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Interface pinning and slow ordering kinetics on infinitely ramified fractal structures
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We investigate the time-dependent Ginzburg-Landau~TDGL! equation for a nonconserved order parameter
on an infinitely ramified~deterministic! fractal lattice employing two alternative methods: the auxiliary field
approach and a numerical method of integration of the equations of evolution. In the first case the domain size
evolves with time asL(t);t1/dw, wheredw is the anomalous random-walk exponent associated with the fractal
and differs from the normal value 2, which characterizes all Euclidean lattices. Such a power-law growth is
identical to the one observed in the study of the spherical model on the same lattice, but fails to describe the
asymptotic behavior of the numerical solutions of the TDGL equation for a scalar order parameter. In fact, the
simulations performed on a two dimensional Sierpinski carpet indicate that, after an initial stage dominated by
a curvature reduction mechanism in the manner of Allen and Cahn@Acta. Metall.27, 1085~1979!#, the system
enters in a regime where the domain walls between competing phases are pinned by lattice defects. The lack
of translational invariance determines a rough free-energy landscape, the existence of many metastable
minima, and the suppression of the marginally stable modes, which in translationally invariant systems lead to
power-law growth and self-similar patterns. On fractal structures, as the temperature vanishes the evolution is
frozen since only thermally activated processes can sustain the growth of pinned domains.
@S1063-651X~98!01302-6#

PACS number~s!: 64.60.Ht, 61.20.Gy, 64.60.Kw
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I. INTRODUCTION

The study of the relaxation dynamics of a system initia
in thermal equilibrium and abruptly rendered unstable b
sudden change of a controlling field has recently drawn c
siderable attention, not only because many physical pro
ties may depend on the way a material reaches the equ
rium state, but also because it poses intriguing problem
the theory such as broken ergodicity, aging, and dynam
scaling @1#. After the quench, i.e., a rapid lowering of th
temperature below the critical point of a phase-separa
system, the initial, disordered state loses stability and
system undergoes a coarsening process, during which
domains corresponding to different equilibrium phases co
pete to grow in magnitude. About twenty years ago, All
and Cahn@2# realized that when the order parameter is no
conserved, the driving force towards equilibrium stems fr
the tendency of the system to reduce the curvature of
domain walls and showed that the typical size of the doma
L increases in time with a power-law behaviorL(t);t1/2. In
spite of the fact that the theory of phase ordering in hom
geneous systems is fairly well understood, only recently
ordering kinetics on nontranslationally invariant fractal la
tices has become a subject of investigation.

The present author in collaboration with Petri@3,4# con-
sidered the role of deterministic fractal supports, with fin
and infinite order of ramification, on the ordering proce
employing the so-called spherical model, which has the
vantage of rendering analytical approaches possible. It
found by means of an explicit solution that the spheri
model on fractal lattices of finite order of ramification, su
as the Sierpinski gasket of arbitrary embedding dimens
does not display a finite-temperature phase transition; on
571063-651X/98/57~2!/1290~12!/$15.00
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contrary, on Sierpinski carpets, whose order of ramificat
is infinite @5,6#, there exist an order-disorder transition pr
vided that the spectral dimensionds exceeds the critica
value 2@7#, in accord with the Mermin-Wagner theorem@8#.

Interestingly, the study of the spherical model with a no
conserved order parameter has revealed the existence,
on fractals, of a characteristic length scaleL(t), which in-
creases in time in a powerlike fashionL(t);t1/z, and of dy-
namical scaling for the correlation functions. Such a dyna
cal exponent z takes the valuedw5 ln(d13)/ln(2) on
Sierpinski gaskets of arbitrary embedding dimensiond and
dw.2.10 on the planar Sierpinski carpet, wheredw is the
random-walk exponent. These values ofz differ from the
Allen-Cahn universal valuez52, which characterizes the
diffusive domain growth on standard lattices. We ha
shown @3# that in order to fully characterize the static an
dynamical properties of the spherical model on fractal l
tices two more quantities are required:~i! the fractal dimen-
sion df and ~ii ! the spectral dimensionds , which for many
lattices are related todw via the Alexander-Orbach@9# rela-
tion

dw5
2df

ds
.

