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Slow relaxation near structural and orientational transitions in glass-forming liquids and solids
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We argue that the fragility observed near the glass-transition temperature complies with the growing corre-
lation length conception for the entire family of glass-forming materials. The analysis is given through the
percolation-theoretical treatment of the relaxation dynamics considered in an effective medium of dimension
d. For long-lived clusters of characteristic radiRg dynamical correlations are introduced through the relax-
ation time 7o R} . The relaxation function is given in an explicit Kohlrausch-Williams-Watts form with the
stretch exponenB=d/(z+ d) that results in the fragilityn=mg(1/8—1). It is shown that within the low-
frequency domain the cluster-growing correlations are consistent with the Dixon-Nagel master curve and fit the
idea of universality of glass-transformation features in solids and liqi81)63-651X98)08601-2

PACS numbes): 61.41+e, 61.43.Fs, 64.70.Pf

The presence of non-Debye relaxation near the temperdetween fundamental dynamic parameters in order to gain a
ture of structural glass transformatidfy is a common fea- deeper physical insight into the universal features of the
ture of all glass-forming materials. The late-time relaxationglass-transition phenomena.
dynamics is well described by only two temperature- The sophisticated analysjg] of data on primary dielec-
dependent parametegsand 7, through the phenomenologi- t_ric'responge in some oyercooled molecular and alcoholic
cal stretched-exponential form given for the relaxation funcliquids carried out in a wide range of temperatures and fre-
tion and known as the Kohlrausch-Williams-Watww)  duencies resulted in the model-independent scaling scheme,
form, namely,¢(t)ocexp—(t/rﬁ)ﬁ, with 0<8<1. The ques- known as the Dixon-Nagel master curve. This provides a

tion arises whether these or others dynamical parameters rgQOd testing probe and challenges modern theories of struc-

lated to them can definitively represent the underlying, mi-g:r‘?l glass tragsmor;.rTre;'(ntwioie;sourﬁ)llzig rt:e?;y’ t\:Vhlfhr plr?-
croscopically different mechanisms of structural and cIs a sequence ol relaxation mechanisms In structural re
orientational relaxations in diverse materials. Combining re_laxatlon and gxp_lams the_ high-frequency departure from the

' - KWW form within the Dixon-Nagel master curve, though,

sults of a numbgr of t_heoretlc:_il mode!s, .emp.hasmafd TNYoes not lead to the stretched-exponential-type solutions in
KWW-type relaxation, with experimental findings investiga- an analytical form in the low-frequency region, where the

tors arrived at different standpoints..The fundamental signifiyany form fits well [5]. Qualitatively the same can be re-
cance of the stretched expongd{fT ;) in molecular and elec-  forred to as Hunt's percolation analy§i] of the primary
tronic glasses has been formulateld very recently: “the  gjelectric relaxation given through the universal scaling form
reduction of 8 with temperature reflects the contraction of [4]. The departure from the apparent KWW form in dipole
configurational space and its eventual stabilization due t@iquids as well as in electronic and ionic glasses was inter-
structural arrest alT=T," as opposed to the statemef]  preted[6] as a crossover frorindependentopping transi-
that “no special significance can be attributed to the numeritions at high frequencies toorrelated transitions near the
cal value ofg.” relaxation peak frequency. No theoretical predictions have
Recently, a bulk of response data from glass-forming lig-been madg6] for the strong-correlated low-frequency re-

