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Fine structure and complex exponents in power-law distributions from random maps
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Discrete scale invariand®SI) has been suggested recently in time-to-failure rupture, earthquake processes,
financial crashes, the fractal geometry of growth processes, and random systems. The main signature of DSI is
the presence of log-periodic oscillations correcting the usual power laws, corresponding to complex exponents.
Log-periodic structures are important because they reveal the presence of preferred scaling ratios of the
underlying physical processes. Here we present evidence of log periodicity overlaying the leading power-law
behavior of probability density distributions of affine random maps with parametric noise. The log periodicity
is due to intermittent amplifying multiplicative events. We quantify precisely the progressive smoothing of the
log-periodic structures as the randomness increases and find a large robustness. Our results provide useful
markers for the search of log periodicity in numerical and experimental (Bt863-651X98)00901-5

PACS numbdss): 02.50-r, 05.40:+j, 47.53+n

[. INTRODUCTION chy[1-8,10, (b) the diffusion in anisotropic quenched ran-
dom lattices in which the hierarchy is constructed dynami-

Complex critical exponents and complex fractal dimen-cally due to the probabilistic encounters with trd@9], (c)
sions until recently have been discussed only for hierarchicahtermittent amplification processg30], (d) cascades of ul-
systems, be they man made-8] or naturally occurring as in  traviolet instabilities as in rupture and growth processes
the mammalian bronchial tré®,10]. These hierarchical sys- [17,18, (e) nonlocal geometry21], and(f) quenched disor-
tems are characterized lnjscretescale invariancéDSI), a  dered systemf23-27. _ o o
notion qualitatively similar to the concept of “lacunarity.” A In regard to the second question, log-periodic oscillations
signature of this DSI is the presence of log-periodic oscilla-0f spin systems on a fractal amount to exceedingly small
tions correcting the usual power laws, correspondingoto-  effects, typically of the order of 1T in relative valug2,6].
plex exponents. In contrast, it is still not fully understood why log-periodic

Recently, their occurrence in irreversible ruptiitda—16  Structures seem to be many times stronger, of the order of
and growth processdd7,18 as well as prior to financial 10% or so, in rupture and growth processes. In addition, log
crashes[19,20 has been suggested. It has been proposegeriodicity implies a preferred scaling ratio that, in nature,
[21] that complex exponents are rather common and shoulghould be largely perturbed by disorder. Theoretical esti-
be looked for generically in any model whose critical prop-mates of the effect of disorder on the log-periodic corrections
erties are described by an underlying nonunitary field theoryindicate that they should be generally robi&t]. An impor-
This excludes the usual homogeneous spin systems in whidgnt practical question is how much disorder or noise will
the renormalization flow is a gradiefi22]. This includes make the log-periodic corrections too small to be observed.
models with nonlocal properties such as percolation and anEnsemble averaging is also an issue as finite-size effects
mals[21], polymers and their generalizations, models of ir-cause significant variations in the phase of the log-periodic
reversible growth processes such as ruptfild—16, oscillations. Averaging may cause them to disappear. This
diffusion-limited aggregationDLA) [17,18, and models Was observed in DLA clustersl7] in which single cluster
with quenched disorder such as spin glag®2%-27. See analysis uncovered the log-periodic structures while averag-

[28] for a review. ing procedures destroyed them.
Three outstanding problems remain. In order to address these questions on the effect of disor-
(i) Do we know all the physical mechanisms that cander, we study a simple, positive, random map with paramet-
produce complex critical exponents? ric noise

(i) How strong are the log-periodic structures and how
robust are they with respect to noise and disorder?

(iii) Does there exist a smooth invariant probability distri-
bution (having a densityor is it discrete?

With respect to the first question, six situations have beeiThe growth ratea; and the additional terr, are assumed to
discussed(a) the presence of a built-in geometrical hierar- be pairs of positive identically distributed random values

Xt+1:atxt+ bt W|th a.t ,bt>0. (1)
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with the joint distribution functiorP, , . In most of the cases €ry, or from migration from adjoining reservoif86]. The
treated below, we assume that and b, are independent, random map(1) can also be applied to other problems of
which yieldsP, p=P,P, . population dynamics, epidemics, investment portfolio
It may seem that the linear modg) is so simple that it growth, and immigration across national bordg3§]. Varia-
does not require a careful mathematical investigation. This i§ons of this model have been proposed recently for the
not the case however, as the rather extensive mathematicainalysis of crop control in the presence of weed infestion
analysis of the problem ifi33] indicates. We will show a [37]. Models of economic evolution typically involve a sys-
very unusual behavior of solutions of the difference equatioriem of affine coupled equations of the typ20) below,
(1). It is known[33] that, provided some regularity assump- Which are multidimensional generalizations of E). For
tions hold and the average rate of growthao is negati\/e, I_nstance, the eqonor_nlc model of Keynes n It_S S|rr_1plest_ form
the time serie¥, is stationary. Furthermor, is character- links consumption, investment, and production in a linear

ized statistically by a probability distribution function with a affine system of deterministic equations. The systéify
power-law tail corresponds to a generalization in which the coefficients of

