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Notion of integrability for time-dependent Hamiltonian systems:
lllustrations from the relativistic motion of a charged particle
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It is shown that “Liouville’s theorem” on integrability still holds in the case of time-dependent Hamiltonian
systems; when they haveindependent, possibly time-dependent, invariants the solution can be found with
guadratures and no chaos can take place. This is applied to three important problems describing the motion of
a particle in an electromagnetic field. The first is the motion of a charged particle in a homogeneous constant
magnetic field and a transverse circularly polarized homogeneous electric field. In the second application the
electric field is replaced by a standing electromagnetic wave. The third concerns an oscillator with a quadratic
nonlinearity in the force[S1063-651X98)10801-2

PACS numbds): 02.90+p, 41.20--q

I. INTRODUCTION solution of the original nonautonomous system can be found
by quadrature$3,9]. This result has been shown explicitly
One might have expected that knowledge afiidepen- for n=1, provided one invariant is specified, and a second
dent invariants would always be required to obtain the geninvariant is then expressed in terms of quadratures, which
eral solution for an autonomous Hamiltonian system with permits one to derive formally the solution as a function of
degrees of freedom. This is suggested by the fact that Hamitwo constant$10—12. This result is outlined Sec. Il A. We
ton’s equations are a set ohZirst-order equations. How- have decided to call a time-dependent Hamiltonian system
ever, from a result due to Bouyd] and often attributed to integrable if it possessesa independent, possibly time-
Liouville [2], the existence ofn independent, time- dependent, invariants in involution. This is an extension of
independent invariants in involution is sufficient to derive athe first definition of integrability. In addition, it is shown
general solution to the problef8,4]. Liouville extended this that Lyapunov exponents are not positive in the case of in-
result to nonautonomous systems by showing thiatlepen-  tegrable systems. Consequently, no chaos can take place. In
dent, possibly time-dependent, invariants in involution carthis sense, we say that “Liouville’s theorem” on integrabil-
be used to obtaim additional invariant$2,5]. However, he ity still holds in the case of time-dependent Hamiltonian sys-
did not construct the 2 invariants as canonically conju- tems.
gate paird6]. We illustrate this concept for three examples in Sec. lIl.
An autonomous Hamiltonian system is called completelyThe first example concerns the study of the relativistic mo-
integrable if it possesses independent, time-independent tion of a charged particle in a constant homogeneous mag-
invariants in involutior]3,4,7,9. The solution for the motion netic field and transverse circularly polarized electric field
of a completely integrable system can be expressed in ternjd3—15. It has been shown recently how the Hamiltonian
of canonical action-angle variabl¢3,4,7,8. Unfortunately, formalism brings enlightenment to this probldm6]. The
this does not mean that the equations of motion can be inténtegrability of this two-degrees-of-freedom system first can
grated analytically, but the solution always exists and isbe shown by finding two independent constants in involu-
unique for specified initial data. Moreover, when the motiontion, one of them obtained by using Noether's theorem
is completely integrable, all the Lyapunov exponents one caf3,4,17,18. Alternatively, the system can be reduced to a
compute equal zero. Chaotic trajectories can fill only aone-dimensional problem that can be solved by quadratures
phase-space volume of zero measure. in two different ways and, because of the extension of the
A general time-dependent Hamiltonian withdegrees of  definition of integrability we have made, shown to be inte-
freedom is usually considered to be equivalent to an autonagrable[16]. Starting with the first approach, canonical trans-
mous one in an extended phase space wittl degrees of formations[3,4,7,8,16,18 permit one to take the two first
freedom[8]. In Sec. Il B we show that the equivalent systeminvariants as two new conjugated variables and consequently
in the extended phase space is completely integrable if thee can reduce the system to a time-dependent Hamiltonian
original, nonautonomous system possessemdependent, system with one degree of freedom possessing an invariant
possibly time-dependent, invariants in involution. Thethat is obtained by transforming the one derived from Noet-
Hamiltonian in the extended phase space is introduced car&er’s theorem. It is therefore integrable in the present “Liou-
fully and it can be proved that it is possible to constructville sense.” As is shown in Sec. Il A, a second integral can
2(n+1) invariants a1+ 1 canonically conjugate paif§]. be derived that permits one to give the solution in terms of
The demonstration for the case= 1 is given by one method quadratures. Another approach by quadratures exists in
in Sec. Il A and by a second method in Sec. Il B. On thewhich the solution can be written in terms of the energy of
other hand, it was shown by Kozlov and Kolesnikov that thethe particle and the energy is shown to be the solution of an
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integrable differential equation. a=G(Q,I,t)=[1p(Q,P,t)] 1, (4)