uids (simple and complex molecular liquids, molten salts,gion. The entire frequency region was studjgtenomeno-
hydrogen-bond alcohols, and polyalcohplsamorphous |ogically. It has been quantitatively justified within the
polymers, and glassy crystals studied using dielectric, visframework of mesoscopic domains through the so-called
coelastic, calorimetric, and optical techniques has been quandynamical correlation coefficient” by Chamberlifi7] us-
titatively and qualitatively analyzef]. All of these have ing concepts of the percolation cluster theory. In the current
been analyzed in terms of the observable stretched exponeBtief Report we emphasize spatial correlations characteristic
By [=B(Ty)] and so-called fragility,m=dlog,o(7~ ')/  of late-time dynamics employing concepts of the kinetic
dlog,oT at T=Tg, which, respectively, characterize the de-theory of phase transitiori§]. This scheme avoids phenom-
gree of deviation of the relaxation dynamics from the stanenological parameters and provides an analysis of the geo-
dard Debye and Arrhenius behavior. For the entire family ofmetrically originated structure relaxation through the princi-
glass-forming materials, except orientational glasses, a cepal dynamical parameters accessible in real experiments.
tain correlation betweeg, andm has been numerically es- The structure-disorder freezing is followed by strengthen-
tablished(see Fig. 2 in Ref[3]). One of the goals of the ing of dynamical correlations and evolves smoothly from
current Brief Report is to introduce qualitative relationshipsDebye behavior as the temperature approaches the transition

from above[4,6,7. Hence, the relaxation function can be

defined in terms of the Debye-type pretransition clusters,
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The configurational average is performed by the radius-size- 5 2 Liquids ]
cluster distribution function treated in a generalized Poisson- =, r < ]
like form, namely,P, = Cx“9~texp—x? with x=R/R,. Here R i ]
Ry stands for the characteristic cluster radius &ds a f’ oY
normalization constant. Formall, describes the probabil- z o ]
ity to find a clusterR>R, in a medium, with effective di- “r , , ]
mensiond, where the relaxation takes place. Its parameters ! '3 e

can be established through the size distribution function s S S N S S R
given in the Stauffer scaling form for percolating clusters ) ‘
[see Eq(2.22 in Ref.[9]] if one takes into consideration the
volume-size relatioiVgocsR% (d. stands for the finite-size G, 1. Dixon-Nagel master curve for glass-forming liquids at
cluster dimension anslis the number of percolation sites or transition temperature vs the stretched exporgrsolid lines cor-
bonds. In the spirit of the phase-ordering kinetic thedgB]  respond to numerical evaluation of the susceptibifitf)={((1

let us employ the algebraic form for the cluster relaxation—iwrg) ) through Eq.(1) for =0.55,0.6,0.7, and 0.75 with
time 7= 79(R/Ry)? where 74 is the characteristic cluster =0.23. Left inset: Solid line—normalized half maximum width
relaxation time ana is the cluster-growth dynamical critical w(B8)=6(1-8)/[1+8(7u—1)] established through the high-
exponent. Physically, this implies that the growing scalingasymptotic relationy” ()~ * with A=up/(1—8) and interpo-
lengthRy(t) =<t is expected for long-lived “survival” clus- lated to the intermediate frequencies witk6(1—w™")/7—1 jus-
ters[8]. Mathematically, the proposed algebraic scaling proAified with Fig. 3b) in Ref. [4]. Points correspond to experimental
vides a way to put the cluster evolution mechanism througifata[4] extrapolated tof =T, for liquids from propylene glycol
relevant dynamical parameters in an explicit form. Evalua{®) to salol (&) (for other notations see Fig. 2 in R¢#]). Right

§ | ) e . i P i
tion of the integral(1) performed by the standard saddle- nset: Solid line—solution of the equatiom(3) =" for the dis-
point method (> TB) yields tribution function parameteus (1). Points and their notations corre-

spond to overall experimental daffd] for liquids (M), polymers
(O), network @), and orientational glasses(.

w (1 +w Hloge(w/w,)

