefore, the interfacial stiffne€3 determines the typi-
The pinning typically occurs when a moving interface en-cal size of the droplets, but not the crossover time seaée
counters voids of size of the order of the interfacial width  which the freezing occurs.
which scales as/i~ \D. Recalling that the distance between  Asymmetric, off-critical quenches lead to immediate
two voids of linear dimensionv is proportional tow itself  equilibration of one of the two phases and fragmented pat-
(due to the deterministic nature of the fragteghe typical terns are not observed. On the other hand, when one consid-
separation of two domain walls is proportional wa The  ers the conserved order-parameter dynamics on percolation

asymptotic radius of the droplets is structureq 24] even off-critical quenches fail to generate the
0.035 T T T T T T T T T
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FIG. 11. Surface energy in arbitrary units as a function of time for a Euclidean lattice of size2886and for a Sierpinski carpet
243%x243. The symbols as in Fig. 9.
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along they direction. Ast—o the compact system orders
and forms two large domains of the opposite equilibrium
phases, separated by rather sharp interfaces. On the contrary,
on a fractal the system remains frozen in a highly fragmented
structure, as shown in Fig. 12, because of the presence of
voids, which reduce the role of the curvature. To characterize
the interfacial roughness we consider the correlator

1 1 2
G(X)=—2 d(Xy)d(Xy)—| —> d(xy)| ,

where N, represents the width of the system and the two
arguments denote the longitudinal and transverse coordi-
nates, respectively. In the case of the regular lattice, the peak
of G(x) narrows as the interface becomes straighter and
sharper, while in the case of the frac@{x) remains multi-
peaked, as the interface pervades all the volume as illustrated
in Fig. 13. One can go further by defining a characteristic
width W of the interface as

2

W2= NiE x%;(x)—(NiE XG(X)

o | As the timet— oo, W(t) saturates to a much larger value than
Elevation the corresponding quantity in a Euclidean lattice with iden-
tical boundary conditions and random initial conditions.
FIG. 12. Typical configuration obtained in the presence of
twisted boundary conditions along the vertical direction tat V. DISCUSSION AND CONCLUSIONS
=1000(in arbitrary unit$ for a Sierpinski carpet 248243.

On regular lattices, domain walls on sufficiently large

ordered state during a cooling at a reasonable rate and lead $62/€S can be approximated in the continuum limit by smooth

frozen dynamic behavior with interrupted growth at low tem-curved interfaces, which either grow or shrink, whereas in
peratures. the fractal case the background lattice has a pronounced in-

fluence on the phase separation. In a translationally invariant
system the origin of the power-law-like behavior can be
traced back to the interfacial motion: Immediately after the
We finally looked at the effect on the phase-ordering dy-temperature quench, the system relaxes rapidly along the di-
namics of a lattice with twisted boundary conditions alongrections with the steepest gradients of the free energy and the
the x direction of the lattice, maintaining the periodicity order parameter sets locally to one its equilibrium valges

Twisted boundary conditions

0.3 T T T T

0.25

02

0.15 pit

G(X)

0.1

il

0 1 - 1 1 1
0 50 100 150 200 250
X

FIG. 13. CorrelatiorG(x) computed for a standard latti¢knes and pointsand for a Sierpinski carpétontinuous ling with periodic
boundary conditions along thedirection at timet= 21000 (in arbitrary units.
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FIG. 14. Surface energy landscape, associated with a flat interface as a function of its location, for three different choices of the width

of the interface. The continuous curve refers to an interface of widt in lattice units, the dashed curve refers to a curve of wwdth
=8, and the dotted curve refers to a diffuse= 15) interface. Notice the disappearance of small valleys as the interfacial width increases.
The energy units are arbitrary and thexis is in lattice units.

=+./r/g, leaving the system disordered, due to the presencsociated negative eigenvalue vanishes, giving rise to a relax-
of multiple domains of opposite phases separated by thiation slower than any exponential functip2].

walls. This early regime is followed by a slower dynamics After this premise, we can see how the absence of trans-
during which the driving force stems from the movement oflational invariance on a fractal support modifies all the fea-
the domain walls in order to reduce the interfacial energy. Intures of the spectrum of fluctuations described above.

other words, a curved portion of an interface will move and (i) The bulk fluctuations are modified and the system be-
its velocity will be proportional to its local curvature, while @ comes more sensitive to thermal fluctuations because the
planar portion in the absence of thermal fluctuations comegensity of state exponent becomes smallefless thard in

to rest. The slow behavior of the late stage reflects the flatfact)_ However, these modes remain stable since they corre-
ness of the energy landscape. One can think of the represefiond to positive eigenvalues of the Hessian.