The second application deals with the dynamics of a
charged particle in a constant homogeneous magnetic fieMhereG,=dG/dl andl=4l/JP. Then, to integrate Eq2),
and a transverse standing electromagnetic wave. This prolve note that sinc&,dQ— G,hdtis a total differential, it can
lem is more realistic than the former since the electromagbe interpreted as the total derivative of a first integral
netic field that is considered satisfies Maxwell's equationg)(Q,I,t) such thatdJ=G,dQ—G,hdt (no term is propor-
exactly (in the first case, the field is only a solution in the tional to dl as| is a first integral. Under these circum-
limit of long wavelengths Noether’s theorem is still applied stances, one must have
to derive an invariant. Canonical transformations are used in
order to reduce the problem to a system with two degrees af,(Q,1,t)=G,(Q,l,t), J(Q,l,t)=—G,(Q,I,t)h(Q,1,1).
freedom. No second invariant was found. Consequently, the (5)
problem may be nonintegrable and chaotic trajectories might
exist in some circumstances. Other canonical transformatiorigtegration leads to
are used to change the problem into an autonomous one.

After performing Poincaremaps and calculating positive Q.1 1) = Q dQ’
Lyapunov exponents, we show that trajectories can be cha- " o 1p[Q";P=G(Q’,I,1);t]
otic.

The third application is about the motion of a charged tHp[0;P=G(0l,t");t"] |
particle described by a radial equation in which anharmonic- B jo I1p[0:P=G(0,,t");t'] :
ity is included with a term quadratic in position for the force.

In addition, it is assumed that the anharmoniCity depends Olh this way a second invariant is expressed in terms of
time, the coefficient of the non-linearity being a time- quadratured10-12. As announced in the Introductiom,
dependent functiofi(t). It is shown that there exists at least angJ are canonically conjugate, i.¢.J,1]1=1, where[A,B]

(6)

one form forf(t) such that this problem is integrable. stands for the Poisson bracketAfvith B [12]. Equation(6)
shows thatQ can be derived formally as a function of time

IIl. INTEGRABILITY OF TIME-DEPENDENT and as a function of two arbitrary constants of motioand
HAMILTONIAN SYSTEMS J. This is in good agreement with the work of Kozlov and

Kolesnikov, who proved that in such a case the solution can
npe found with quadraturds$,9]. In that sense our system is
H‘1tegrable.

In this section we study the integrability of an
n-degrees-of-freedom time-dependent Hamiltonian syste
However, in order to make the approach easier, we begi

with n=1.
B. Integrability of time-dependent systems

A. Integration by quadrature of one degree with N degrees of freedom

of freedom time-dependent systems Let us consider an autonomous Hamiltonian(q; ,p; ;

This is an outline of what has been done in REf@—17.  J=1n+1) with n+1 degrees of freedom of the specific
We consider one-dimensional time-dependent problemfrm (the reason for this form will become clear Iater
where the HamiltoniarH(Q,P,t) is a function of canoni- H(Q D i=1n+1)= YH(g D i=1n
cally conjugate variablesq,P) and timet. It must be noted (0;:p; =10+ 1)=Pnat HG P Gn st =1, )'(7)
thatH is not a constant of motion as it depends explicitly on

The formal inversion of with respect toP gives arguments. Hamilton’s equations dres the time associated
P=G(Q.1.1), 2 with this system
whereG is the reciprocal function df. Using Eq.(1) in one %: ﬂ: ﬁ (8a)
of Hamilton’s equations, we get dr dpy dp1’
Q=h(Q.1,1), v dpy oM oH &
whereh(Q,I,t) is a specified function. Equatiof2) can be dr 94y 90’
considered as a first-order differential equation with param-
eter |. Looking for an integrating factow(Q,l,t) («dQ
—ahdt is a total differential formy the partial derivative of
the coefficient ofdQ with respect tad must equal the partial dg; dH _oH (80
derivative of the coefficient ofit with respect toQ, i.e., dr  dp; dp;’
a;=—(ah)q, or after development
dp; @ oH
o+ argh+ ahg=0, 3 o _ (8d)

dr = aq  aq;’
where subscripts stand for the partial derivatives. One can
show that a solution to Ed3) is [10,1]



dQn+1 IH
= =1, 8¢
dr IPn+1 (89
dan:_ JH _ H (&
dr In+1 ns1

Since this system is autonomodusg,is conserved
H=1 1 (9)

wherel; is a constant. Moreover, E48¢) can be readily
integrated to give

(10

Ony1— 7= lns1,

wherel, ., is a constant. Thus two invariants até and
On+1— 7 and we found them to be canonically conjugate

[Qn+1_ T,H]:l.

One concludes that, in the case 1, two invariants can be

(11)

derived for which the Poisson bracket is unity. This is in

good agreement with Sec. Il A.

Let us now replace the variablg,, ; by t (we will see
below thatt plays the role of the usual timeand one can
write the equations of motio(B) as

dg;  dH(q;,pi.t)
9t apy (129
dp;  dH(q;,pi t)
T T (12
dg,  dH(g;.pi.t)
E—a—pi, (12C)
dpi  dH(q;,pi.t)
at g (12d
d 5H i iat
pn+1:_ (g;,p ) (126

dt ot

The first 2n equations are those of andimensional nonau-
tonomous system for whichH(q;,p;,t) is the time-
dependent Hamiltonian. Finally, sinatH/dt=¢H/dt, Eq.

