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Discrete bright solitary waves in quadratically nonlinear media
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We show that bright solitary waves of different topologies can exist in a discrete system with a quadratic
nonlinearity. Analytical solutions can be derived for a limiting case. The regions of existence and stability are
identified. We numerically study interaction and collision phenomena. Various decay scenarios for unstable
solutions are discusse51063-651X98)00801-7

PACS numbeps): 42.65.Tg, 42.65.Ky

[. INTRODUCTION environment. Field dynamics in a linearly coupled array of
nonlinear waveguides may be considered as a general case
Within the past several years the interest in nonlinear opthat covers two limiting cases, viz., spatial solitary wave for-
tical effects based on quadratic nonlinearities has considefnation in a planar waveguidgontinuous limif and nonlin-
ably renewed. In contrast to previous studies where the agar switching in a two-core coupler. For quadratic nonlin-
tention was primarily centered on the dynamics of the€arities both effects have been theoretically prediftdcil2)
frequency conversion procegsecond-harmonic generation, and experimentally confirmed recenfly3,14. Hence it can
parametric effecisrecent work focuses on the phase modu-be anticipated that such intrinsic localized solutions, hence-
lation of the fundamentalFH) as well as the second har- forth termed discrete solitary wavé3SWs, may be formed
monic (SH). This phase modulation accompanies the famil-in quadratic nonlinear waveguide arrays as well. The pecu-
iar amp|itude modulation, being the basis of any frequenc&iarities of DSWs in cubic materials with respect to their
conversion, and may be obviously exploited in fields thatcontinuous counterparts, such as the existence of bright spa-
have been considered the arena of cubic nonlinear effectial DSWs in defocusing media, are mainly due to the par-
Typica| examp|es are a||_op’[ica| switching phenomena in in.tiCU|ar dispersion relation of the linear waves, which allows
terferometric or coupler configurations as well as spatial andor “negative diffraction” if the envelopes in adjacent
temporal solitary wave formation in planar waveguifles a ~ waveguides have opposite phasetaggered solutionsL5]).
review, see Rei[]_] and the references theré}_iiﬁrequenﬂy it So it is intuitively clear that similar solutions should also
was attempted to explain these effects in terms of an effecrise in the quadratic case but it can be also expected that the
tive cubic nonlinearity. But it turned out that the quadratic €Xistence of a two-component fielH and SH with differ-
scenario may be potentially richer evidenced by recent reent linear properties of each component will add more de-
sults such as, e.g., an incoherent switching schithethe  grees of freedom to the solution. Because of the waveguide
formation of stable solitary waves in bulk media], the dispersion and the frequency dependence of linear coupling
homogeneous phase modulation across a short pdjsthe  FH and SH propagate as a matter of fact in different arrays.
existence of stable chirped solitary wa&s6], and the pe- Moreover, the wave vector mismatch between the FH and
culiar features of Bragg grating solitary wav&g. the SH will strongly affect the character of nonlinear inter-
Another fundamental issue that has attracted much atterction, i.e., its sign controls the sign of phase modula#gn
tion in various configurations with cubic nonlinearities and Eventually it is anticipated that localization, which is a typi-
that to our knowledge has not been addressed in the qu&al effect of discretenedd6], depends on the explicit form
dratic environment until now, is the existence and stability ofof the nonlinearity.
intrinsic localized solutions in discrete systems. In the cubic The aim of this paper is to identify regions of existence
case the study of these solutions, often referred to as discrefer discrete solitary waves in arrays of quadratically nonlin-
self-trapped solutions or discrete solitary waves, is a majofar waveguides, to discuss their basic properties, and to in-
Subiect in nonlinear physics since the pioneering work ofvestigate their mutual interactions. Particular emphasis is
Fermi, Pasta, and Ulaf8]. The relevant topic of these stud- paid to effects that are peculiar for quadratic nonlinearities.
ies is how discreteness affects the dynamics of nonlineafhe structure of the paper is as follows: In Sec. Il we derive
systems beyond the continuum approximation. Recently, ithe basic equations as well as the nonlinear dispersion rela-
was pointed oufsee, e.g., Ref49,10] and the references tion. Stationary discrete solitary wave solutions are analyti-
therein that arrays of nonlinear waveguides may represent &2lly and numerically derived in Sec. Ill. The investigation
convenient laboratory to experimentally verify the numerousof the dynamical behavior of these solutidistability, inter-
theoretical predictions. Thus it seems worthwhile to studyactions, collisionsin Sec. IV concludes the paper.
the effects of discreteness in quadratic nonlinearities in that

