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Operator expansions in stochastic dynamics
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Higher-order operator factorizations are a powerful tool for efficiently treating classical mechanics. This
paper presents an application of the method to stochastic dynamics. Using a fourth-order symmetric decom-
position of the time evolution operator, we arrive at a high-accuracy scheme for propagating the distribution
function in time. Its power is demonstrated by means of two problems, namely, the dynamics of a colored noise
process and a Brownian particle in a potential field. The applications show our method to be superior over the
standard propagation scheme based on the Trotter splitting in that it afioals largertime steps witmo loss
of precision.[S1063-651X98)00902-7

PACS numbds): 05.40:+j, 02.50.Ey

[. INTRODUCTION A small sample of this work can be found in Ref2-4].
Since, howeverA andB are in general noncommuting op-

Recent years have seen considerable activity in numericarators, the error accumulated in Ef.4) by making use of
methods that employ various different operator expansions tthis decomposition is of order Mf; accordingly, the dimen-
carry out calculations in quantum and statistical mechanicsion of the resulting integral can be very high if the desired
[1-9]. The key features of the methods are factorizing thepropagation time is long. A superior breakup was given by
time evolution operator into a product bf exponential op-  Suzuki[5], who proposed a generalization of Ef.5) in the
erators, form

etL:(etL/N)N; (11)

Si( )= H g2 TAghi TB, (1.6)

partitioning the full operatolL into two exactly solvable '

partsL =A+B; and approximating the propagator for a shortwith coefficients @;,b;) determined by the required order of

time 7=t/N by a product of functions involving\ andB, accuracy. Although factorizations of arbitrarily high orders
e B=5(7) +O(7) (12 Saiing many-body problen in quantum statstce and non-

equilibrium statistical mechanics. The reason is that, beyond

wherek denotes the order of approximation. The solution forSecond order, any factorization of the foxh.6) must pro-

En a(rlbg)rary long time=N is obtained by repeatedly using duce some negative coefficients in the sat,;). When
929, applied to Fokker-Planck and/or Bloch equations, this means

elATB) = 5 (1) + O(t*T1/NK), t)= N (1.3 that negative times must appear at some diffusion operators,
S ( ) SU=S(% (13 making the resulting factorization unbounded.

which in a coordinate representation yields the discrete path Some recent advance in this area can be attributed to the

integral representation introduction of extrapolation methods to remove time slices
errors in Trotter-approximated propagatés7]. An attrac-
N—1 tive feature of symmetric decompositions is that an approxi-

P(q't):J H dg"P.(q"" 1,7-|q“)P(q°,0)+O(t"+1/Nk), mate propagator constructed Mfproducts, each of which is
n=0 (1.4 time reversible,

with gN=q. It is clear that the efficacy of the resulting propa- S(-USD=1, @9

gation scheme depends crucially on the number of time disy55 gn asymptotic error expansion withenpowers of 1N.

cretizations (integration variables necessary for conver- Therefore, standard extrapolation methods can be used suc-
gence. The latter in turn can be reduced if the accuracy of th@essively to eliminate the low-order errors resulting from

short time propagatoPy(q""*, 719" =(q""S(7)|a") can  {ime discretization. In particular, a Romberg-type operator

be extended to a longer time interval approximation without the N? error is[6]
The most common procedure of approximating the propa-
gator for short time utilizes the Trotter splittirid] S(t)=1[4S,(t/2N)?N—S,(t/N)N]. (1.8
S,(7)=e™2e™Be™2, (1.5  Implementing this numerically requires up to three times as