(126 can be written as

dpn+1__d_H
dt ~  dt’

13

By taking Egs.(7) and (9) into account, its solution can be
written as

Pn+1=—H+I1;. (14
This equation, which is a consequence of ELRe, is just
Eq. (7), wherel; stands forH. The difference between the

autonomous Hamiltonian functigd and its valud ; must be
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emphasized. The valug of H is an arbitrary constant along
the solution trajectories, which can chosen to be zero. This
result leads to an important remark concerning what has ap-
peared in the literature about the extended phase space.
When an n-dimensional time-dependent Hamiltonian
H(q;,p;,t) (i=1,n) is considered in Ref8], the authors set

C]n,_—ﬁ;lzt and p,;,=—H and take H(d;,p;,dn+1,Pn+1)
=H+p,,1=0 as a Hamiltonian in the extended phase
space. However, it is usualliincorrectly) omitted that this
value is valid only along a solution trajectory. In addition,
this is misleading as{ is a function identical to zero and
cannot be considered as an arbitrary constant of motion. The
function H can be chosen as a Hamiltonian and its value is
an arbitrary constant if one sets
Pn+1=—H+I1;. (15
Let us again consider Egs(12) and assume that
H(q;,p;i,t) hasn independent first integrals, possibly time
dependentJ;(q; ,p; ,t) in involution. We have

dJi_&Ji+é (aH 8J;  oH 4, o 18
dt gt & \dp g dq apy)
Then
Y(33, H 93 OH\  dH 83 oH 4
=2 | 5 0 ap ap )~ ot dpe o 7t
i=1\0d; dp;  IP; IP gt IPp+1 IPp+y It
< (aJi aH  4d; ﬁH)-l-ﬁJin—O a
=1\ 9gi ap; ap; dq; at e

Thus, becausel; /d7=0 and[J; ,H]=0, the integralg; are
also invariants for the system associated with
H(Qi ,PiAn+1:Pn+1). The system withn+1 degrees of
freedom has+ 1 independent invariants in involution and is
therefore completely integrabi@{ is independent of thd,’s
because they do not depend pR, ;). Therefore, we have
shown that the time-dependent system associated Mijth
which is integrable in the sense that the solution can be
found by quadrature@ccording to Kozlov and Kolesnikgy

is equivalent to a completely integrable system with one ad-
ditional degree of freedom.

The solution of the system with+ 1 degrees of freedom
can be expressed in terms of canonical action-angle variables
and, as a consequence, the solution for the system nwith
degrees of freedom can be found by using the inverse trans-
formation. It should be noted that being able to transform the
nonautonomous system to a completely integrable autono-
mous system does not imply that the solution of the nonau-
tonomous system can be expressed simply. An example of
that for a linear, one-degree-of-freedom, time-dependent sys-
tem was given by Salat and Tatarohi®].

If the system is completely integrable in the extended
phase space, the numerically calculated Lyapunov exponent
corresponding to any trajectory cannot be positive. In this
space one can consider pairs of trajectories with the same
initial time 7 and the same initigh,,, ;. The Lyapunov ex-
ponents are given by.,.= lim(1/7)In[D(7)/D(0)] in the limit
when 7—o~ and D(0)—0, whereD(7) measures the dis-
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tance between the two solutions at a ti(@,8]. In the same It can be noted that the first two constants are canonically
way, the corresponding Lyapunov exponents can be calclconjugate
lated in the original space from the limitog;g
=lim(1/t)In[d(t)/d(0)] whent—c andd(0)— 0, whered(t) c &
represents the distance between the two solutions attihe 1 eB,

is shown in the Appendix thad(0)=D(0) and d(t)

<D(7). Then o4ig<0eq and one can conclude that any where nowC; and C, must be considered as functions of
Lyapunov exponent cannot be positive in the original spacéheir argument$see Eqs(21)]. Among these three constants
provided none of them is positive in the extended phas@®f motion, one cannot find two of them in involution since
space. As a consequence, in the case of time-dependent

Hamiltonian problems witm independent constants of mo- [C1,C5]=Cp, [C3,C5]=—Cy. (24)
tion (possibly time dependentn involution, only a set of
measure zero can contain chaotic trajectories.

=1, (23)

However, another constant of motion is given by

C,=C2+Cs3. (25)
I1l. APPLICATIONS TO THE DYNAMICS OF A CHARGED
PARTICLE IN AN ELECTROMAGNETIC FIELD It satisfies the relation
A. Integrability of the motion of a charged particle [C,4,Cs]=2C4[C;,Cs]+2C,[C,,Cs]=0 (26)
4,%3]1=20L41Lg,03 2l 2,03l =U.

in a constant homogeneous magnetic field and a transverse

rotating electric field As C; andC, are two independent constants in involution,

The constant magnetic fieBy, is assumed to be along the the system is integrable according to the definition in the
z axis and the electric field has the components introduction.