Il. THE NONLINEAR DISPERSION RELATION

*Present address: Fraunhofer-Institut Angewandte Optik und In the framework of a coupled-mode theory the continu-
Feinmechanik, Schillerstr. 1, 07745 Jena, Germany. ous wave evolution of the envelopes of the R and the
"Electronic address: pépeul@uni-jena.de SH modes ¢,) in the nth guide can be described by a sys-
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tem of ordinary differential equations. In deriving that sys-
tem one can take advantage of recent works concerning ar-
rays formed by cubic nonlinear waveguidd®] and
continuous system@&.g., planar waveguidgesvith quadratic
nonlinearitied 4,17]. We straightforwardly get

du
FH: id—n+cu(un+l+un,l)+2u:vn=0, (1a)
z

_dv, > FIG. 1. Nonlinear continuous waves in the plane defined by the
SH:i e +C,(Unt1tvn-1) —Avn+U=0. (1D  ,ropagation constants,, and the transverse wavenumberfor
different values of the phase mismatth c,=1,c,=1; dark gray

Here we have assumed that the guides are identical, that onfifea: antiphase waves, light gray area: in-phase waves, white area:
nearest neighbor interaction, expressed by the linear coljio waves, bold lines: linear dispersion relation of FH and SH.

pling constantg, , , takes place, and that the nonlinear cou- .. , .
pling is relevant only between FH and SH in the same guide(ll) nonlinear plane waves are allowed to propagate. In Fig. 1

Equation(1) is normalized as usual where the length and théhe. Iin_ear dispersion relation of both_waves is marked by
power scales are set by one of the inverse linear couplin olid lines. In the shaded areas nonlinear plane waves are

constants and the quadratic nonlinear coefficient, respe lermitted. Thus the DSW wave numbeihas to be located

tively [4,9], andA denotes the scaled wave vector mismatchOUtSi_de the bands definec_j by the respectiye _Ii_near dispgrsion
between FH and SH. It is evident that eitlaror ¢, amount relations. Note that the mismataéhplays a significant role in
then to unity but we maintain the general notgtion for thedetermlnlng the corresponding region. So, we can conclude

sake of flexibility. In relevant waveguide arrays arbitrary ra-that bright DSWs may exist either for

tios ¢, /c, can be achieved. One might anticipate that the

confinement of the SH mode is stronger than that of the FH,

implying c,/c,>1. But if the dispersion of the host exceeds g for

that of the core material the opposite situation with strongly

coupled SH modes occurs. A<min(—2c,,—c,—A/2). (4b)

The system(1) has two conserved quantities that can be

used to characterize DSW solutions, i.e., the guided powerThis splitting in the wave vector domain is a typical effect of

discreteness. In continuous systems where the linear disper-

A>max2c,,c,—A/2) (49

E— i (g |2+ 2]0,[?) 2a) sion is essentially parabolic the relevant wave-vector region
p, n is connected and the wave vectors are either positive or nega-
tive. In arrays with a cubic nonlinearity a transition from one
and the Hamiltonian region to the other can be achieved by simultaneously chang-

ing the sign of nonlinearity and the phase between adjacent
guides by (transition from staggered to unstaggered solu-

©

= * * . . . . . .
H= _nzw (CuURUnt 1+ CUR R4y tions or vice versa This is due to the invariance of the
relevant dynamic equation with respect to these transforma-
+ uﬁv;‘ —3A|v,|?+c.c). (2b)  tions. In the quadratic scenario the situation is more involved

because this invariance does not hold.
In order to identify the region where DSWs may exist it is

convenient to inspect the dispersion relation of a plane wave IIl. DISCRETE SOLITARY WAVE SOLUTIONS
solution
. After having identified the regions where DSWs may ex-
Un(2) = Uoexdi(Npyz+ «n)] ist we are going to derive the explicit solutions in this sec-
tion. In looking for stationary DSW solutions to E(l) we
and introduce the ansatzu,(z)=u,expirz) and v,(2)