much computation and doubles the storage, but the remain-
ing error is of order M*.
*Permanent address: Institute for High Temperatures, 13/19 In the present paper we propose an alternative propaga-
Izhorskaya Street, 127412 Moscow, Russia. tion scheme which provides the same level of accuraitly
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no increase of storage and computation. This is achieved bghort time propagators. We mention specifically the work of
making use of a fourth-order symmetric factorization of theDrozdov[11], who developed a theoretical approach to ap-
form proximate the single step propagator systematically by ana-
lytic expressions. The approach distinguishes itself from
Sy(7)=e*he™%e7Ce /%™, (1.9 other methods in that it gives global approximations valid
not only for short times, but also in the intermediate and long
time domains. This is achieved by expanding the exponent of
—(1_ 1 2 _ 2 the propagator in a Taylor series in time, and efficiently ex-
C=(1~2a)A+z[2(1-6at6a%)A trapolating the behavior of the series to its eventual sum by
+(1—-6a)B,[B,A]], (1.10 means of sum acceleration techniques. As given, though, the
approach applies only to Fokker-Planck processes whose dif-
wherea is an arbitrary number from the intervigd,1]. The  fusion matrices possess an inverse, and not to processes with
above breakup is obtainable by a variety of methods, e.g., bgingular diffusion matrices. Another useful approach is the
repeated application of the Baker-Campbell-Housdorff for-cumulant expansion for the short time propagaf®g],
mula. It is a straightforward generalization of the variouswhich also has an effect of reducing the number of integra-
decompositions available in the literature for the exponentiation variables. Various order approximations can either be
operator. In particular, a known decomposition of De Raedderived from the underlying Langevin equations, or by solv-
and De Raedf1] follows from Egs.(1.9 and(1.10 with a  ing time evolution equations of moments. The approach is
=2: while for a=% anda=(1-1/\/3)/2, it reproduces two simple and easily applicable to any Fokker-Planck equation
different factorizations recently derived by SuzyBi (see regardless of whether or not the diffusion matrix is invert-
also Ref.[9]). ible; but the utility of the approximations so obtained is in
Although approximations like Eq1.9) have been known general restricted to short times.
since the early dayfl0], and have frequently been used for
numerically solving many-body problems in classical me- Il. SYSTEM DRIVEN BY COLORED NOISE
chanics, their effective application to Fokker-Planck dynam-
ics has not yet been fully realized. A reason for this seems to Over recent years, there has been a steadily growing in-
be the impression that the commutator involved in @ql0  terest in the effects that arise from colored noise in nonlinear
complicates the expression in such a way that the calculatiolynamical systemgl3]. A typical model repeatedly studied
of P, is alwaysout of the question. Indeed, applying the Within this context is described by the stochastic differential
above factorization to simple one-dimensional systems, wequation
immediately run into trouble, as the operarwhich arises .
in that case, is much more complicated than the original X=G(x)+v(1), (2.1
Fokker-Planck operator. The same, however, is not generally ) _ _
true for systems with more than one degree of freedom. Th&¥hereG(x) is an arbitrary function ok, andu(t) an exter-
essential step in devising the method outlined below was 6@l Gaussian stochastic force normalized to
realize that application of Eq1.9) to multidimensional sys-
tems may be much easier than in one dimension. The neces- ((1)=0, (v(Hhuv(s))=yD exp(—ylt=s]), (2.2
sary condition for this is the noninvertibility of the diffusion
matrix. In such a case, use of 4.9 may be as simple as
that of the primitive Trotter splitting, Eq1.5), and require
no additional analytical work to evaluate the propagator.

with

with y~1 being the correlation time of the noise, abdthe
noise intensity. The statistics of systefsl) and(2.2) may
be embodied in the two-dimensional Fokker-Planck equation

Itis our purpose here to illustrate the computational utility 3P (x,0,1)=LP(x,v,1)
of that method in two concrete models: the dynamics of a
colored noise process, and the Brownian motion in a poten- ={—9,[G(X)+v]

tial field. For simplicity, in Eq.(1.10 we remove one of the

two composite operators by settiag- 3, +yd,(v+yD3)IP(xo,t). (23

C=2A+L72[A[B,A]l (1.1)  One notes that the diffusion matrix of E(2.3) does not
possess an inverse, and the equation itself does not obey
though other values oé are also possible. In particular, detailed balance. The former property prevents us from mak-
when evaluating both composite operators is not a majoing use of many powerful nonperturbative schemes of quan-
problem, the free parametarcan be determined according tum and statistical mechanics, while the latter means that the
to some variational principles, so that the resulting short timestationary solution of E¢2.3) cannot be calculated in closed
propagator is accurate for as long a timas possible. More- form; only approximate expressions are availdllg].
over, since the breakupl.9) is symmetric, extrapolation In order to split the evolution operatef" into a product
methods can be employed to improve its accuracy furtherof exactly solvable parts, we partition the Fokker-Planck op-
For example, an operator without theNf/error is eratorL, Eq. (2.3, into a leadingreferencg contributionB
and an anharmonic correctigxreading
Se(t) = 5[ 16S,(t/2N)2N—S,(t/N)N]. (1.12
B=—-vd,+ yd,(v+yDd,) (2.9
Finally, to conclude this introduction, it should be noted
that there are also other methods for obtaining high-accuracgnd
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A=—3,G(x). (2.5

As defined, the operatdx describes the deterministic path of
the system, and the operat® incorporates fluctuations

away from this path. In what follows, b§,(x,v,t|Xg,v() we
shall mean the propagator of the reference process