Unfortunately, the analytically soluble spherical mod
does not yield predictions that can be extrapolated to
physically interesting case of the scalar order parameter
fact, the lack of sharp, well-defined interfaces between
ferent phases renders the spherical model physically in
equate to describe the phase-separation process of an
system.
1290 © 1998 The American Physical Society
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57 1291INTERFACE PINNING AND SLOW ORDERING . . .
The purpose of the present paper is to investigate
phase-separation process on fractals with infinite ramifi
tion order, such as the Sierpinski carpet family, for a no
conserved scalar order parameter. We expect the latter t
very sensitive to the presence of inhomogeneities in cont
with vector fields. The choice of a Sierpinski carpet has b
suggested by the fact that it represents perhaps the sim
example of a nonstochastic fractal lattice, with infinite ram
fication order@5,10#. In Sec. II we introduce the Ginzburg
Landau ~GL! model on the fractal lattice. In Sec. III w
consider an auxiliary field approach@11# and discuss its
asymptotic behavior. In Sec. IV we present numerical res
of the exact equations of motion and monitor in several w
the growth process. In Sec. V, after stressing the similari
between the auxiliary field method and the spherical mo
we draw the conclusions.

II. GINZBURG-LANDAU MODEL ON A FRACTAL
LATTICE

We shall consider a scalar fieldfx whose properties de
pend on a standard Ginzburg-Landau free-energy functio
and defined at every lattice cell, whose coordinate we re
sent byx:

H@$fx%#52
D

2(
i , j

fxDxyfy2
r

2(x

N

fx
21

g

4(x

N

fx
4 , ~1!

wherer .0 andg.0 are the quadratic and quartic couplin
of the GL theory while the first term is proportional to th
surface energy. We shall focus on the dynamical proper
of the GL model on the two-dimensional deterministic Si
pinski carpet~SC! of fractal dimension~Hausdorff dimen-
sion! df5 ln8/ln3.

In order to construct the SC, one divides a square lat
of L3L cells, with L53n, into 333 blocks of equal size
and the cells contained in the central block are discard
Dividing again each of the remaining blocks into 333 sub-
blocks and discarding all the central elements as many ti
as necessary to have the smallest subblocks constituted
single cell, one obtains a structure ofN cells, whereN
5Ldf .

We make the assumption that the evolution towards e
librium of the order parameterfx at the sitex is given by the
Ginzburg-Landau equation

]fx~ t !

]t
52G

H@f~ t !#

dfx~ t !
1hx~ t !. ~2!

Here hx(t) represents a Gaussian white noise with z
average and variance

^hx~ t !hy~ t8!&52TfGdxyd~ t2t8!,

whereTf is the temperature of the final equilibrium state,G
is a kinetic coefficient, anddxy the Kronecker symbol.

By substituting Eq.~1! into Eq. ~2! we find thatfx , at
any time after the quench, changes according to the equa

]fx~ t !

]t
5G@DDxyfy~ t !1rfx~ t !2gfx

3~ t !#1hx~ t !. ~3!
e
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We shall writeDxy as a difference operator in analog
with the discrete representation of the Laplacian on Euc
ean lattices. Periodic boundary condition are assumed, un
explicitly stated. The operatorD is defined asDxy51 if x,y
are nearest-neighbor cells,Dxx52Zx , and Dxy50 other-
wise, where 2<Zx<4 counts the number of nearest neig
bors of the sitex.

At temperatureTf50, the free energy has two equivale
minima f56Ar /g. In the case of the spherical model w
showed that the critical temperature vanishes when the s
tral dimension is less than 2, while in the scalar case
critical temperature of a Sierpinski carpet is finite@12#. In the
following, we shall concentrate on the dynamical propert
for deep quenchesTf!Tc .