the autoregression are allowed to fluctuate in time to account
Py(X)~x~ Lm0 (2)  for uncertainty. More generally, models used in economet-
rics [38] are very similar to Eqs(1) and (10), even if they
when the equation fog, usually assume constant coefficients.
It is probably true that Eq.) is one of the simpledinear
(a*y=1, (3)  stochastic equations that can provide an alternative modeling
strategy for describing complex time series. We note that a
has a positive solutiof31—36. _nonlinear ver_sic_Jn with a qua_dratic nonlinear_(t;prre_sponq-
The power-law distribution function stems from an inter- ing to the logistic equation with random multiplicative ndise
mittent and transient amplification occurring when severap@s been shown recently to lead to a different type of crisis in
successive, are larger than 1. Its origin is thus in the classthat there is a sudden qualitative change in the chaotic dy-
of intermittent amplification§30] and intermittent trapping namical behavior induced by variations of the parameters
[29] mechanisms. We may therefore expect complex-valuet39- We do not discuss these properties, but restrict our
« exponents. This should lead to the occurrence of deteconsiderations to the affine random m@p.
able log-periodic corrections in the leading simple power-
law behavior. Il. RESULTS ON THE KESTEN AFFINE RANDOM MAP
We are concerned here with the continuity or discreteness
of this distribution function and with the strength and detec-
tion of the potential log-periodic corrections, especially as a The formal solution of Eq(1) for N>1 reads
function of the distributionsP, and P,. Intuitively, the
broader these distributions are, the weaker we expect the X _(
log-periodic corrections to be since a log periodicity is the N
signature of a favored scaling ratio. This preference must
disappear as the disorder increases. We aim to carefullyhere we defindl}_%a;, n=1 for the special valu¢=N
qua_ntify_this scenario, for the benefit of future analysis of log— 1 . |t is clear that thé‘[{“;olam multipliers of Eq.(4) con-
periodicity. trol the X, dynamics. Thu, y diverges(remains bounded

In Secs. Il and I1l, we recall useful information, discuss aif the average logarithmic growth factdina,) is positive
connection with products of random matrices and iteratednegative. Here we focus our attention on the case

function systems, and review the so-called transition opera-

tor approach determining the probability density function (Ina;)<0. (5)
(PDP P(X). We then discuss the case in whightake only

two values 14 anda‘ with probability p and 1—p, respec- In this regime, we notice the role df;, which provides a
tively, wherea>1 and £>0, first in the case of a fixed  reinjectionmechanisni34] allowing X; to fluctuate without
=1 and then with increasingly widening, distributions. converging to zero, as it would B; vanished.

We then analyze the case in whiahis broadly distributed

and discuss the detection criteria for the log-periodic correc- B. Product of random matrices

tions.

A. Formal solution

N—-1

H Ai+
=0

N—-1 N—-1
Xe+ > by I agem, @
=0 m=l+1

In addition to the present focus as a paradigm for systems The ”.‘ap(l) can be written as a product of random 2
exhibiting complex exponents, this random nfaphas been <2 Mmatrices
introduced in various contexts, for instance, in the physical X a b\/X

modeling of one-dimensional disordered systei@s] and ( ”l) e t)( t), 6)
the statistical representation of financial time sef8%. The 1 0 1/\1
variableX; is known in probability theory as a Kesten vari- ,
able[33]. The map(1) describes, for instance, the time evo- BY Furstenberg’s theorem, the notf||(~ X for largeX)
lution of a fish populatiorX, with a, depending on the rate of ©f thetth vector
reproduction and on the depletion rate due to fishing as well

as environmental conditions afi describing the input due v =(Xt) @
to restocking from an external source, such as a fish hatch- 1
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grows ag40] a one-dimensional IFS. Then the Lipschitz constanis
ot equal to thath valuea; thata, can take. Conditiofi12) then
Vil [ =1 Vol €M, (8 becomes the familiar

where\ ; is the largest Lyapunov exponent of the product of N
the random matrices. TheX2 matrices are triangular and > pilnaj=(Ina)<0. (13
thus =1

A 1=max(Ina,),0}. (9 This retrieves the regim) discussed above. Usually, IFSs

. . are studied in situations where all the affine transformations
We recover the exponential growth regime X for (Ina)  nave their Lipschitz constant individually negative, i.e., all
>0. In the reverse cagéna,)<0, the Lyapunov exponentis e contractive. The present wawkhereD = 1) deals with a
zero, which corresponds to the marginal case between expesiher special but very interesting situation where some of

nential growth and exponential decay. This is the regimgnem are dilating, while on average the set of transformations
where one usually encounters power-law behavior, for inig congractive. This correspondence and the discovery that
stance, in power-law sensitivity to initial conditions in dy- o \er-law distributions are found when some of the trans-
namical systems at the onset of ch@4g]. formations of the IFS are dilating suggests to us an investi-

_Itis worth noticing that this zero Lyapunov exponent isfgation of the behavior of similar intermittent dilating IFS in
different from the directly measured Lyapunov exponent ofhigher dimensions, where rotations are added to the transla-

Eq. (1). Indeed, the solutiort4) shows that a pehrltfjlrbation tion and dilation processes. This is left for future work. Here
oX; at time t gives an eror oXy n=0Xdlj-r a1 we will next use the correspondence with IFS to understand

~eN"D"3 This corresponds to megativeLyapunov ex-  intuitively the fractal structures found when tlg take a
ponent for the case studied hef®, equal to(Ina). This  finite number of values.

would lead one to conclude that the dynamics is trivial. Gen-
erally speaking, the widespread opinion in the physical com-
munity that notions such as chaos have some strict corre-
spondence to the positivity of Lyapunov exponents is not CallingP,, Py, andPy  the PDFs ofa;, by, and
quite correct. See, for example, the detailed discusssion of,_ ,, respectively(and assuming that they are integrable
nonchaotic dynamical systems with positive Lyapunov expofunctiong, then the PDF ofX; (obtained by the standard
nents and vice versa, and further referencegt8)44. Here  Markov argumentobeys the equation

the usual calculation of the Lyapunov exponent is not sensi-

tive to the “reinjection” mechanism introduced by thg [ * *

term. By construction, the matrix formulatia) takes this PX:+1(X)_ J'_OOPat(a)daf_wPbt(b)dbf_wpxt(Y)

effect into account. The resulting vanishing Lyapunov expo-

nent alerts us to the possibility of complex behavior. X §(X—aY—b)dY (14

D. Probability density function

C. lterated function system or

We also mention the relationship with iterated function . P.(a) .
systemg(IFS9, which are defined as followg}5]. One first Py (X):J a daf Py ()P
defines an affine transformatiofl from RP to RP: 1 —w A —w t

db.
(15

a

W[ x]=Ax+D, (10

The two PDFSPXI and PX1+1 approach a common stationary
PDF P(X) for larget [34,35. We are interested in the de-
scription of the tail of P(X), i.e., for X>b. We can then
neglect theb term of Py ((X—b)/a) on the right-hand side

whereA is aDx D matrix andb a vector inRP. An affine
transformation is contractive if there exists a Lipschitz con-
stants<<1 such that