Ex=Eq coswot, E,=Egsinwgt, E,=0, (18 2. Reduction to a one-dimensional problem, second
demonstration of the integrability of the problem
whereE, and wg are constants. The following gauge is cho-

sen for the electromagnetic field: What follows is a part of what has been done in R&6].

Written in terms of the dimensionless variables and param-

Am =20y B0 gin gt o [ 20 x4 20 t]é were
=—|=yt—sinw — X+ — CcOoSw .
2 y Wy ot | & 2 wg ot . wy . wo IS Pey -
(19) X=X ?1 y=y ?1 Xy mC, t—(l)ot,

As a consequence of Maxwell's equations, the electric field

‘g - H ek eBy
and the total magnetic field cannot be constant alongzthe H=y= a= Qp=—o
axis. However, in this paper we consider long wavelengths mc MCwq Mg

and the variation of the magnetic field can be neglected in a S
region where the electric field is maximum. The motion ofthe Hamiltonian is
the charged particle is assumed to be in Xhg plane. Its

relativistic Hamiltonian expressed in mks units is A=

- . Q)2
Px—asmt—7y

ek . eB, 2 ) 2 1/2
= —_——_— _—— o ~ Q ~
H=11 Px wo Sin wot == y) ¢ +|Py+a cost+70x) +1 (27)
eEO eBO 2 1/2
+ ( Py+ o COS wot + > X c?+mict| In these variables, the constants of motion corresponding to
0 C, andC, are
(20)
O LI
where—e andm are the charge and rest mass of the particle. Ci=Pt 5y, Co=Py—5 X (28)
1. First demonstration of the integrability of the problem They satisfy
Hamilton’s equations allow us to find immediately two -~ A
constants of motiofi16] [C1,C2]=Qg. (29
eB, eB, By usi_ng this property we can show that th_e system can
Ci=Pt =5y, Co=Py———x (21)  be described by a single-degree-of-freedom time-dependent

Hamiltonian. We takeC; and C, (one must be normalized
Another constant of motion can be obtained by using NoePY {2o) as new conjugate momentum and coordinate and we
ther’s theoreni3,4,16,17. The result i§16] choose a canonical transformation X,Y,P,,Py)
—(X.y, P,,Py) defined by the type-2 generating function
C3=yPy—XxPy+H/wg. (22 [3,4,7,8,18
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%+P,y. (30

~ Q.
Fo=| Px— 7 y
The canonical transformation is

X.
(31

N[ 8

P.=P.— ¥, Py=P,-

In these variableé1 and 62 become

1277

3. Another way to solve the problem

The equations of Hamilton derived from E@®@7) are
P,=— 2o (Q0Q;+a cost), lel (P,—asint).
Y Y 39
Introducing the variables

Q,=0Q,+a/Qq cosi, P,=P,—asini, (40

C.-P C.=P 0% 32) the complex quantit)Z=P_l+iQoQ_1, taking into account
17T w2y o thatH = y= \/1+Z|?, Hamilton's equation$39) are equiva-
Then we introduce a second canonical transformationent to

(;(',V,EX,Ey)H(QliQZ’Pl’PZ)’ generated by . iQoZ
7= —O—a eX[Xif), (41)

\/1+|Z|7

which is the equation of a nonlinear oscillator under the ac-

Fo=(Py+Qox)y+ Py

~ P
X+ Q_O) (33

and yielding tion of an external force. Remembering that \1+Z]?,
we can consider Eq41) as formally linear. Thus the solu-
P, _ Py tion of this equation can be written as

R':Ql_ﬂ—o’ y:Qz—Q—Oa Ex:Qon, Ey:Qle-

(34 Z=A, expi[a(t)+ é)‘]—ajt expi[o(t)—o(7)+7]d7,

0

The resulting transformation, which is the product of the two (42)
transformations, is given by
with
N P, . P, -~ 1
X=Q1= g ¥=Q2— - Pu=5 (2oQa+Py), ) :
0 0 a(®)=04 f dr y X, (43
0

-1
Py:§ (QQ1+Po). (39 whereA, and 5 are real constants. The solution is formal as
it depends ony, which is unknown. It will be used below to

In terms of these variables one has derive an equation foy. Then

C, . P,=A, co§a(})+ 5] +a sint
QzZQ—Oa P,=C; (36) t
—afo co§ o(t)— o(7)+ 7]dr,

and the Hamiltonian is (44)

H=[(P,—a sini)?+(QeQ,+a cosi)?+1]¥2 (37) 1= 20 S (b + 8] - cost— =
Qo Qo Qo
As expectedP, and Q, are cyclic variables since they do
not appear in the Hamiltonian. It depends upon time and has
only one degree of freedom. In terms of these new variables,

the constanC5, which we now denote bi, is

t A
XJ;SIF{O’(t)—O'(T)+T]dT.

The quantitiesA, and & are determined so that &0, A3

= y5—1=pZ+ Pl and tans=pyo/Py (P=p/mc, p is the
momentum of the partice The subscript 0 appended to
variablesy andp refers to their initial values.