III. AUXILIARY FIELD APPROACH

In this section the so-called auxiliary field metho
@1,11,13#, which has provided insight into the ordering d
namics of translationally invariant systems, will be applied
the nonconserved order-parameter dynamics on the Sie
ski carpet.

In this approach one replaces the physical fieldfx by an
auxiliary fieldmx , which varies in a smoother fashion acro
the interfaces and renders approximations feasible.

One chooses a nonlinear transformation fromfx(t) to a
new fieldmx(t) in such a way that the latter obeys an equ
tion simpler than the original one. If such an equation
linear, the statistical properties ofmx are equivalent to those
of free Gaussian fields and analytical work can be perform
Following the presentation of De Siena and Zannetti@11#,
one way of determining the transformation is to require t
the auxiliary field linearizes the local part of the origin
equation of evolution@i.e., a zero-dimensional version of Eq
~3!, obtained by settingD50#. For convenience, unles
stated explicitly, we shall assume the stiffness constanD
and the kinetic coefficientG to be 1. The auxiliary fieldmx is
introduced via the mapping

fx5f~mx!5
mx

@11~g/r !mx
2#1/2

. ~4!

In order to obtain the equation of motion for the auxilia
field mx , we need to consider the nonlocal term

(
y

Dxyf~my!5(̂
y&

f~my!2Zxf~mx!, ~5!

where the sum(^y& is restricted to theZx nearest-neighbors
of the sitex. Assuming thatfx is a slowing varying function
of mx , one can expand the field at a nearest neighbor siy
in a Taylor series

f~my!5f~mx!1f8~mx!~my2mx!1
1

2
f9~mx!~my2mx!

2

1~higher-order terms! ~6!
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1292 57UMBERTO MARINI BETTOLO MARCONI
having indicated with primes the derivatives offx with re-
spect tomx and neglected higher-order terms in the exp
sion. Collecting together the terms from theZx nearest
neighbors one obtains

(
y

Dxyfy.f8~mx!(
y

Dxymy1
1

2
f9~mx!(̂

j &
~mx2my!2.

~7!

The equation of motion for the auxiliary fieldmx reads

]mx~ t !

]t
5(

y
Dxymy1rmx2

1

2
Q~mx!(

y
Dxy~mx2my!2.

~8!

To obtain Eq.~8! we have used the identities

mx52
2f~mx!1g/rf~mx!

3

f8~mx!
~9!

and

f9~mx!

f8~mx!
52

3~g/r !mx

11~g/r !mx
2

52Q~mx!. ~10!

To proceed further, we consider a mean-field-like appro
mation for the last term in Eq.~8!:

(
y

Dxy~mx2my!2.
1

N(
x,y

Dxy~mx2my!2

522
1

N(
x,y

Dxymxmy . ~11!

Introducing the abbreviation

D0~ t !52
1

N(
x,y

Dxymxmy , ~12!

the equation of evolution for the auxiliary fieldmx(t) reads

]mx~ t !

]t
5(

y
Dxymy1rmx2Q~mx!D0~ t !. ~13!

Upon neglecting the last term in Eq.~13!, i.e., setting
Q(m)50, we recover the Kawasaki-Yalabik-Gunton theo
@14#. Alternatively, we expand the functionQ(mx)
.3(g/r )mx to first order in the coupling constantg and
write @11#

]mx~ t !

]t
5(

y
Dxymy~ t !1F r 23

g

r
D0~ t !Gmx~ t !. ~14!

The fieldmx thus evolves according to an equation similar
the one found in the spherical model and in the Hartree-
approximation, the nonlinear term being treated se
consistently.

In order to obtain the properties of the fieldmx we con-
sider the eigenvalue problem

2Dxyvy
a5eavx

a , ~15!
-

i-

e
-

wherevx
a is thexth component of the eigenvector associat

with the eigenvalueea of the operatorD. There is an eigen-
valuee050 associated with the uniform mode whose eige
vector has all elements equal. The asymptotic behavior of
solution of Eq.~14! depends on the distribution of the sma
est eigenvalues. After expanding the fieldmx as a linear su-
perposition of modes of amplitudem̃a,

mx~ t !5 (
a50

N21

m̃a~ t !vx
a , ~16!

one finds that each component evolves independently as

m̃a~ t !5m̃a~0!exp@2eat1B~ t !#. ~17!