[W[X]—W[y]|<s|x—Y]|. (1)  of Eq. (15). This allows us to simplify Eq(15) into
An IFS consists oN affine transformation¥V; and a set of = Pa(@) (X
probabilitiesp; >0 with =]\, p;= 1. Starting with a given set P(X)= f P a da for large X, (16)

of points, the IFS code consists in applying to it an infinite
sequence of transformations, each of them being chosen with . . .
its corresponding probability. In general, IFS codes satisiSiNg S ~Py (D) db=1. Since Eq.(16) is linear in P(X),

the average contractive condition the general solution can be written as a sum over a set of
particular solutiond31]. These solutions are composed of
si’lsgz- . -s,ﬂ“<1. (12 power laws and faster decaying functigiesponential func-

tions). The set of power-law solutions is obtained by assum-
TakingD=1, we see that Eq10) is the same as Eq1), ing the formP(X)~X~(*#) for X>1. This yields Eq.(3)
whereN is the number of different values taken by (sup-  determining the exponent.
pose for simplicity thab; is constant with their respective The inequality(5) and Eq.(3) are the cornerstones of our
probabilitiesp; . In other words, the affine random mép is  analysis. We construct and analyze several examples whose



57 FINE STRUCTURE AND COMPLEX EXPONENTS IN ... 123

parameters are constrained by E8). and we study the so- Ph(x)=h(x) for anyxe[0,1]. To proceed further, we need
lutions of Eq.(3) and compare them with direct numerical to estimate the variation of the image of théunction. The

simulations. variation of a function is, roughly speaking, an integral of the
modulus of the derivative of the function over its domain. In
IIl. TRANSITION OPERATOR APPROACH the case of monotonic functions, it can be shown that

One of the obstacles in the implementation of the ap-

proach in the preceding section is that we need to assume Var(ph)zvar(h)E & (23
that all the considered distributions have densities, which is T
not the case with at least some of our examples. To study a .
more general situation, let us consider the so-called transitioAccording to Eq.(12), we note that
operator approach.
Pic
A. Transition operator approach and nonsmooth distributions 1_.[ 3 L (24)
According to our definitions, Eq(l) defines a Markov ] )
chain. We can define the transition operd®af this random ~ Which yields
process as
p.
x—b > =L (25)
P = [ 0 *22)aPapab) it " &

Therefore, each time we apply the transition operator, the
variation of the image of a function is multiplied by the
factor=;(p; /a;)>1. Hence the limit distributiofif it exists)
cannot be a function of bounded variation.

A special case was treated[iB1] with a finite system of

for any integrable functiorh. This operator describes the
image of a distribution density under the action of our ran
dom process. If an invariant probability densRyexists it
should satisfy

PP=P. (18) random maps producing a discrete invariant distribution:
The introduction of Eq(17) is justified by the fact that this x—1  with probability p, (26)
integral operator allows for the study of nonsmooth and even
discontinuous distributions. x—ax+1 with probability 1—p. (27

Consider a simple implementation of a random selection
scheme. Assume that<0a;<1<a,, 0<b,;, and 0<b, In this case, it is easy to find the invariant distribution ana-
for the two maps lytically. However, since the first map has a zero value of the
multiplier a, the system does not satify our assumptions that

X—a1x+Dby, (19 Il coefficients should be positive.
X—aoX+b 20
2 2 20 B. Existence of the PDF for the case of the smooth
such that Eq(19) is chosen with probabilityp, while Eqg. distribution of coefficients
(20) is chosen with probability +p. The corresponding In this subsection we study a more general case, where we

joint distribution P, , for the random variablea; andb; is  have a random map— ax+ b with random coefficienta, b,
singular. Furthermore, these two random variables heavilynose joint probability distribution i®(a,b). The case con-
depend on each other. Therefore, Ef5) cannot be used gjgered above corresponds to the discrete distribution
directly. However, it is trivial to specify the corresponding p(a ). Our main aim here is to prove that if the distribution
transition operator P(a,b) has a densityp(a,b) with “good enough” proper-

x—b 1— X ties, then the random map system also has a finite invariant
Ph(x)= Bh( 1+ ph 2) (21)  density. Indeed, consider the corresponding transition opera-
a 1 a tor
Moreover, this description is easily generalized to the case p(a,b) (x—b
with an arbitrary (albeit finite number of linear maps Ph(x)=f f a h(T>dadb (28

x—a;X+b;, where each is selected with the probability

(provided=;p;=1), After the change of variables= x—b this operator becomes

22 ~
(22 Ph(x)z_ffp(a,: é)h(g

The representatio(22) shows that our random system lacks

a smooth(and even boundeédinvariant density for any Assume now that

choice of the positive coefficients andb; . Assume on the

contrary that such a PDR(x) exists. This has to satisfy val, p(a,b)s=C<w (30

Ph(x)=2, gh

X—bi
a;

dadé. (29
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for any a>0, where vaggp(a,b) stands for the variation of 1501 T T T T
the p(a,b) function with respect to the second variable. Us-
ing the above representation, we find that

var(Ph)sf J§h<§)dadgch fh E
=C(j h(x)dx)f da. (31

a
Sinceh is assumed to be the density of a probability distri-
bution, thenfh(x)dx is finite. This shows that the variation
of Ph is universally bounded from above. The existence of

100

3

a

d da

the invariant distributior{33] then proves the existence of 0 1000 2000 3000 4000 5000
the PDF. d
FIG. 1. X; history for a, with a two-point distribution ata
C. Markov-dependent choice of the subsequent map =2, ¢=2, p=0.95, andb,=1.