The fact that this problem can be reduced to a one-degree- e now derive an equation far. Taking the time deriva-
of-freedom system can help to predict the appearance of tH&€ of Eq.(37) with respect to time and using Edg4), we
trajectories easily16]. As we have one constant of motion, ©btain
we can conclude, according to the Introduction, that the sys-
tem is integrz_ible._ This is a §econd way to show the integra- yy= —a( A, cod o(t)— i+ 4]
bility of Hamiltonian (20). Finally, according to Sec. Il A,
we can also conclude that a second constant of motion of
Hamiltonian (37) can be obtained and the solution can be
given in terms of quadratures.

— P2 0,
K=H- —— — Q2. 38
20, 2 Q1 (38)

—aft co§o(t)—a(r)+r—t]dr}. (45)
0
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This equation, multiplied by-1+,/y and integrated be- i
tween 0 and, leads to
2 2
Y %o .
Qo(y=17v0)— 2 —akhg sin &

=—a[AO sifo(t)—t+ 8] BO

t N z T

—aJ’ sifo(t)—o(7)+7—t]d7}. (46) ‘
0

v

Then Eq.(45) is differentiated with respect to time and Eq. \EO
(46), multiplied by —1+Q,/y, is added to it. The result is
multiplied by yy and integrated between 0 amd In this

way, the following differential equation for the energy is X

derived:
FIG. 1. Coordinate system.

2
. Y I'o Ko
(V) + = Qoy+Ro= =7 =0, (47 B, &
A=— (— y+— sin(wot)cos(koz))éx
. 2 wo
with _
v2 + Bo X+ Eo coq wot)cog k z))A (52
Ro=aA sin 8+ Q2+ Qgyo— 70— a2, (48) 27w 0 02) |-
. ) ) The relativistic Hamiltonian of the motion of one electron is
F0=ZQOaAO sin 6+ ZQO’}/O_QO’}/O’ (49)
2

e e

and H= (PX——EOsin wot coskoz—;BOy) c?
[Oh) 2

4
Yo = 2
— 2272 _ 2_ 3, /0 e e
Ko=a’Ag cos'6—ToyotRoys— Qovot 4 (50) +| Py+ w—EO cos wot coskyz+ %BO x) c?
0

This result is in agreement with the one given by Roberts and

Buchsbauni13]. Equation(47) describes a motion in a one- + p§C2+ méc?
dimensional potential. It admits a solution that gives time in

terms of a sum of elliptic integrals of the first and third types_ = | ) ,
[20]. Hence the fact that an analytical solution of E47)  This is a three-degrees-of-freedom time-dependent Hamil-
exists permits us, with the help of Eqd4), to expres, tonian. The llnva'rlantscl and C,, which were defined in
andP; in terms of quadratures. Sec._ I A, still exist. Noe_ther’s theorem can be used énd

is still a constant of motion.

WhenBy,=0, the problem is described by a one degree-
of-freedom Hamiltonian. Since we have at least one constant
of motion C;=P,, C,=P, or C3=yP,—xP,+H/wy), the
o o system is therefore integrable. WhEp= 0, the Hamiltonian

The constant magnetic fielB, is still supposed to be pecomes autonomous and sirtteand P, are two constants
along thez axis (Fig. 1). The electromagnetic field now has in jnvolution, the problem is completely integrable. Now set

112
(53

B. Integrability of the motion of a charged particle
in a constant homogeneous magnetic field
and a transverse circularly polarized standing wave

the form P,=P,/mc andz=kyz and introduce the previous dimen-
~ . sionless variables and parameténere E, is replaced by
E,=Eg co t)sin(kqz), ~ . .
= Eo oS wot)sintkoz) Ep). In the case wheRqc/wy=1, the following normalized
Ey:EO sin(wot)cogkoz), E,=0, Hamiltonian is obtained:
k E ﬁ |§> . 'f ~ QO ,\)2
= —asint cosz— —
B,=—— cogwgh)sinko2), X 2 Y
i ~ R Qo 2 12
E, +(Py+a cost cosz+ > X| +P2+1| . (59
B, =

y= = 0)_ S|n( wot)COi koz), BZ: BO (51)
0
Here again, the canonical transformation given by E85)
and the vector potential for the electromagnetic field is givens used to reduce the problem to a time-dependent system

by with two degrees of freedom. The present Hamiltonian is



57 NOTION OF INTEGRABILITY FOR TIME-DEPENDEN . ..

05 L .V T

0.0 . e B G s
-10000.0 -8000.0 -6000.0 -4000.0 -2000.0 o 0.0

1279

50.0

—

0.0 F

-50.0

-100.0

-150.0

0.0 200.0 400.0 600.0

t

FIG. 2. Surface-of-section plots for some trajectories calculated F|G. 3. Two trajectories calculated with the same initial condi-

with the equations of motion derived from E@5) whena=0.5
and,=0.35.