tative_ point of the system as moving along a direction char- (i) The capillary wave spectrum, associated with a kink
acterized by a very small gradient of the free energygqytion, will also be modified and the zero-mode Goldstone

H{dx}]- , , mode is suppressed by the following mechanism. Let us con-
Let us consider the free-energy Hessian sider a rigid shift of a straight interface parallel to one of the
directions of higher symmetry of the lattice. In Fig. 14 we
5%H X show the the multivalley structure of the free energy, ob-
bod, —Ayy— [ dx—39 5] 0yy- tained by changing the location of the wall. A sequence of
x>y barriers hinders the normal fluctuations of the wall, which

eventually serve to equilibrate the system in a standard lat-
Its eigenvalue spectrum gives a measure of the stability of @ce. This rugged landscape will determine a slower growth
selected configuration and reveals the origin of the slow diof the domains and instead of a diffusive motion in a homo-
rections of relaxation. If at a given time the configuration isgeneous space the interface undergoes a diffusion in a sys-
close to one of the global minima &f, i.e., those character- tem of barriers of varying heights.
ized by uniform values of the fieldh,= = \r/g, the spec- (iii) The negative eigenvalue associated with the presence
trum contains only positive eigenvalues and the resulting reef a curved interface remains negative only for droplets of
laxation process is an exponential function of time. On thesmall size and becomes positive when the curvature energy
other hand, a symmetric quench leads almost inevitably tbecomes of the order of magnitude of the barriers.
the formation of a domain structure, which is associated with Thus the role of the curvature energy, which provides the
a saddle point and not to a minimum in phase sg&&. only driving force in translationally invariant systems, is
Thus the Hessian calculated in correspondence to the droplgteatly reduced because the lacunarity tends to pin the inter-
solution must have a negative eigenvalue that corresponds faces in configurations that locally minimize the energy. The
the expanding mode. The approach to equilibrium consists afesidual dynamics can be understood in terms of consecutive
the passage from the unstable droplet configuration to one dfansitions among metastable states, i.e., different basins of
the absolute minima. Since the droplet size increases in timihe free energy. Finally, at very low temperatures this
the free energy becomes flatter and flatter along the unstabteechanism eventually ceases and the dynamics becomes
path and the instability is reduced. Correspondingly, the ascompletely frozen.
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Let us also remark that the multivalley structures areby power laws and is not self-similar, as in the case of peri-
eliminated as the interfacial width exceeds the impurity sizeodic substrates. We have also found that the treatment of the
Within the limit of infinite thickness one should be able to Ginzburg-Landau model on fractal substrates based on the
recover the results of the spherical model. In this model, imauxiliary field method yields results that are consistent with
fact, the width of the walls increases in time during the or-the solution of the spherical model on the same support, but
dering process; as a consequence one observes scaling.dfes not reproduce the phenomenon of pinning of domain
contrast, in the scalar model the interfacial witlthbecomes  ya|is, which is observed numerically. In fact, the spherical
asymptotically much shorter than both the domain §ig§  model fails to reproduce a necessary feature of phase-
and the voids, so that the system fails to show power-laweparating systems, i.e., domain walls of finite thickness.
growth. o Moreover, contrary to the situation of the scalar model,

The typical deptlB of the local minima of the free energy ithin the spherical model there is no activation energy as-
can rqughly be estlma'gr-.jd to be proportional to the size of thegciated with the creation of a kink since the energy gap
domainL to some positive poweg. The valuedi—1 is an  petween the ordered phase and the instanton solutions van-
upper estimate for the exponepisince the interfaces do not ishes in the infinite volume limit. This leads in the spherical
sit at random, but join places where the surface cost demgdel to a phase-ordering process that is diffusive and non-
creases. _ Arrhenius-like. The fractality of the substrate has the minor

Since the late-stage growth proceeds only via thermallysfiect of rendering less effective the diffusive growdthe-
activated processes, one can roughly estimate the typicghysed,,>2). Finally, the difference between the auxiliary
time 7 for a droplet of size. to overcome a barrier; this is field method and the numerical solution seems to be due to
given by the formula the mean-field assumptiofl1), which underestimates the

7= exp(BlkgTy) ~exg (L(t) “keT;]. effects of the inhomogeneous lattice.

Thus the domain size evolves logarithmically as
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