The quantityB(t) must be calculated self-consistently fro
the governing equation~14!:

]B~ t !

]t
5r 23

g

r
^D0~ t !&0 . ~18!

where the averagê &0 is over the initial conditions of the
field mx . Using Eq.~12! and the eigenfunction expansion o
mx(t), we computê D0(t)&0 as

^D0~ t !&05
1

N(
a

eaum̃a~0!u2exp@22eat12B~ t !#.

~19!

For N→` a continuum density of states approximatio
r(e).r0eds/221 is appropriate and one can write

^D0~ t !&05AE deer~e!e22et12B~ t !, ~20!

whereAA is proportional to the amplitude of the fluctuation
of the field mx at the instantt50. One ends with a closed
equation forB(t),

]B~ t !

]t
5r 23

g

r
e2B~ t !AE deer~e!e22et. ~21!

From Eq.~21! one sees that the quantityB(t) must be-
have as

B~ t !;
ds12

4
lnt. ~22!

Thus, asymptotically the quantitŷD0(t)& goes to a con-
stant valuer 2/3g, while the equal-time correlation functio
diverges as

1

N(
x

N

^mx~ t !mx~ t !&0;t. ~23!

It is possible now to compute the correlation function

^mx~ t !my~ t !&05AE der~e!e22et12B~ t !vx~e!vy* ~e!.

~24!

A scaling form for the above quantity is~see@15#!
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FIG. 1. Peak ofC(0,t) ~measured inr /g units!, employing the auxiliary field method, plotted versus time in arbitrary units. The
represents the power-law growthtds/2, with ds51.86.
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^mx~ t !my~ t !&0;texp$2~R/t1/dw!dw /~dw21!%, ~25!

whereR5ur x2r yu is the distance between the sitesx andy.
The above correlation function yields the following avera
value for the droplet sizeL as a function of time:

^L2~ t !&}t2/dw. ~26!

Knowing the evolution of the fieldmx(t), it is possible to
determine the properties of the original fieldfx(t). Recalling
that mx has a Gaussian distribution at all times, one write

Pm~mx ,t;my ,t !5
1

Zm
expH 2

1

12g2F mx
2

S0~x!
1

my
2

S0~y!

22g
mxmy

@S0~x!S0~y!#1/2G J , ~27!

whereZm represents a normalization factor

Zm[2pAS0~x!S0~y!~12g2!, ~28!

with

S0~x![^mx
2~ t !&0 ~29!

and

G0~x,y;t ![^mx~ t !my~ t !&0 , ~30!

g~x,y![
G0~x,y;t !

AS0~x!S0~y!
. ~31!

The average value of the original fieldfx(t) can be cal-
culated from

^fx~ t !&5E dmxE dmyPm~mx ,t;my ,t !f~mx!, ~32!
e

while its correlatorG(x,y;t)[^fx(t)fy(t)& is given by

G~x,y;t !5E dmxE dmyPm~mx ,t;my ,t !f~mx!f~my!.

~33!

Using the form of the distribution functionPm and Eq.
~33!, one finds for the correlation function of thef field the
result ~see@13#!

^fx~ t !fy~ t !&5E dmxE dmyPm~mx ,t;my ,t !

3sgn~mx!sgn~my!

5
2

p
fcoex

2 sin21@g~x,y!#. ~34!

Substituting Eqs.~23!, ~25!, and~31! into Eq. ~34!, one ob-
tains

^fx~ t !fy~ t !&5
2

p
fcoex

2 sin21@exp2~R/t1/dw!dw /~dw21!#,

~35!

which predicts a smooth decay of the correlation at lo
distances and the existence of dynamical scaling behavio
the late-stage growth.