H=[(p,—a sini cos?)?

+(0QQ,+a cost cos2)2+P2+1]¥2, (55
with the constant of motion
N Pi QO
—H-—— 202
K=H-%0, 2 & (56)

We introduce action-angle variables for {Qg,P, variables.
The canonical transformatiorQ ,P1)—(6,J) is generated
by

~ Q =
Fa(Qy3)= fo V2(300-3080%)dQ; (57
and yields
Q.= \/EE/Q_O sing, P;= \/539_0 cos 4. (59
Then the Hamiltonian becomes
H=[2JQ,+a? cof z+2a cosz (2JQy) 2
X sin(#—t) + P2+1]2 (59)
and the first integrak becomes
K=H-17. (60)
Finally, another canonical transformation H,E,E_f E)
—>’£¢,J,A2,PZA)Ais introduced, generated b,(6,z,J,P,,t)
=J(6—1t)+2zP,. It yields
p=0—1. (62)
In these variables, we have
HE=[2390+ a2 co€ z+2a cosz(230,) Y2
X sin ¢+ P2+ 1]Y2-7. (62

tions and two different time steps.

Since time is now ignorable in this Hamiltonian, it is a con-
stant of motion and one can remark that with these variables
the first integral obtained by using Noether’s theorem is the
Hamiltonian itself

K=H, (63
whereK is obtained by transforming. Unfortunately, no
other constant of motion has been found. Chaotic trajectories
are evidenced by performing Poincareaps. The plane
(J,¢) with z=0(mod2r) is chosen to be the Poincaser-
face of section(Fig. 2). Figure 3 shows two trajectories de-
rived with the same initial conditions but with two different
time steps. Although the energy is very well conserved in the
two different cases, the two trajectories become rapidly dif-
ferent. This can be considered as a signature of chaos. Then
a Poincaranap is performed for one of these trajectories and
the points are indeed chaofiEig. 4). The Lyapunov expo-
nent is also calculated for one of these trajectories. Benettin's
method is used. This considers two trajectories with very
close initial conditions. Renormalizations are performed ev-
ery fixed timeAr or each time the distance between the two

3.0 T

J

20 -

0.0
-30000.0

-20000.0 -10000.0 o 0.0

FIG. 4. Surface-of-section plots corresponding to one of the
trajectories shown in Fig. 3.
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10° : : , The arbitrary functions, a;, anda, can be determined by
s using the equation
(a}
10" [rrtl et s aanant sswswsvaser o oy ceanrenes? © eraarrrs exd ds_ ﬁs+ IS 2 +f(t 2 &S_o 6
10% ¢ 3 Using Eq.(66) for S(q,p,t) in Eq. (67) gives, for the differ-
ent powers ofp,
10° »\\\ E 0a,
N ﬂ_ = 0, (683)
\(\\ q
10* T 4
\\\\\ — Z(c) da, N day : 68
,,,,,,,,,, e aq a7 (68b)
0.0 1000IOO.O 2OOOIOO.0 E 3000IOO.0
280+ B e fw’q+ ()] =0 (680
FIG. 5. Lyapunov exponents calculated for the same initial con- aq ot @ g+ f(a"]=0, ¢

ditions as those of the trajectories shown in Fig. & the renor-

malizations are performed every time the distance between the two 0 ) )

trajectories is 2.7 times the initial distance) (renormalizations are ot a;lw g+ f(t)g°]=0. (680
performed every fixed time, and) in the integrable case when

=0 is considered, renormalizations are performed every fixed timegne has four equations for three unknown quantities. The
_ o . _ L system is therefore overdetermined &(d|,p,t) defined by
trajectories is 2.7 times the distance between the initial CONEq. (66) can be a constant of motion only for a restricted set

ditions[21] (Fig. 5. This Lyapunov exponent is compared to of functionsf(t). A consequence of E4689 is that
the one obtained for the same initial conditions in a situation

where the problem is known to be_integralitbis occurs a,=a(t), (69)
when there is a magnetic field onlyE,=0 or a=0) (Fig.

5). The existence of chaotic trajectories proves that this syswherea;(t) is some time-dependent function. Inserting this
tem is not integrable. What we have just done is equivalenform for a, into Eq. (68b) we find that

to applying the present Liouville’'s theorem to the system .

defined by Eq(62); K is the only constant and no other one ay(Q.t) = — a0+ ay(V), (70

independent oK and in involution with it can be derived.  \yhere o, (t) is another time-dependent function. Then Eq.
(68¢) leads to
C. Integrability of time-dependent anharmonic oscillators

with quadratic anharmonicity 22 2 3 Ezz ) -
: : : ap(q,t) = ax0°q°+5a5f () 07+ 5= q°— a1q+ ag(t).
The motion of a charged particle described by the equa- 2

tion of an harmonic oscillator perturbed by a force quadratic (71)
in the position is considered. The anharmonicity is assume
to depend explicitly on time through a coefficiefi{t). The
equation is therefore