Our earlier discussion of random map systems assumed
that the choice of a subsequent meap-a;x+b; does not
depend on the immediately antecedent map chosen. This is@ondition(S) imposes the requirement
relatively strong restriction and in this section we shall show
that this assumption is not necessary. We will show that, for &
the stationary process, the representation of the transition 1T§< p<1 (35
operator depends only on the stationary probabilities of the
random choiceg; and not on the transition probabilities and Eq.(3) leads to
between subsequent maps.

Assume that currently the map—a;x+b; was chosen; (1—-p)z2t*é—z+p=0, (36)
then the conditional probability to choose the map a;x n i
+b; is equal top;;. The process of the random choice is wherez=a* andz is complex.
governed by the finite state Markov chain with the transition
probabilities ;;). Assume that this Markov chain is ergodic A. § integer
and denote by; its unique invariant distribution. Then our At first take ¢=1; then from Eq(35) we see thap must
entire system is still a Markov chain, whose transition operape within 2<p<1. The tworeal solutions of Eq.(36) are

P(X)=paP(aX)+(1—p)a ¢P(a ¢X). (34)

tor is z.=(1=\A)/2(1—p), whereA=1—4p(1—p)=0. From
b [x—b the definitonz=a* (and €?""=1 for any integem), we
Ph(x)=2>, pi[z p|—2 obtain
i 8 a;
1 b b ig ez 2 (37)
1 [x=b o~ Py [Xxh; M= n=HRT I = I
_; ajh a Z p,p”—; ajh a |
32 The PDF ofX; is thus of the form
It depends only on the stationary probabilitigs As a re- _ Csn
sult, we immediately see that all asymptotic properties also P(Xy) izn X£1+MR)C03M||nXt). (38)

depend only on the choice @ . The generalization of our
argument for the general case where the joint distribution offhe preferred scaling ratios are obtained by the factods; of
the coefficienta andb may have both discrete and continu- reproducing the same values of the cosine, a&", with n

ous components is straightforward. an integer. The discrete scale invariance is simply the result
of the intermittent amplification by the fixed factar The
IV. TWO-POINT DISTRIBUTIONS log periodicity is thus trivially associated with the discrete
) ] multiplicative structure.
Let us return now to the question about the asympt@isc When £=2, threereal z solutions exist forz for the al-

x—o0) properties of the PDF for the case of only two linear |\ved range2 <p<1. The imaginary part of thus stems

maps. The above derivations show that these asymptoticom the same technical reason as for 1 and reflects the
properties do not depend on the choice of the additionaj,iermittent amplification by the facta?.

termsb; (as long as they are nonzero and well behaveet In general, ifé=N is a positive integer, Eq(36) obeys

a>1, 0<p<l, £>0 (33 (1-p)Z*i-z+p=0 & (z-1)Qu(zp)=0,
39
such thata;=1/a<1 and a,=a‘>1. Equation(16) be- (39

comes where
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FIG. 2. Cumulative distribution of the f0argest iterates among
10 realized fora, with a two-point distribution ata=2, p
=0.95, andb,=1.

N
Qu(zp)=(1— p)k; Z—p. (40)

The root structure oQy(z;p) =0 for Rez>0 is determined
with, e.g., Routh’s algorithni41]. It can be shown that for
N<5 this polynomial has only one root with Re0 and
that Imz=0 for this single root. However, foN=5 there
always exist roots such that Re0 and Inz#0.

To illustrate the integeé regime, Fig. 1 shows a segment
of the X, history for the casa=2, &=2, p=0.95,and a
constantb,=1. Most iterates are small, while rare intermit-
tent excursions explore very large values. Thamerically
obtained cumulative distribution is shown in the log-log plot

of Fig. 2. A complex structure, reminiscent of a devil’s stair-
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108 -

scaled PDF

1 10 100

X

13

1000 10000

FIG. 4. Scaled PDF oX; given by Eq.(1) for a; with a two-
point distribution ata=2, ¢=2, p=0.95, andb; uniform with
(a) 1x PDF andB= 22(10° iterates, 10 equispaced bins per unit of
logX,), (b) 10°x PDF andB=4 [10° iterates, 18 equispaced bins
per unit of log¥,, the same forc) and (d)], (c) 10°x PDF andp
=1 and(d) 10°x PDF andB=0.

eral encode stochastic fractal structufds§]). We also ob-

case, overlays an average linear decay. The structure corrgerve that the distribution seems to be nowhere continuous,

sponds to all possible values ofin the imaginary part37)
of the exponenj, where the largest provide the smallest

as expected from the derivation in Sec. Il A.
It is interesting to progressively coarse grain this self-

details of the cumulative distribution. Figure 3 shows theSimilar structure by introducing a disorder dm. This is

(numerically obtainedPDF, i.e., the derivative of Fig. 2. We

accomplished by chosing, uniformly in the interval 8,1].

observe a self-similar structure, as expected from the correthe values=1 recovers the ordered calsg=1. Decreasing

spondence with the IFSs discussed in Sec. (IFSs in gen-

100 " T T T
102 O )

104

e8
a
~

1081

1078 . s
1 10 100
X

t

1000 10000

FIG. 3. The(numerically obtainedPDF fora, with a two-point
distribution ata=2, ¢=2, p=0.95, andb,=1 (108 iterates,
10* equispaced bins per unit of I¥). Note that log means lgg
throughout.