To check the above results we have solved the equat
of evolution ~14! numerically on a Sierpinski carpet of siz
2433243 and monitored the growth by measuring the flu
tuation of the homogeneous component of the order par
eter

C~0,t !5
1

NS (
x

N

fx~ t !D 2

,

which is the zero component of the structure factor a
grows in time, as shown in Fig. 1, with an apparent expon
n50.93, in agreement with the spherical model result@4#,
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1294 57UMBERTO MARINI BETTOLO MARCONI
which givesn5ds/2, with ds51.86. The morphology of the
field fx obtained by inserting the solutionmx(t) into the
nonlinear mapping~4! is shown in Figs. 2–4 and reveals th
existence of large droplets growing in time in a fashion sim
lar to that observed on compact supports, as if the fracta
affects only the mass-to-size ratio of the domains, but d
not suppress the diffusive motion of the walls. In this sen
the auxiliary field method agrees quite well with the behav
of the spherical model. In the next section we shall comp
these findings with a direct simulation of the Langevin eq
tion.

IV. NUMERICAL RESULTS

We have investigated numerically the nonconserved
namics on the Sierpinski carpet starting from a disorde
state, generated assigning to each cell a random number
formly distributed in the interval@20.125,0.125# and as-
sumedr 5g51. In order to integrate numerically Eq.~8! we
adopted a Euler discretization scheme with time stepDt
50.01 and Sierpinski carpets of different linear sizesL
527,81,243 with periodic boundary conditions. We ha
checked that our results do not change appreciably if
decreaseDt further. We also considered several temperatu
quenches and runs up tot51000. The averages for the var
ous quantities presented below refer to 50 independent
dom initial configurations. In order to measure the drop
size we have applied the Hoshen-Kopelman algorithm@16#

FIG. 2. Morphology of the domains obtained by solving n
merically the equations for the auxiliary field method on a latt
2433243. Notice that the droplet structure is not strongly affec
by the presence of the holes, i.e., the interfaces are not pinned
snapshot refers to timest525 in the same arbitrary units as i
Fig. 1.
-
ty
s

e
r
re
-

-
d
ni-

e
s

n-
t

to label the individual clusters formed by nearest-neigh
cells characterized by the same sign of the order param
Quantitative measures of the droplet properties are t
masses and the radii of gyration. The massM is defined as
the number of cells belonging to a droplet, while the rad
of gyration is defined as

d
he

FIG. 3. Same as Fig. 2, but att5250 ~in arbitrary units!.

FIG. 4. Configuration of the auxiliary field att52500 ~in arbi-
trary units!.
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FIG. 5. Average size of the droplets~in lattice units! versus timet ~in arbitrary units! calculated from the numerical solution of th
Ginzburg-Landau equation. The data represent the averages over 50 sets of random initial conditions and noiseless dynamicsT50. The
upper curve refers to a periodic system 2563256, while the lower curve to a Sierpinski carpet of size 243.
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R25
1

M(
z

M

@~xz2xc.m.!
21~yz2yc.m.!

2#.

The sum is over the lattice sites belonging to a drop
(xz ,yz) is the position of the lattice sitesz, and (xc.m. ,yc.m.)
is the position of its center of mass. To compute the m
value of R2(t) as a function of time we averaged over a
droplets and over all initial configurations.

The growth law for the average size of the droplets
reported in Fig. 5 and the data are compared with those
ferring to a Euclidean square lattice of the same linear s
We observe that the growth is much slower in the first s
tem than in the second. In Figs. 6–8 typical snapshots of
system are shown: The domain walls, separating oppo
phases, sit on locations where the surface energy co
lower and thermal fluctuations are needed to push the sys
out of these minima. Further evidence of the absence
power-law growth stems from the study ofC(0,t), which is
compared in Fig. 9 with the corresponding quantity in t
Euclidean case, known to grow astd/2.

Since in the late stage the characteristic width of the
terfaces does not change appreciably with time, anothe
dependent measure of the domain structure is given by
ratio between the total number of sites and the numbe
sitesNp covered by interfaces, the so-called inverse per
eter density@17#:

P~ t !5Nsites/Np .