Einally, using Egs(70) and(71) in Eq. (68d and equating to
zero all the coefficients of the powers @f we obtain

4+ w2q+f(1)q2=0, (64) =0, (723
whereq is the radial position of the particle anrdthe con- artarw=0, (72h)
stant frequency of the field. This equation plays an important da
part in the field of the reversed-field pinch. It has already 32+4w2d2—2alf(t):0, (720
been extensively studid@2]. In this section, we look for a dt
first integral, which permits one to show that this problem is
integrable for a particular form df(t). d(aof ) n E a,f()=0 (720

Equation (64) can be derived from the one-degree-of- dt 272 ‘

freedom time-dependent Hamiltonian
As a consequence,
=1p2414,292+1 3 .
H(q'p’t) 2p 2@ q Sf(t)q ' (65) azon, al(t):Al COS&)t+A2 Sin (l)t, (73)

wherep=dg/dt. We seek a first integra(q,p,t) quadratic  \hereA,, A,, andA, are three arbitrary constants. Consi-
in the momentum and of the forfi23] deringA;=A,=0 in Eq.(73), Eq. (720 leads to

S(a,p,t)=ag(q,t) +as(q,t)p+ay(q,t)p?.  (66) ay(t)=K;+K; cos ot +Kj sin 2wt, (74)
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0.04 - — T in terms of quadratures. In this sense, we say that Liouville’s
P theorem can be applied in its usual way. This generalized
SPEIOUNRRELALE Liouville’s theorem was applied to three problems concern-

e N ing the motion of a charged patrticle.

First, the problem of relativistic motion of a charged par-
ticle in a constant homogeneous magnetic field and a trans-
verse rotating electric field has been studied. The integrabil-
ity of this problem was shown in two different ways.
Noether's theorem was used to find a constant of motion for
the system. Then a second integral was derived that is inde-
pendent of and in involution with the first one. This is suffi-
cient to prove the integrability as this problem has two de-
grees of freedom. Then, using canonical transformations, we
reduced it to a time-dependent one with a single degree of
freedom. This system has a constant of motion that is the one
q found previously by using Noether’'s theorem and expressed
) ) ) in the present variables. This was the second way to show
. FIG. 6. Surface-of-section plots for some trajectories wheny,4; this problem is integrable. We have also shown, by us-
q(0)=0. The functionf(t) is given by Eq.(75 with Ky=1, K2 1 two different methods, that this system can be solved by
=Ks=03, ande=05s". quadratures. It was proved in Sec. Il A that when a system
has a constant of motion, the solution can be expressed in
terms of quadratures. The second way consisted in deriving
an equation for the energy which is integrable. As the coor-
dinates were shown to be expressed under the form of
quadratures containing the energy, the solution can be given

One can conclude that whéift) is under the form defined " t_?rr]rélzeogo?]téa:ra'wcrae;én concerns the motion of an electron
by Eq.(75), there is a constant of motion, as all the functions, PP

ay, a;, anda, enteringS [Eq. (66)] are determined. As a in a constant homogeneous magnetic field and a transverse

consequence, this one-degree-of-freedom system is int tanding electromagnetic wave. The system was reduced to a

grable. Poincarenaps were performed drawing one point at wo-degrees-of-freedom problem. The *“nonintegrability”
each period of (t) defined by Eq(75) (Fig. 6. The distri- was proved by performing Poincasections and calculating

bution of the points is regular and this is in good agreemen{]onzero Lyapunov exponents. :
with the fact that the problem has a first integral and is The third application concerns the motion of a charged

integrable particle, which is described py the harmonic_—oscillator equa-
' tion perturbed by a quadratic term proportional to a time-
dependent functiofi(t). Deriving a first integral quadratic in

IV. CONCLUSIONS the momentum and using the present Liouville theorem, it
The theoretical part of this pap&ec. 1) is an attempt to  WaS shc_)wn that the problem is integrable for a certain class

define the vague notion of integrability for time-dependent©f functionsf(t).

Hamiltonian systems witm (n>1) degrees of freedom.

Even in the case of autonomous Hamiltonian systems this ACKNOWLEDGMENTS

notion covers several definitiongcomplete integrability

0.02

-0.02 \ el .- t_/" PR

-0.04 :
-0.20 -0.10

whereK;, K5, andK; are three arbitrary constants. The
solution of Eq.(72d) with Eq. (74) gives

f(t)=[K;+K, cos wt+Kjz sin 2wt] %2 (75)

. o N The authors wish to thank Professor H. R. Lewis and
[3:4,7.8, integrability by quadratures5,9-13 and Painleve Professor G. Laval for very valuable discussions and Profes-

integrability [24—26). It is clear that the problem is more sor P. G. L. Leach for a careful reading of the manuscript
difficult in the case of nonautonomous systems. The diffi- T '

culty arises in the way to transform back the properties found

in the extended phase space to the initial nhonautonomous APPENDIX

phase space. For this reason, in this paper the H_amiltonian in It is shown in this appendix that the distardig) between

the extended phase space has been carefully introduced g trajectories with close initial conditions is smaller than
the case of a time-dependent problem witegrees of free- {he corresponding distancB(7) in the extended phase
dom. What follows summarizes our main results. In this ex'space. The proof is given for a two-dimensional extended
tended phase space, when one hasdependent, possibly phase space, but it can be generalized easily to the case when

time-dependent, constants of motion in involution in thej; hasn degrees of freedom. In the case of two degrees of
original space, one hast+ 1 independent invariants in invo- feedom Eq(7) becomes

lution. This permits us to conclude that, in this case, the

system is completely integrable in the extended phase space.  H(q;,p;,d,,p,)=p,+H(d1,p1,49,) =constk.