B corresponds to increasing the disorder. Figure 4 shows the

PDF P(X,) for decreasing valueg8=3},%,%,0 (while keep-

ing a=2, ¢=2, andp=0.95). The roots of Eq(36) are
20:1 and Zi:(_li \/7—7)/2, or ,LLROZO, M0
:n(27T/|n2), ,U,R+%19588, Mi+= M0, /.LR,~25890,

and u,_ = (1+2n)(/In2) for integern.
The “frequency” of a log-periodic oscillation is defined

by

mn) 1

F(m= 2mlog” In\’

(41)

where we defina as the scaling ratio associated with the log
periodicity [13,21. Here f(1)y=f(1),~3.3219, f(0)_
~1.6609, and (1) _~4.9828. These numbers are compared
with the spectrum analysis of the tail portion of the PDF. We
use the logarithmic derivative of th@=0 PDF of Fig. 4 to
get a data with zero average slofies average value is the
leading power-law exponentThis is represented in Fig.
5(a). Its Lomb periodogram spectrufd6] is shown in Fig.
5(b) and yields four frequencies 0.6, 1.6, 3.3, and 5.0. The
smallest of these is attributed to the inverse of (log) tail
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FIG. 5. (a) Logarithmic derivative of a portion of the PDF tail : .
for the upper B=0) trace in Fig. 4(b) Lomb periodogram ofa). 1080 it it ARG
1 10 100 1000 10000
length used. The others are in good agreement with the pre: X,

dictionsf(0)_,f(1).,f(1)_ in ascending order. The small,

partially hidden, bump at 2.1 and the more recognizable onng'Gg'_Gé éa) E?'(:) ;gr Z;dvt\)litf 1a (%;)}E":ri;:egisltgbelgﬁgp:éaed
at 4.3 are of unknown origin. o STma BT vt ’

bins per unit of lo¥,). (b) Scaled PDFs fom, with a two-point
distribution ata=2, ¢=2.5, p=0.95, ,8:%55 (lower trace, 1
B. £ noninteger X PDF), andB8=0 (upper trace, 1)< PDF). Both are with 19

We have shown that for integer=5 there will always I'terates and Toequispaced bins per unit of dg
exist some roots of Eq36) with nonzero imaginary and g and ga)], the logarithmic derivative is computéig.
positive real parts. This type of root structure is common for7(b), 8(b), and 9b)]. This gives a local estimate of the lead-
nonintegeré. If £ is irrational, then an infinite number of ing exponent of the power-law tail of the PDF. A constant
distinct roots solve Eq(36). We select the slightly simpler y41ye would correspond to a pure power law. Oscillations
case§=2.5 (with a=2 andp=0.95 as before _ that are approximately periodic in [¥gare the signatures of
_ In Fig. 6@ the PDF forb,=1 is given for the 1first e |0g periodicity. This is confirmed by a spectral analysis
iterates of Eq(1) with a binning density of 1D points per given in Figs. Tc), 8(c), and 9c) of the signals shown in
decade. Figure (B) shows the PDF for a uniformly distrib- Figs 7b), 8(b), and 4b), respectively, using the Lomb pe-

utedby with 5= I (lower tracg and the scaled PDRIDPEr  rigdogram techniqug46]. We clearly identify a number of
trace, 18X PDF) for =0, i.e.,b; uniformly distributed be- frequencies.

tween 0 and 1. These two PDFs use the first it€rates of We compare these numerical results with a direct analyti-
Eq. (1) with a log-equidistant binning of £0points per de-  ¢al determination of the roots of Eq&) and(36). The com-
cade. plex u solutions are sought wheee=a*=e*""Y. These are

As already pointed out in Sec. Ill B, a continudoisdis-  the roots of
tribution seems to lead to a continuous PDF ¥r The
analysis above neglected the influence of a varyipgWe R(X,y;&p) +iJ(X,y;€,p)=0, (42
resort to a limit consideration on a sequence of progressiveléllv
thinned, uniform,b, distributions to match theory with the Where
present simulation results. We select the three cades R(x y:¢ p)=(1—p)ett*cod(1+&)y]—e* cosy+p,

=0,2,{. For each of these tail regions of the P[¥Frg. 7(a), (43
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FIG. 7. (a) PDF talil for a, with a two-point distribution a@ FIG. 8. PDF tail fora, with a two-point d;stribution ata
=2, ¢=25, p=0.95, andb, uniform with =0 (10 iterates, =2, £=2.5, p=0.95, andb, uniform with =7 (10° iterates,
10% equispaced bins per unit of I¥g). (b) Its logarithmic deriva- 10° equispaced bins per unit of ¥ (a). (b) Its logarithmic de-
tive. (c) Lomb periodogram ofb). rivative. (c) Lomb periodogram ofb).
Iy €,p)=(1-p)et*sin (1+£)y]—e* siny. L sin(l+¢&)y
(44) e=p (46)

sinéy
The zeros of Eqs(43) and (44) define nodal curves in the
x-y plane. The solutionsx(y) are the intersections of these This shows that the values rfare bounded from above by a
nodal curves. Whei is rationalé=M/N, whereM andN finite number. An unboundexi would, from Eq.(46), corre-
are the smallest relative prime positive integers, we see th&pond to a vanishing sigly. This would imply that¢y
the set of solutions is periodic in thyedirection with a period =nw for some integern and therefore that sind)y

27N. Egs.(43) and (44) are converted into =(—1)" siny. Using Eq.(45) we would obtain (I p)e®
) =1(n odd is not alloweyl leading to a contradiction. This

(1- p)efr= siny (45) implies that there is a maximum value fag . Table | gives

sin(1+¢)y’ the five solutions X,,,Yn), indexed bym=1-5. For a given
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-2 TABLE 1. All roots x,y, and the first fewu = ug+iu, roots
(here a*=¢e**") of Egs. (43) and (44) for a, with a two-point
SE distribution ata=2, £=2.5, andp=0.95.
4- m 1 2 3 4 5
5 °F x(m) 103 128 119 119 128
E“ 6— y(m) 0.0 2.56 491 7.66 10.06
- wr(m) 1.47 1.85 1.72 1.72 1.85
3 w(m,n=0) 0.0 3.69 7.08 11.04  14.43
w(mn=1) 18.13 2182 2521 2918 3257
'8;' w(m,n=2) 36.26 39.95 4534 4731  50.69
-9k : w(m,n=3) 5439 58.08 6147 6543  68.82
00 05 10 15 20 25 30 35
log X,
100 : : . . : : The leading power-law behavior is given by the finst=1

b1 real solution, which has the smallgst= ug(1)~1.47 [with
] 1(1,0)=0]. The other solutions have largerg and thus

correspond to subleading corrections. We define the “gap”
as the smallest difference between the real parts of the com-
plex solutions to the first real solution. This gap measures the
strength of the subleading log-periodic corrections to the
leading power-law behavior. In the present situation, all
ur(m) take two values=1.72 and~1.85, which are close to
50k ] ur(1). The gap isapproximately 0.25. This corresponds to