=v,exp(2d\z) into Eqg. (1) and exploit that these solutions
are real valued(except of a trivial phase transformation

. . 2i
which relates the propagation constany, to the transverse u,—Upe'?, andv,—v,e”?) to get
wavenumberx. This relation depends on the power carried
by the FH and reads as

Un(2)=voexd 2i(AgyZ+ kn)],

—AUp+Cp(Unsg+Un-y)+2Uq0,=0, (53

[Npw— C,COY2k) +A/2] [N py—2€,CO k)] —|ug|?=0. — 2\t Cy(vns1+Un-1) —AvatUi=0.  (5b)
® As a matter of fact the syste(B) can only be solved numeri-
Obviously, the existence of bright DSWs requires two pre-cally and we are going to do that later. But to get some
requisites, viz., their wave vectois have to be situated in insight into the general tendencies we investigate two limit-
regions in thex-\ plane wherg(i) linear plane wavefreal-  ing cases first. If the coupling for one of the two frequency
valued solutions of Eq(3) for |ug|?=0] must not exist, but components disappears, the system simplifies considerably,
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and basic features of the solutions that are determined by theg.,[9] and the references thergiwe leave this limit and
remaining energy transfer process are illuminated in moreonsider the opposite situation where merely the SH waves
detail. Strictly speaking zero coupling is never achievablecouple €,=0,c,=1). Because the complete energy ex-
However, the coupling strength can vary considerably. It dechange is mediated by the SH wave we can expect to identify
creases exponentially with the square root of the differencgeculiar effects introduced by the quadratic nonlinearity. In
between the effective index of the guided mode and that o&ddition a one parameter family of stationary SWs can be
the cladding material. If the dispersion of the cladding differsdetermined analytically in this limiting case. Now E&a
strongly from that of the core either coupling constant will supports two types of solutions for arbitramy viz., either a
always be very small. vanishing FH (1,=0) or an arbitrary fundamental but fixed
We study the limiting case of vanishing coupling of the SH (v,,=\/2). In both cases the complementary fié&H or
SH components firsto,= 1, c,=0). Then the system sim- FH) can be calculated by using Eb). It is easy to verify
plifies to a familiar case. From E¢5b) we getv,=u?/(2\  that in the first case the SH exhibits an exponential decay
+A) and subsequently the systdB) is reduced to provided that Eq(4) holds. Now in combining both types of
solutions various DSWs can be formed. Here we restrict our-
2 ) selves to the simplest ones, which exhibit characteristic pe-
AUp=Ups1+Un_1+ m|un| Un, (6)  culiarities of DSWs in quadratic media, namely, unstaggered
and staggered DSWs that may be centered either on a single
which constitutes the cubic or Kerr limisee, e.g., Ref§9, ~ waveguiddfield is located at andd number of guides—odd
15,18,19). Depending on the magnitude and sign of waveDSWS or between two adjacent waveguidéeld is located
number\ and detuningA the effective cubic nonlinearity at anevennumber of guides—even DSWs
may be either focusing or defocusing. A peculiarity of this T0 get more specific the odd and even analytical solutions
limit is that in the same arraffixed quadratic nonlinearity, ©f Eq.(5) can be now written as
fixed coupling constantdright unstaggered (2+A>0) as
well as staggered (2+A<0) DSWs can coexist, which N
contrasts the conventional cubic case. Within this Kerr limit ule=5 NN —a+A/2), v0=_4l (739
both kinds of DSWs exhibit a similar intensity profile. As we ' 2
are going to show below this symmetry is destroyed if the
SH components are allowed to couptee Fig. 2 For the (even
cubic scenario it has been shown that approximate analytic U= (Sp ot O ) VAN = (a—A+1)/2],
solutions can be found for highly localized statesly 3 or
4 guides are participating in the coupling progd4ds$]. That
technique could be likewise exploited here. Because the cu- U(evenzia\nflIZ\flm (7b)
bic (Kerr) case was intensively studied in the literat(see, n 2 '
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FIG. 2. Field profiles of the basic bright DSWs. Symbols: analytical modg+Q andc,=1); lines: general case with equal coupling
strength for FH and SHo(,=1 andc,=1). (a) Odd, unstaggeredb) odd, staggered) even, unstaggered) even, staggered.
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FIG. 3. Normalized Hamiltonian vs power for DSWs of differ-
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ent topology A =—4). (a) Analytical model ¢,=0 andc,=1),