B
qS(t)ocexp—(i) , with
B fore this range is due to the long-lived> ry) and big R
L >R,) clusters which obey the algebraic scalifngeR* with
_d _ 1g-1 z=d(B71-1).
p= 7+d’ mp=ToB(1=B) 7, @ Until now no assumptions have been made on the tem-
perature dependence of the characteristic cluster radius. We
are going to demonstrate that experimental datastrongly
corroborate the cluster-size growing conception. Indeed, if

one admitsdR,/dT<0 at T=Tg the relation

where the ignorabléwithin the late-time dynamigspreex-
ponential factor {/75) ¢, related to small clusters, is omit-
ted. Remarkably, the stretched exponent form@ilé2) gen-
eralizes the result B=d/(2+d) known from the 1
d-dimensional trapping model employing the Brownian dif- m:mo(__l) with my>0 3
fusion of particledsee, e.g., Eq3.7) in Ref. [1]]. By

Let us discuss the range of validity of the proposed de'immediately follows from the fragility definition given above

scription through the Dixon-Nagel master curve. The KWWand Eq.(2). In Fig. 2 the cluster-growth conception is veri-

fOi’m_E-S res_tri(i:]ed Witzir; the high—fretﬂuengy yving> “p bl fied for the entire glass-former family. This reslil] can be
(~|TO ' @p :S Se r?ea requengyoy .ehf’" S;'Ssa varlafe compared with those established numericdl] (m=a
value equal to 3 that correspondsg within the context of -~ g "2 phenomenologically12] (m=a, +b; see

LheFﬁer?gﬁf%gﬁ?ﬁ?&?iﬁgigég (ij%gj -tl;rr]cl:f)z)sles duﬁpgir(;zdas also Ref[13]). Figure 2 also demonstrates the universality of
Y 9. : b  Supet d the structure-glass-transformation mechanisms in different
well as by Fig. 4a) in Ref.[10] for orientational glasses. In materials

the frthl.Jeany regimer, < ‘.‘;EG]‘”C (w ~ t‘."P IS ]Ehe c|r|t|cz|il To be more specific, we involve the Vogel-Fulcher fitting
p?rcola I(t)n rethrJ]enc%, Wi )tas?oma |?nt.o rrlolfcu els form in the cluster characteristic relaxation time through
0 _CIUSTErs With enhancemen: of corretations 1axes Pace (T)«expd/e(T) with &(T)=(T—T)/To. This results in
[6]. The susceptibility of the model under discussion is glvenm_D(1+ )elin10  with —e(T.). The material-

in Fig. 1. As seen, the correlated cluster approéthis q - p fg g 0 V:}' ;9_8 gt' ticall ’ q
compatible with the scaling fornj4] below the abscissa egen en tp&r'ahmed as elen_sys/emilca y Theasure
equal to 1 or, approximately, within the region given by and, as established numerically=m,/(m—m,) with m,

<wp(1+w/2). The latter includes the low-frequency wing 16 andm, =590 (see Fig. 1 in Ref3]). To search distin-
of the susceptibility presented jp— o coordinates. There- guished characteristics fo.r a given class of glasses let us
complete these two equations by E8). Consequently, we

come to a new equatiop(ey), the solution of which is
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FIG. 3. KWW-form stretched exponent against the reduced tran-
FIG. 2. Fragility vs stretched exponent for the structural glasssjtion temperature. Lines: solutions of the three-equation system
family. Solid lines correspond to E(3) for liquid and molten salt  composed for fragility derived within the Vogel-Fulcher fitting
(mp=100), polymer and networknfy=70), and orientational form. Upper and lower lines are given for,= 70 and 40, respec-
(mo=40) glass-forming materials. Dashed line corresponds to thejvely, established in Fig. 2. Left inset: experimental data fgr
equationm= 250~ 3208, established in Ref.3]. Points and their  gerived for network glassd8]. Right inset: crosses—experimental
notations for liquids W), molten salts € ) , polymers (J), net-  gata for orientational glass¢8]. Solid line—Monte Carlo simula-

work (@), and orientational glassex() correspond to experimen- tjon results for the Potts-glass mod&#] (see also Fig. 4.12 in Ref.
tal data in Ref[3]. [15]).