[ T strong corrections to the leading scaling for which the log-

- periodic oscillations are very visible. Notice that, asymptoti-
-100L . L s s L L ] cally, the oscillations disappear fof;—o, as ug(m>1)
00 05 10 15 20 25 30 35 > ugr(1). This effect is very weak in the present case since
the relative amplitude of the dominant log-periodic oscilla-
R e tions decays a¥, °2°.
I ] Table Il gives the observed frequencies obtained by the
150 . spectral analysis of Figs.(@), 8(c), and 9c) and compares
[ ] them with the predicted values. This contains the different

(%2
[=]

—T T
1

dlog ( PDF )/d log X,
=)
I

£

g [ ] cases with increased disorder on the variable Here a

-§ 100}k i slight generalization of frequency is usedf(m,n)

5 [ ] =u,(mn)/27 and F(M)=f(M+1-5n,n=[M/5]). In-

a creasing the disorder in the varialtte increases the noise

§ sol- level and progressively washes out the higher frequencies.
[ /m J\IWM/\MN V. TWO-LEVEL “STAIRCASE” DISTRIBUTION
ol — Jj\ L We now study a situation with a much larger disorder
0 2 4 6 8 10 12

where the multiplicative factors; are selected from a broad,
continuous, distribution. To minimize the number of control
FIG. 9. (a) PDF tail for a; with a two-point distribution a@ parameters for the PDFs, we u'se distr!butions th_at are F:on—
=2, ¢=2.5, p=0.95, ancb, uniform with =1 (10 iterates, stlant.by parts. In Sgg. VI we will examine 'Fhe uniform dis-
10® equispaced bins per unit of 1¥g. (b) Its logarithmic deriva- F”bUt'on- Here we divide the mterv@ll/a,af] Into two sub-
tive. (c) Lomb periodogram ofb). intervals[1/a,1] and[1,a¢] having different weightg and
1—p, respectively. The idea is to allow for a different weight
m, we also extract the few first solutions obtained by 4 of the damping versus amplificating processes and examine
periOdiC repetitions in th@/ direction. These solutions are the consequence on the amp"tude of the |Og-periodic struc-

indexed by an additional integarcorresponding to the order yres. This choice corresponds to the following PDFdpr
of the 44 period. We give these solutions in the; and u,

parameter space. The Appendix provides an approximate but

frequency

p
quite accurate analytical determination of the solutions found Pa(a)=7——7>7[0(a;—1/a)—-0(a;—1)]
A= . t 1-1/a
in this table, based on a perturbative scheme.
The PDF ofX; is thus a sum of power laws overlayed by 1-p
log-periodic oscillations of the type +torple@—1)- O(a—a], (48

C
P(X,) = %cos{u,(m,n)lnxt]. (47)  where® is the Heaviside function. The stationarity condition

t (5) that(Ina,)<0 reads
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TABLE II. Predicted and observed frequencjebtained by spectral analysis of Figcy, 8(c), and 9c)].
The increased disorder on the variableis noted with the differen subscript. TheF(M) labeled row
contains the predicted frequencies, whereasg@hsubscripted rows list the frequencies retrieved from the
numerical realizations. Thbold type is used to indicate the frequency that gives the largest peak in the
spectrum window, whereas the other well-defined peaks are given in standard type. The parentheses enclosed
values correspond to spectrum peaks that barely are above the noise level of the Lomb periodgram.

M 1 2 3 4 5 6 7 8 9 10
F(M) 1.35 2.60 4.05 5.29 6.64 8.00 9.24 10.69 11.93 13.29
Fa—76(M) 413 525 663 (7.83 9.13 11.96 13.25
Fs—3a(M) (133 (253 4.08 525 6.65 (7.84 9.12 1077 11.92 13.30
Fs—o(M) 1.31 2.64 4.08 (6.69

p(a,&)<p<1, (49)

where

at(élna—1)+1

p(a,&)= at(¢éna—1)+1+8(a,é)
_ at—1
with &8(a,&)= oy (a+1-1Ina). (50)
The integral equatiofil6) is now
p| X p| 2
pox)= 2P [* ;td Ll a
X)=3-1 e 3 AT io1), Ta, O

(51)

This equation has a power-law solution for largeif the
exponentu satisfies Eq(3), leading to

1-p

1 (asf(#+1)_ 1).

(52

ap
= (1—g (m»t1
ntl a_l(l a )+

Assuming a complex solutiom= ug+iu, splits Eq.(52)
into

20- T T T TTOITET T

15;\ L ;

= 10F

e
S —— :
0- (W4 g ‘_—I 1 1 1

0 1 2 3 4 5 6

FIG. 10. Portion of the complex. plane with rootsu= ug

+iu, of Eq. (52) (for a, with a two-level staircase distribution at w,(m)

a=2,
(solid lineg and imaginary partdashed lines

£=2.5, andp=0.95) as intersections between its real part f(m)

a
urt1= o [1-a U Voog uina)]

D radtert Doog guylna) — 1],

+ -1 (53
ap _ .
p=g—ga R Vsin(uIna)
1_ p 1 .
+ mag(MR+ )sin(£u,Ina). (54)

To allow for a comparison with the previous case, we keep
the same parametess=2, ¢=2.5, andp=0.95 as before.
The solutions of these equations are graphically represented
as the intersections of the continuous and dashed lines in Fig.

10 [here p(2.0,2.5)~0.782 6§. Table Il lists the smallest
roots and their corresponding log-periodic frequencies
[f(m)= w (m)/2m].

An important difference with the previous two-point PDF
is that now the gap value igr(2)— ur(1)=0.84, which is
about three times larger than before. This means that the
log-periodic structures are smaller and decay faster for large
X. They are still quite visible as found in Fig. 11, where we
can observe the undulation &(X)’s tail. The results ob-
tained for the varioud, distributions (from a nonrandom
b;=1 to a uniformb; with B=0) are essentially the same
for X=3. The only difference is that a larger disorderbin
allows for an exploration of the interval closer to 0.