By assigning a perimeter site every time the absolute va
of f is less than the value 0.75, one obtains an estimateP
that is not too sensitive to the above threshold. WhileP(t)
displays power-law growth in translationally invariant stru
tures and grows proportionally toL(t), in the fractal case it
saturates at a constant value for low-temperature quench
shown in Fig. 10.
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Another quantity with good self-averaging properties
the surface energy density~Fig. 11!, whose time dependenc
we studied and compared with the Euclidean case. For c
pact supports this quantity decays as the inverse of the
main sizeL21(t), while on the carpet it displays slow relax
ation and eventually freezes.

Based on these results, one is led to the conclusion t
after the early regime, the average domain size and o

FIG. 6. Instantaneous configurations att510 ~in arbitrary units!
of the field obtained by solving numerically the Langevin equat
on a Sierpinski carpet 2433243.
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indicators do not grow with a power-law behavior, as fou
in Euclidean lattices and in the spherical model on the sa
fractal support. At zero temperature one finds a breakdo
of the self-similar dynamical scaling, in contrast with th
compact case. Notice that the crossover from a diffusive
curvature driven dynamics to a thermally activate
Arrhenius-like, dynamics is not disorder induced as in
case of Ising diluted models@18–21#. During the early stage
the domains coarsen almost linearly with time because

FIG. 7. Same as Fig. 6, but att5100 ~in arbitrary units!.
e
n

d
,
e

e

curvature provides the main driving mechanism, while
later times the growth becomes much slower and eventu
stops since the height of the barriers that the domain w
have to surmount increases with the domain size. The
namics selects configurations in which regions of oppo
magnetization are separated by boundaries formed by a l
number of voids. Since these configurations are associ

FIG. 8. Configuration of the scalar field att51000~in arbitrary
units!. Notice that the walls remain frozen at positions where
surface energy is at a local minimum.
ize

FIG. 9. Amplitude of the homogeneous component of the order-parameter fluctuation versus time~in arbitrary units! in the case of

nonconserved scalar order-parameter dynamics on a Sierpinski carpet 2433243 ~diamonds! and compact square lattice of the same s
~crosses!.
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FIG. 10. Dimensionless inverse perimeter density versus time in arbitrary units for compact and fractal supports. The symbo
same as in Fig. 9.
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with low surface tension, the interfaces remain trapped.
Interestingly, the crossover time from a power-law grow

regime, during which the trapping is not effective, to a fr
zen state is independent of the value of the stiffness cons
D. This is understood by recalling that during the early sta
the domain size grows diffusively as

R2;Dt2/dw.

The pinning typically occurs when a moving interface e
counters voids of size of the order of the interfacial widthw,
which scales asw;AD. Recalling that the distance betwee
two voids of linear dimensionw is proportional tow itself
~due to the deterministic nature of the fractal!, the typical
separation of two domain walls is proportional tow. The
asymptotic radius of the droplets is
nt
e

-

R`
2 ;w2;D,

which gives a crossover timet:

Dt2/dw;D.

Therefore, the interfacial stiffnessD determines the typi-
cal size of the droplets, but not the crossover time scalet at
which the freezing occurs.

Asymmetric, off-critical quenches lead to immedia
equilibration of one of the two phases and fragmented p
terns are not observed. On the other hand, when one con
ers the conserved order-parameter dynamics on percola
structures@24# even off-critical quenches fail to generate th
t
FIG. 11. Surface energy in arbitrary units as a function of time for a Euclidean lattice of size 2563256 and for a Sierpinski carpe
2433243. The symbols as in Fig. 9.



ad
m

y
ng
y

s
m
trary,
ted
e of
rize

wo
rdi-
eak

and

ated
tic

an
n-

e
oth
in
in-

iant
be
he

di-
the

o

1298 57UMBERTO MARINI BETTOLO MARCONI
ordered state during a cooling at a reasonable rate and le
frozen dynamic behavior with interrupted growth at low te
peratures.