P (X,0,t|Xg,v0) =€B8(X—Xq) (v —vo), (2.6)

whose explicit expression is given in the Appendix. More-

over, it is not difficult to show that
exf —ta,G(x) Jf(x) =IO FHX )], (2.7)
where
J(x,t)=d,H(x,t)=G[H(x,t)]/G(x), (2.9
while the functionH(x,t) is determined by the equation
H(x,t)=exd —tG(x)dy]X. (2.9

The general solution of Eq2.9) is

Hx,)=F {F()—t], F(x)= fxdy/G(y).
(2.10

with F~ 1 being the inverse function, i.eF, " [F(x)]=x. In
the event that the integral in E€R.10 is not doable analyti-

cally, the functionH can be evaluated approximately by ex-

panding the right-hand side of E.9) in a Taylor series in
t. To second order ih this gives

H(x,t)=x—tG(x)+ 3t?°G(x)G' (x) + O(t%),
(2.12)
J(x,t)=exd —tG'(x)+ 3t°G(x)G"(x) ]+ O(t%),

where the prime denotes differentiation with respect.tds
shown in Ref.[7], approximations like Eq(2.11) do not

deteriorate the accuracy of Trotter-approximated pmpagaf)ropagator Eq.2.19

tors.
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FIG. 1. Logarithm of the relative erroe= [(approximatg
—(exac})/(exac} in the second cumulant made by using EGs12
(dashed ling and (2.15 (solid line as single step propagators.
Open and solid circles show the errors made by these propagators in
the path integral evaluation, with=1, of the same quantity. The
dot-dashed line is for the fourth-order cumulant expansion of the
single step propagator.

analogous to the drift operatér defined by Eq(2.5. With
this finding, we arrive at the fourth-order factorization
84( 7_) e~ TﬁxG/GeTB/2e— TﬁxgeTB/2e— T(?xG/B' (214)

which appears as a product of two Trotter approximants,
leaving us finally with

P4(X1U:T|XO!UO)
=J(x,%r)f dy duP[H(x,37),v,37|H(y,u,— 7),u]

XPr[y,u,%TlH(Xo,_%T),Uo]. (215
The functionH(x,v,t) involved in Eqg.(2.15 is determined
by Egs.(2.9) and(2.10, if one replaces in these equations
G(x) by G(x,v). It is thus seen that the new short time
requires an additional quadrature
compared to the Trotter approximation, H§.12. On the

Now we are able to evaluate the short time propagator iyner hang, the error accumulated in tNefactors in the
the coordinate representation. Use of the above splitting toztire propagator, Eqg1.4) and (2.15, is of orderN™4;

gether with the Trotter formuld1.5) yields the standard . q,sequently, the present propagator should allow larger

second-order approximatids] time steps to be taken than the Trotter approximation for

comparable accuracy. Thus the key question we shall address

in numerical applications is the following: Does the increase

= J(,E7)P[H(X,37),0,7/H(Xg, — 57),00]. ![?ogg?ios:rfglerzict)ﬁ than compensate for the added computa
(2.12 Because closed-form analytic results are only available

for a linear drift,
In order to take higher-order corrections into account, we

first have to evaluate the commutator The latter is easily
determined in terms of Eq$1.11), (2.4), and (2.5 to give
the operator

P2(X,U,T|XO,Uo)

G(X)=— wX, (2.1

we tackle this problem for illustrating the power of the
present technique. Figure 1 shows the relative error in the
second cumulantV ,(t) =(x?(t))—(x(t))2, made by using
Egs.(2.14 and (1.5 assingle step propagatorsThe calcu-
lation is performed folD=y=w=Xy=vy=1. Also shown

is the error made by using the fourth-order cumulant expan-

C=-9,G(X,v),

G(x,0)=5G(X) + #°v[G(X)G" ()~ G'*(x)],
(2.13
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precision of a few percent is achievable in the calculation of
the stationary solution with a discretization as coarséas
=2, for r=5.