The Lomb power spectrum analysis is presented in Fig.
12. The fundamental frequencf(2)~1.59, is visible in all
the simulations and more clearly in the spectral analysis
where a strong peak appears in the Lomb power spectrum.
The next higher frequenci(3)~3.0 is the only one that can
be detected as the disorder I increases. All higher fre-
guencies are lost in the noise. The reason for this is clear.

TABLE Ill. First few u=ug+iu, roots of Egs.(53) and (54)
and predicted log-periodic frequencies &rwith a two-level stair-
case distribution ada=2, £=2.5, andp=0.95.

m 1 2 3 4 5 6
pur(m) 1.6535 2.4918 2.8418 3.0389 3.2015 3.3179
0.0000 4.3475 8.0152 11.6794 15.3255 18.9598
0.0000 1.5932 2.9373 4.2801 5.6163 6.9482
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FIG. 11. PDF for the case where the PDFagfhas a two-level X
staircase structure ab=2, &=2.5, and p=0.95, with b, 1.0F
=1 (1@ iterates, 18 equispaced bins per unit of Ixg. N [
S 15
The relative amplitude of a given frequentfm) is quanti- ﬁ Y
fied by ur(m)— ur(1). For thesecond frequency we have a _2_03
ur(3)— ur(1)=1.19. For the third frequency we have & [
ur(4)—ur(1)=1.39 and so on. It seems that a difference % .
. & -25
ur(m)—ugr(1) of the order or less than 1 is necessary for = [
the clear detection of log periodicity. Intuitively, this ensures 3 03
that the amplitude of the oscillations does not decay more “r
than by a factor 100 over two decades. We notice that a 35}
similar gap about 1 was found in the analysis of the log- 0.
periodic structure of DLA clusterfsl 7]. The present analysis
rationalizes why we have been able to detect these structures
in this case. Table IV makes the comparison between the 250:
predicted and observed frequencies. i
We conclude that a log-periodic structure of the tail of the 200
X's PDF is present for the smeared out two-level staircase £ [
distribution, although its amplitude is weakened compared to 2 150l
the previous two-point distribution case. This was expected 3 i
from the theoretical analysis of the influence of disorder g [
[21,17). The important aspect of our result is that the log 2 100
periodicity and the preferred scaling ratiescan no longer 9 [
be associated with a specifically chosen amplification factor sok
as they are for the previous two-point distribution. Notwith- [
standing the presence of a large disorder, a discrete set of

effective scaling factors are selected. It is amazing to us how
strong this effect is and how relatively weak the influence of

the disorder is.

VI. UNIFORM DISTRIBUTION

frequency

FIG. 12. (a) Tail portion of the PDF in Fig. 11(b) Logarithmic
derivative of(a). (c) Lomb periodogram ofb).

This section deals with the effects of a very strong disor-a,(a,) is such that Eq(5) is obeyed and is the solution of

der ona;. To attain this goal, we consider a uniform
distribution

O(a;—a)—0(a;—a,
P (2= 2 al—a,(t )

, (59

where

O=a<1, (56)

1<a,<a/(a). (57)

a(a)na,(a)—a,(a)=alna—a. (58

Figure 13 shows the alloweal-a, region.

The largest width compatible with E¢) corresponds to
a,=0 anda,=e. Whena, is made larger, the maximum
value ofa, progressively decays towards 1.

The integral equatiofil6) is

X
pl 2
a;

1 fa
P(X)=ar_a|J:I . da,. (59)
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TABLE IV. Predicted and observed frequencies fgrwith a TABLE V. First few w=ug+ipu, roots of Eqs.(61) and (62)
two-level staircase distribution &=2, ¢=2.5, p=0.95, and and the predicted log-periodic frequencies for the uniformly distrib-
two different choices fob, distribution. The first row contains the uteda; with a,=0.001 anda,=1.9.
predicted frequencies. Subsequent rows are the frequencies re=
trieved from the numerical simulations. Theld emphasis indi- m 1 2 3 4 5
cates the frequency that gives the largest peak in the spectrum. The
other well-defined peaks are written in normal format, while num-/’“R(m) 1.2667 3.9414 4.8349 5.3984 5.8116
bers inside parentheses correspond to peaks in the spectrum that &ndm) 0.0000 11.6095 21.6147 31.5024  41.3494

barely above the noise level of the Lomb periodgram. f(m) 0.0000  4.2545  7.9211  11.5446  15.1532
m 1 2 3
that we needq,>1 in order to get a solution fou, i.e., to
f(m+1) 1.59 2.94 4.28 get a power-law PDF foX, . This stems from the fundamen-
fp=2(M) 151 3.07 (4.3 tal fact that the power-law PDF results from intermittent am-
fg—o(m) 151 3.00 (4.50 plifications. In summary, the log-periodic oscillations are

present theoretically, but are very difficult to measure and
) ) guantify. The PDF for théd,=1 case is shown in Fig. 15. A
The tail of P(X) takes the form of a power law if the expo- segment of its tail is analyzed with the same procedure as
nentu is the solution of was applied to the previous tvag-distribution families(Fig.
16). Only f(4) seems to be recognizable among all the peaks

(n—D(a—a)=af " —d"". (60) in the Lomb periodogram, but this seems even far fetched as
the signal is within the noise level. In conclusion, this uni-
form case corresponds to a large gap and the log-periodic

structures, which are present in theory, are not clearly vis-
(nrt1)(a—a)=a/* ‘cod pina) ~&* ‘o mina), o P y g

(61)

With = pug+iy,, we get

. . VII. CONCLUDING REMARKS
p(a—a)=a/® sin(una,) — &~ sin( Inay)