displayed in Fig. 3 for structurally and orientationally disor- 8(b) in Ref. [21] and Figs. 13—15 in Ref2]). Unlike the
dered materials. Besides the qualitative agreement with exanalysis given in Ref{21] these results can now be under-
perimental findings, this solution is consistent with Montestood on the basis of equatiav=rd(8 *—1) and the
Carlo simulationg 14,15 which exhibit the KWW-type re-  stretched exponent data accumulated in IR&. Discussion
laxation of the orientational order parameter above the tranof the cluster-growing kinetic mechanisii@ relevant to the
sition temperature. This study has been carried out on thetructure glass problem will be given elsewhere. Immediate
basis of the Potts-glass model knoyi6,17 as the generic estimations show that for the entire family of glass materials
model for the class of orientational glasses. As established s far above the fragile limivd =1 forbidden thermody-
recently on the microscopic basis, orientationally disordereqi,amica"y[Zl]_

(but site ordered materials near the glass transition are 1y symmarize, the relaxation effects are discussed in
driven by spatially correlatefll7] random-bond interactions ey of recent findings on structural and orientational disor-
which dominate over the intrinsic8] and/or extrinsid19]  ger freezing in glass-forming materials. The percolation-

random-field effects. In addition to Fig. 2, Fig. 3 illustrates {heory-cluster analysis is given in terms of the dynamically
that materials that are different on the microscopic levelygrejated clusters relaxing in an effective medium of dimen-

manifest universal features of glass transformation. sion d. The dynamic correlations are introduced through

Among various glass formers special attention should b . ) o X
. . . . . ebye-type relaxation time which increases algebraically
paid to structurally disordered Ge@nd orientationally dis- ) . o g
with the cluster size. Eventually, the principal characteristics

ordered RbCN and neoxeganslee Table | in Ref[3]) as . ,
: . ; of non-Debye and non-Arrhenius dynamics, namely, the
well as to structural and orientational glass models intro-

duced in the molecular dynamic simulation studi2@] . All  Strétched exponerg=d/(z+d) and the fragility(3) m(5)
these systems preserve quasi-Debye dynamics and/or quaSMerge naturally as explicit functions of fundamental param-
Arrhenius behavior down to the transition temperature. Fol€t€rs of the system. As shown, the late-time spatial correla-
lowing classification introduced by Angell and co-workers fiOnS introduced into the relaxing model system through the
[3] and discussed by Soulefi21] this case can be referred to algebralq scaling are compatible W_lth the low-frequency part
as the “strong system” limit To<T,). Additionally, the of th.e.Dlxon-NageI master curve interpolated to the glass-
solution given in Fig. 3 require@y,—my/(m;+mg) with transition temperaturdy. Finally, we have demonstrated
m—m,; andT,—0. On the contrary, the extremely “fragile that, regardless of the requirement of divergence of the cor-

" ; _ relation length, the evolution of the system upon cooling
systems” (To~Tg) are characterized bys,=mgey/m; ; . ; o
andm= ’_mzlsg. down to T, is accompanied by the cluster growing. This is

The power scaling form for the characteristic cluster time(r:nognst':tﬁgtsev;'\'/t: q tﬂzafttrﬁgtu:nga?rinzzﬁnrfaggtﬂa:nrig{ig‘gi}j
70 (T—T.)? has also been employed to describe the pri- 9

mary relaxation in liquids, polymers, and molten salts byII0|UIOIS 3]

fitting experimental data on viscosiff,21]. As established, The author is indebted to Ralph Chamberlin and Robert
in the “strong system” region T.>Tg) the low-viscosity  Blinc for fruitful interactions. Thanks are due to Eduardo
data result inzvv2—6 and in the “fragile system” region Valadares for a critical reading of the manuscript. This work
(Tc~Ty) zv~15-25 (see, respectively, Table | and Fig. was supported by the Brazilian agency CNPg.
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