Ill. KRAMERS EQUATION

As a second example, we consider the Kramers equation
which is a special Fokker-Planck equation describing the
Brownian motion in a potentidl (x) [14]

logyol € |

dP(x,v,t)=LP(x,v,t)

-4 =[—-vd,+U'(x)d,
X +vd,(v+ B 19,)IP(x,v,1). (3.1

FIG. 2. Logarithm of the relative error in the path integral evalu- Here y denotes the friction coefficient, anglis the inverse
ation of the stationary solution, Eq2.17. The dashed and solid o \heratyre. The Kramers equation is commonly used in a
lines are, respectively for Eq&2.12 and(2.13 with 7=1. Circles number of problems of physics and chemistry, such as reac-
are the result obtained after one folding of E#.15 with 7=5. . o o 7!

tion kinetics, superionic conductors, nucleation, and Joseph-
son tunneling junctio15]. As is the case with the colored
) ) noise problem, the diffusion matrix of E3.1) is singular.
sion of the propagator derived by one of us receftBl. As  Thjs equation, however, is more convenient for our purpose

anticipated, the error increases linearly within this case, n the sense that it allows for a straightforward calculation of
and very soon grows out of the scale of the figure. The samge stationary solution

is true to some degree for the Trotter splitting, whose error

rapidly reaches 100%. In contrast, use of the fourth-order Po(x,0)=Ztexd — Bv?/2— BU(X)], (3.2

decomposition, Eq(2.14), reduces the error over a broad N )

range oft by nearly two orders of magnitude. This is espe-With a partition functionZ. _ _ .

cially pleasing since the properties of the free Brownian ref-  Proceeding along the same line as in Sec. Il, we split the

erence propagator employed in our calculation are very difFokker-Planck operatdr defined by Eq(3.1) into a linear

ferent from those of the Ornstein-Uhlenbeck process. Théeference part

former describes the unrestricted diffusion spreading, while

the latter has, fore>0, a nontrivial stationary solution.

Hence one may conclude that the present technique showgq the rest,

promise for calculating not only short, but also intermediate

time dynamicsanalytically. A=U'(x)d, . (3.9
However, the primary purpose we envision for E2.15

is an improved short time propagator for use in a path intelnsertion of these Operators into the Trotter fOfmUla, Eq

gral. Figure 1 also shows the errors made by Egd4 and  (1.9), yields, in a straightforward wag],

(1.5 in the path integral evaluation of the same quantity

according to Eq(1.4). It is seen that an acceptable precision

of three significant digits is achieved in calculations with a (3.5

relatively large time step=1 with the present fourth-order \yhere the reference propaga®@r(x,v,t|xy,vo) is the same

propagator. For comparison, the Trotter-approximated propags in Eq.(2.12). It is given by Eqs(Al), (A2), and(A3) with

gator provides an analogous accuracy just fe¢0.1, and D=(8y) ! andw=0.

thereby requires a computation that is five times as large. on the other hand, substituting Eq8.3) and (3.4) into

Analogous results for the cumulant expansion of the shortq (1.11), we obtain

time propagator are not presented in this case, as the latter

B=—vdy+ vyd,(v+ B 13,), (3.3

P2(X,0,7]X0,00) =P [X,0+37U"(X), 7|X0,00— 37U’ (Xo)],

fails grossly forr=1. C=Q(x)d,, QX)=3U"(x)[1-%72U"(x)], (3.6
Next, Fig. 2 shows the relative errors in the path integral o _ _ _
evaluation, withr=1, of the Stationary SO|Uti0ﬁ>e(X), from which it follows that |mplementat|on of E(ﬂlg) IS as

simple in this case as that of the Trotter formula, EQ5).
The resulting fourth-order propagator reads

Pe(x)=limf dv P(x,v,t). (2.17

tooed —e P4(x,v,r|xo,vo)=f dy duR[x,v+z7U’(x),57]y,u

The error made by the Trotter-approximated propagator is = 7Q(Y)IP[y,u,37/X0,00— 57U’ (X0) .
again two orders greater than that of £8.15. Thus the (3.7
practical advantage offered by our formulation is that accu-

rate results are obtainable with rather small value aven In order to illustrate the power of the present scheme in

though the net incremertt is large. As seen in Fig. 2, a treating nonlinear problems, we apply the various approxi-
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0 IV. CONCLUSIONS

Our primary result is the demonstration that higher-order
factorizations designed for solving classical and quantum
problems are very effective when treating Fokker-Planck
processes with singular diffusion matrices. In such a case,
the various different operators involving higher-order deriva-
tives may cancel so that the composite operaiorEqg.
(1.11), is no more complicated than the drift term of the
original Fokker-Planck operator. The resulting propagation
scheme greatly reduces the error for a moderate number of
. time steps or requires, for comparable accuracy, considerably

9 — * less computation than standard path integral methods now in
0 X 1.5 use. Yet another attractive feature of the present scheme is
that it is time reversible. Therefore, extrapolation methods

FIG. 3. Logarithm of the relative error in the path integral evalu- for removing time slice errors can be employed to further
ation, with 7=0.1, of the stationary solution of a Kramers model, improve its accuracy.