(62 We started our analysis by considering the intermittent
multiplicative processes of a simple binoméldistribution.
We selecta;=0.001 anda,=1.9. The solutions with the  Not surprisingly, strong log-periodic corrections to the main
smallest, positive, real parts are given in the Table V, topower-law probability density function have been found for
gether with their corresponding log frequencfesThe most  the random affine map. The disorder in the additive constant
striking feature to note is the large gap valug(2)  smooths out the higher frequencies, but does not dampen out
—unr(1)=2.67. These differences increase rapidly with thethe smallest log-periodic frequencies. We then analyzed situ-
order m of the solution. This implies that the oscillations ations with increasing disorder in the multiplicative terms.
must be extremely weak and severely dampened. In Fig. 1thstead of going to the weak disorder regime with two broad-
we explore the dependence of the gap as a function of thened peaks, we analyzed a PDF of multiplicative factors that
parameters, anda, of the model. Ifa;=0 anda,=2.71, consists of a two-step staircase. In this already large disorder
we find wr(2)—ur(1)=2.1, but ug(1)=0.006 is very regime, we have found that the log-periodic structure of the
small. Whena,;=0 anda,=2.0, we find ug(2)— ugr(1) tail of the X;'s PDF is present for the smeared out two-level
=2.545 with ug(1)=1.0. staircase distribution, although it is weakened in its ampli-
The situation does not improve if we take—1~ and  tude compared to the two-point distribution case. The most
a,— 1" [while keeping the stationarity conditigb)]. Notice  important aspect of our results is that the log periodicity and

30 [ T T T T T T
2ok ] =) ]
N : 1 :t p
3 L ] a 1
[ ] [S) i
15 -_ _ ﬁk_ -
o g ] a,=0.0 _
0.5L L . . . s . ] ol . . .
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.0 15 2.0 2.5 3.0
a a,
FIG. 13. Alloweda,-a, domain fora, with uniform distribution. FIG. 14. Gap valugug(2)— ur(1) as a function of, for dif-

The dotted boundary depicts the strict inequalities given in(&g. ferent choices of, .
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FIG. 15. PDF witha; uniformly distributed between,=0.001
anda,=1.9, givenb,=1 (1 iterates, 18 equispaced bins per
unit of logXy).

the preferred scaling ratios can no longer be associated

with a specifically chosen amplification factor, as they are for
the two-point distribution. Notwithstanding the presence of a
large disorder, a discrete set of effective scaling factors are
selected. The “gap,” defined as the difference between the
smallest exponent real part and the real solution, controls the
strength of the log periodicity. We have been able to deter-
mine that the gap must be of the order or less than 1 in order
for the log periodicity to be strong. Larger gaps still lead to 0 5

Lomb periodogram

10 15 20
visible effects but the analysis must then be very precise and frequency

the noise level very low. This is the situation found for a

uniform distribution of multiplicative factors. In summary, FIG. 16. (a) Logarithmic derivative of a portion of the PDF
we have shown that log periodicity remains a significant ef-given in Fig. 15.(b) Lomb periodogram ofa).

fect even in the presence of significant disorder.

With the notationz=e*""Y=a#r"#1 e obtain
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APPENDIX: DETERMINATION OF THE EXPONENTS y= £ Muzm, (Ad)

FOR THE TWO-POINT DISTRIBUTION USING

A PERTURBATIVE ANALYSIS Ik . . . .
wherex =a¥* andk is an integer. An approximation of the

The power-law structure of thB(X) PDF characterizes imaginary part of the roots of Eq42) therefore is
rare excursions oX; to large values. These large values are

reached by repeated occurrence of the amplifying multipli- ok
cative factora‘. This motivates us to make the approxima- y=—"-. (A5)
tion of neglecting the first “damping” term on the right- §

hand side of Eq(34),
This agrees fairly well with the exact computed roots shown
P(X)=~(1—p)a ¢P(a X). (A1) in Table I. We can improve on this estimation by inserting
the parametrization
This functional equation is simpler to handle. It also has a

form reminiscent of the renormalization-group equation that oK

Feigenbaum used in his analysis of a bifurcation sequence of y=——+¢€ (AB6)
the logistic equationi47]. Analoguous equations have been §

discussed also if11-13,21. Assuming a power-law form

for P(X)[ P(X)=A/X'"#] provides for theu equation in the full set of equation$43) and (44). This yields the

following system of two equations of the two unknowxs
(1-p)aré=1. (A2) ande:
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TABLE VI. Appoximate [according to Eqs(All), (A12), and  Assuminge(1+¢) to be “small,” we expand the trigono-
(A6)] and exac{from Egs.(43) and (44)] roots fora; with a two-  metric functions to first order iw:
point distribution ata=2, £&=2.5, andp=0.95.

[(1-p)etT9X—eX]coskm/é— e[ (1—p)(1+ &)
x eI+ EX— eX]sin2k/ €+ p=0, (A9)

k 0 1 2 3 4 5

XapprodK) 1.0333 1.2760 1.1597 1.1597 1.2760 1.0333
Xexac(k) 1.0333 1.2808 1.1922 1.1922 1.2808 1.0333 _
(k) 0.0000 0.0480—0.1301 0.1301-0.0480 0.0000 [(1—p)e®*—1]sin2km/ &+ e[(1—p)(1+§€)

Yapprof(K) 0.0000 2.5612 4.8965 7.6699 10.0051 125664 . cex_g1000am/ 0. (A10)
Yexac(k) 0.0000 25605 4.9101 7.6563 10.0058 12.5664

Eliminating e between the two preceding equations, we get

ok an equation in the sole variabke
[(1-p)ett9*cose(1+ f)—eXCOSE]COST
(1—p)etT9%*—eX+p coskm/£=0. (A11)
2k
—[(1—p)et*E*sin e(1+ &) — e*sin e]sinTer p=0, There is a unique solution ir for eachk. Knowing x, we
A7) then gete from
—p)eiX—
2k _ (1-p)e*-1 . 2k
[(1—p)efxc0$(1+§)—c036]smT+[(1—p)efx T l—p(toeF—1mg (A12)
X sine(1+ £) —sin €]co 2k -0 (A8) Table VI compares these solutions with the exact ones, in the

& case whera=2, £=2.5, andp=0.95.
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