Then first integrals allow us to solve the system by quadra- (A1)

tures and only a set of zero measure of the original space can

be filled by chaotic trajectories. It is shown explicitly, in the In this space the flow is parametrized by the timeWe
case of a one-dimensional problem, that if one has one inconsider two close trajectories 1 and 2 and we assume that
variant, one can derive a second one that gives the solutiatie two initial timesr; and 75, satisfy
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71=7,=0 (A2) D(7)=[a}(7)—ai(n)]*+[a5(7) ~ a3(7)]?
and, consequently, the two trajectories have the same time +[pi(7) — pa(7) P+ [p5(7) — p3(7)]?
T=T=1y. T2 — ol 12T a2 ) — pl 12
The initial conditions can be chosen arbitrarily on each [ax(7) = az(n 1"+ [pi(7) = pi()]
trajectory +[p3(7)—pa(7)1? (A11)
. _ _ . Before returning to the initial space we make the follow-
ax(0)=q', aqx0)=qgy, pi0)=pt, pi0)=py, ing remarks. According to Eq10) (Sec. Il B, one gets
(A3)  =1)
q2:’7'+|2. (A12)
2 _ A2 2 _~i2 2 _ A2 2 _ A2
q(0)=ar, d0)=az, pi0)=py, Pa(0)= p%A14) Moreover, by definition, we have
where the superscripts 1 and 2 stand for the number of the qp=t (A13)

trajectory and means initial. On each trajectory<£1,2) the
Hamiltonian is a constant and its valug is obtained by
introducing Eqs(A3) and(A4) into Eq.(Al). We decide to
set to zero the initial conditions

93(0)=g3(0)=0, p3(0)=p3(0)=0, (A5)

but the quantitiesj}(0), g2(0), p1(0), andp3(0) remain

arbitrary. Writing Hamilton’s equations in the extended

phase space, we find thdps/d and dp3/dr do not have
the same values at the initial time=0. It turns out, there-
fore, that the further evolutions @f; andp3 will differ and
at any timer we shall have

p3(7)# p3(7). (AB)

Let us examine now what happens ¢g(7) and g3(7).
Hamilton’s equations give

dop oM do?  JoH
&2—12 , &2—221, (A7)
dr  dp; dr  dp5
which lead to the obvious solutions
Ga(7)=7+Ky, 05(n)=7+Kjp, (A8)

whereK; andK, are two arbitrary constants. However, ac-

cording to Eq.A5), we must havé&;=K,=0 and one con-
cludes that

q3(7)=05(7)=1. (A9)

The initial distanceD (7=0) between the two trajectories is
D?(7=0)=[q3(0)—d1(0)]*+[p}(0)— p1(0)]?
(A10)

and at a timer, taking into consideration EqA9), it is

and, according to EqA9), we conclude that on each trajec-
tory |, ,=1,,=0. Consequently,
t=r. (A14)

One can point out that, obviously=0 corresponds tb =0.
Therefore, it follows from Eqs(A3) and (A4) that

q1(t=0)=0q:(7=0)=A,
P1(t=0)=p.(7=0)=5,

where A and 5 denote arbitrary values. On the other hand,
the equation

(A15)

(Al6)

dg; 4

at - apy H(gy,p1,t) (A17)

is the same as
dw_ oM _ 9, A18
dr - apy opy (d1,P1,02)- (A18)

We conclude thatqq(t)=q;(7) and, in the same way,
d2(t) =0az(7).

Let us give the initial distanceé(t=0) in the initial space.
We have

d2(t=0)=[g3(0)—q}(0)]?+[p%(0)— p1(0)]?
(A19)

and we deduce th@(7=0)=d(t=0). Moreover, at time,
we haved?®(t) =[qi(t) - q1(t) 1>+ [p3(t) — p3(t) ]°. Finally,
since qj()=qi(7), qi()=ai(n), pi(t)=pi(r), and
pa(t)=p3(7), it is obvious that D?(7)=d?(t)+[p3(7)
- p%(r)]zand we obtain the inequalities

d3(t)<D?(7), (A20)

Oorig= Text- (A21)

As the system is completely integrable in the extended phase
space o, cannot be positive, and the same is &qf;y. As

a consequence, there is no chaos in the initial time-dependent
system if no chaos arises in the extended phase space.
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