Twisted boundary conditions

We finally looked at the effect on the phase-ordering d
namics of a lattice with twisted boundary conditions alo
the x direction of the lattice, maintaining the periodicit

FIG. 12. Typical configuration obtained in the presence
twisted boundary conditions along the vertical direction att
51000 ~in arbitrary units! for a Sierpinski carpet 2433243.
to
-

-

along they direction. As t→` the compact system order
and forms two large domains of the opposite equilibriu
phases, separated by rather sharp interfaces. On the con
on a fractal the system remains frozen in a highly fragmen
structure, as shown in Fig. 12, because of the presenc
voids, which reduce the role of the curvature. To characte
the interfacial roughness we consider the correlator

G~x![
1

Ny
(

y
f~x,y!f~x,y!2S 1

Ny
(

y
f~x,y! D 2

,

where Ny represents the width of the system and the t
arguments denote the longitudinal and transverse coo
nates, respectively. In the case of the regular lattice, the p
of G(x) narrows as the interface becomes straighter
sharper, while in the case of the fractalG(x) remains multi-
peaked, as the interface pervades all the volume as illustr
in Fig. 13. One can go further by defining a characteris
width W of the interface as

W2[
1

Nx
(

x
x2G~x!2S 1

Nx
(

x
xG~x! D 2

.

As the timet→`, W(t) saturates to a much larger value th
the corresponding quantity in a Euclidean lattice with ide
tical boundary conditions and random initial conditions.

V. DISCUSSION AND CONCLUSIONS

On regular lattices, domain walls on sufficiently larg
scales can be approximated in the continuum limit by smo
curved interfaces, which either grow or shrink, whereas
the fractal case the background lattice has a pronounced
fluence on the phase separation. In a translationally invar
system the origin of the power-law-like behavior can
traced back to the interfacial motion: Immediately after t
temperature quench, the system relaxes rapidly along the
rections with the steepest gradients of the free energy and
order parameter sets locally to one its equilibrium valuesf

f

FIG. 13. CorrelationG(x) computed for a standard lattice~lines and points! and for a Sierpinski carpet~continuous line! with periodic
boundary conditions along thex direction at timet51000 ~in arbitrary units!.
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FIG. 14. Surface energy landscape, associated with a flat interface as a function of its location, for three different choices of
of the interface. The continuous curve refers to an interface of widthw54 in lattice units, the dashed curve refers to a curve of widthw
58, and the dotted curve refers to a diffuse (w515) interface. Notice the disappearance of small valleys as the interfacial width incre
The energy units are arbitrary and thex axis is in lattice units.
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56Ar /g, leaving the system disordered, due to the prese
of multiple domains of opposite phases separated by
walls. This early regime is followed by a slower dynami
during which the driving force stems from the movement
the domain walls in order to reduce the interfacial energy
other words, a curved portion of an interface will move a
its velocity will be proportional to its local curvature, while
planar portion in the absence of thermal fluctuations com
to rest. The slow behavior of the late stage reflects the
ness of the energy landscape. One can think of the repre
tative point of the system as moving along a direction ch
acterized by a very small gradient of the free ene
H@$fx%#.

Let us consider the free-energy Hessian

d2H

dfxdfy
52Dxy2@rfx23gfx

2#dxy .

Its eigenvalue spectrum gives a measure of the stability
selected configuration and reveals the origin of the slow
rections of relaxation. If at a given time the configuration
close to one of the global minima ofH, i.e., those character
ized by uniform values of the fieldfx56Ar /g, the spec-
trum contains only positive eigenvalues and the resulting
laxation process is an exponential function of time. On
other hand, a symmetric quench leads almost inevitably
the formation of a domain structure, which is associated w
a saddle point and not to a minimum in phase space@22#.
Thus the Hessian calculated in correspondence to the dro
solution must have a negative eigenvalue that correspond
the expanding mode. The approach to equilibrium consist
the passage from the unstable droplet configuration to on
the absolute minima. Since the droplet size increases in
the free energy becomes flatter and flatter along the unst
path and the instability is reduced. Correspondingly, the
ce
in

f
n

s
t-
en-
r-
y

a
i-

-
e
to
h

let
to

of
of
e
le

s-

sociated negative eigenvalue vanishes, giving rise to a re
ation slower than any exponential function@23#.