Egs. (3.1 and (3.8. Dashed line: Trotter formula, Eq3.5); dot- Finally, we would like to emphasize that we have not
dashed line: fourth-order cumulant expansion; solid line: presengxplicitly covered all possible cases to which our approach
fourth-order propagator, E¢3.7); dots: sixth-order propagator, Eq. \would apply. The method outlined above is also applicable
(1.12. to many other multidimensional Fokker-Planck processes
whose operator can be partitioned into two exactly solvable
parts such that the composite operdafopossesses the exact
mations discussed above for the short time propagator to theolution. This happens to be so when the underlying stochas-
path integral evaluation of the stationary distributi®g(x).  tic system is of the type in Eq§2.3) or (3.1). However, this
We take a symmetric potential of the form is not the generic case for any system with a noninvertible
diffusion matrix. In particular, the method fails to treat effi-
ciently models that are nonlinear bothxnand inv. In ad-
U(x)=(x*+1)2, (3.8 dition, it may hardly be applied to multidimensional systems
driven by multiplicative noise, as the latter cannot in general
be converted to additive noise by a transformation of vari-
ables.

logol € |

and perform the calculation wit8=1 andr=0.1, for vari-
ous different values of, Xy, andvy. The quadratures of Egs.
(1.4) and(3.7) are evaluated iteratively by taking advantage
of the fast Fourier transfornfFFT). Although path integral ACKNOWLEDGMENTS
representations of stochastic dynamics are, in general, not
suited to the FFT, a way for overcoming this problem was
developed in a previous paplf]. The method employs the
Stirling interpolation to readjust the distribution function ev-
ery time step dynamically, with a mild increase in cost and
with no loss of precision. Shown in Fig. 3 are results ob- APPENDIX

tained for y=5 using the Trotter formula and the fourth- . . )
order factorization. Also shown are results obtained from the Although the exact solution for an arbitrary Ornstein-
fourth-order cumulant expansion for the propagf®]. As Uhlenbepk process can be found in a numbgr of textbo_oks on
anticipated, the error made by the present propagatioftochastic processésee, e.g., the book by Riskéhb]), this
scheme is again much lower than those of the two othe$0|Ut'9“ is formal,.and its apphcatlon is far from stra|g_htf_or—
techniques. It is also seen that use of extrapolatioh?) to Warq in each particular case. The aim qf this appepdlx is to
remove 1N* errors further increases the accuracy by nearlyeXplicitly solve the Fokker-Planck equati¢®.3) for a linear
three orders of magnitude. For comparison, a precision offift coefficient, Eq.(2.16. Since the process is linear, the
1075 is attainable in calculations with the Trotter- Propagator is given by the two-variable Gaussian distribution

approximated propagator just fers0.01. As to a precision

We acknowledge the support of the DireatiGeneral de
Investigacim Cientfica y Tecnica of Spain for financial sup-
port (A.N.D.) and for Project No. PB95-53@.J.B).

of nine significant digits, the Trotter formula fails to provide | 1 M,,(t) ,

it even thoughr=0.001. P(x,v,t|Xg,v0) = —exp[ — —————[X—M,(1)
Itis also Sleasing that the error made by using the present o 2mM(t) 2M(1) [ 0]

propagator turns out to be rather insensitiveytog, andv. M (1)

This is in drastic contrast to the cumulant expansion, whose + = [X= M) ][ =M, (1)]

accuracy deteriorates with increasing and already fory M()

~10 the method fails to produce correct results. The reason M (1)

is that the expansion for the second cumulant, which deter- T 2M0) [v— Mv(t)]zl, (A1)

mines the width of the short time propagator, becomes nega-
tive for yr>3%. As a result, very short time steps are required
for achieving the high-friction limit in this case. with mean values
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M, (t)=xoe “'—vo(e “'—e M) /(w—17), ¥°D (1 ) 2
= (1—a 2y~ _[1—a (otyt
(A2) My, (1) w—7y ‘y(l € ) w+y[1 € 1t
(A3)

Mv(t):voe_ﬂ'

and variances
M,,(t)=yD(1—e 2",

D (1 1
My(t) = (y—)z{z(l—e_zwt)‘F ;(1—9_2“)

ey In the above,M (t) =M (t)M,,(t)— M2,(t). Finally, the
expression for the reference propagad®p(x,v,t|xq,v) fol-

' lows from the present solution fas— 0.

4
e [1—a (o+tyt
w+'y[1 € ]
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