After this premise, we can see how the absence of tra
lational invariance on a fractal support modifies all the fe
tures of the spectrum of fluctuations described above.

~i! The bulk fluctuations are modified and the system
comes more sensitive to thermal fluctuations because
density of state exponentds becomes smaller~less thand in
fact!. However, these modes remain stable since they co
spond to positive eigenvalues of the Hessian.

~ii ! The capillary wave spectrum, associated with a ki
solution, will also be modified and the zero-mode Goldsto
mode is suppressed by the following mechanism. Let us c
sider a rigid shift of a straight interface parallel to one of t
directions of higher symmetry of the lattice. In Fig. 14 w
show the the multivalley structure of the free energy, o
tained by changing the location of the wall. A sequence
barriers hinders the normal fluctuations of the wall, whi
eventually serve to equilibrate the system in a standard
tice. This rugged landscape will determine a slower grow
of the domains and instead of a diffusive motion in a hom
geneous space the interface undergoes a diffusion in a
tem of barriers of varying heights.

~iii ! The negative eigenvalue associated with the prese
of a curved interface remains negative only for droplets
small size and becomes positive when the curvature en
becomes of the order of magnitude of the barriers.

Thus the role of the curvature energy, which provides
only driving force in translationally invariant systems,
greatly reduced because the lacunarity tends to pin the in
faces in configurations that locally minimize the energy. T
residual dynamics can be understood in terms of consecu
transitions among metastable states, i.e., different basin
the free energy. Finally, at very low temperatures t
mechanism eventually ceases and the dynamics beco
completely frozen.
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Let us also remark that the multivalley structures a
eliminated as the interfacial width exceeds the impurity si
Within the limit of infinite thickness one should be able
recover the results of the spherical model. In this model
fact, the width of the walls increases in time during the
dering process; as a consequence one observes scalin
contrast, in the scalar model the interfacial widthW becomes
asymptotically much shorter than both the domain sizeL(t)
and the voids, so that the system fails to show power-
growth.

The typical depthB of the local minima of the free energ
can roughly be estimated to be proportional to the size of
domainL to some positive powerc. The valuedf21 is an
upper estimate for the exponentc since the interfaces do no
sit at random, but join places where the surface cost
creases.

Since the late-stage growth proceeds only via therm
activated processes, one can roughly estimate the typ
time t for a droplet of sizeL to overcome a barrier; this i
given by the formula

t5exp~B/kBTf !;exp@~L~ t !c/kBTf #.

Thus the domain sizeL evolves logarithmically as

L~ t !;~kBTf lnt !1/c,

in agreement with the droplet model@18#, and stops com-
pletely at zero temperature because of the prefactorTf .

To summarize, we have studied a simple nonrandom
tem and found that its late-stage behavior is not character
d

a
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to
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by power laws and is not self-similar, as in the case of pe
odic substrates. We have also found that the treatment o
Ginzburg-Landau model on fractal substrates based on
auxiliary field method yields results that are consistent w
the solution of the spherical model on the same support,
does not reproduce the phenomenon of pinning of dom
walls, which is observed numerically. In fact, the spheric
model fails to reproduce a necessary feature of pha
separating systems, i.e., domain walls of finite thickne
Moreover, contrary to the situation of the scalar mod
within the spherical model there is no activation energy
sociated with the creation of a kink since the energy g
between the ordered phase and the instanton solutions
ishes in the infinite volume limit. This leads in the spheric
model to a phase-ordering process that is diffusive and n
Arrhenius-like. The fractality of the substrate has the min
effect of rendering less effective the diffusive growth~be-
causedw.2). Finally, the difference between the auxilia
field method and the numerical solution seems to be du
the mean-field assumption~11!, which underestimates th
effects of the inhomogeneous lattice.
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