(b) general caseq;=1,c,=1). Solid lines: odd DSWSs; dashed

lines: even DSWs.

Now we drop the condition of a vanishing coupling con-
stant of the FH and solve E@5) numerically for the more
general case of equal coupling of the FH and the SH, i.e.,
c,=c¢,=1. The results are also useful for double checking
the performance of our analytical model. In Fig. 2 the pro-
files of the four basic types of DSWs introduced above are
sketched as obtained by both models. It is evident that the
characteristic features of DSWs are maintained in the ana-
lytical model. However, it is clear that in this limiting case
the FH is only excited in a singl@dd DSW or in two (even
DSW) adjacent guides, respectively.

IV. DYNAMICAL EFFECTS—STABILITY,
INTERACTIONS, COLLISIONS

After having identified the simplest stationary DSWs we
are going to study their dynamical behavior, where primary
concern is paid to their stability. But it is also interesting to
look to the collision behavior, which should exhibit the fea-
tures typically encountered in nonintegrable systems. It is
clear that the latter issue has to be addressed in using numeri-
cal means. But with regard to the stability and localization
behavior we can exploit a standard procedure frequently used
in discrete systems. It has been suggefi€d that even and
odd DSWs of the same topology and with the same guided
power can be considered as realizations of a common mode
but centered at or in-between the array elements. Then the
difference in the respective Hamiltonians represent likewise
the so-called Peierls-Nabarro barri@&NB) [15,19. The re-

respectively, where the sign of the FH fields is arbitrary.alization where the Hamiltonian attains an extremum is con-

Here

A
CK+E

a=

4 1/2
]
(2N +A)2

(70

sidered stable. Moreover, the PNB is a measure for the lo-
calization of the DSW, i.e., if the barrier is sufficiently small
the solution can move across the array consecutively chang-
ing from one realization to the other. We carry out our analy-
sis for the analytical modelc(,=0) as well as the general
case €¢,,#0) where we make use of the numerical solu-

characterizes the decrease of the SH amplitude with distangg,ns in the latter case and compare the respective results. In

from the center where>0 and «<<0 hold for the unstag-

the analytical model the guided pow&ta) and the Hamil-

gered and staggered DSWs, respectively. From the conditiogynjan (2b) can be straightforwardly calculated by using Eq.
that botha andu,, have to be real valued and|<1 has to

hold we obtain the regions of existence of DSWs as
A>max0,1-A/2) for unstaggered and<min(0,—1—A/2)
for staggered DSWs, which is consistent with E4). Note

(7) as

2 2
that the condition for the existence of staggered DS®!s E(odo):)\_ 1ta A )\—a-l-é ’
+A<0) is identical to that in the Kerr limit. 2 1-a? 2 (8a)
FH
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FIG. 4. Evolution of unstable unstaggered DSWs<—4). (a) Decay of an unstable odd S\X=3.05 labeled by a diamond in Fig.
3(b). (b) Transformation of an unstable even DSW into an odd DQ@W4) labeled by a cross in Fig.(8); contour lines at 4, 2, 1, 0.5.
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the normalized Hamiltonian for DSW exhibits an upper
bound as[|H/E|<(2c,+c,+|A|/2+ J2E)] whereas for
linear waves this absolute value lies in a band around zero,
i.e., min(—2c,,A/2—c,)<H;,/E<max(2,,A/2+c,).
We expect the value of the Hamiltonian applying to DSWs
to be located outside that band but between the upper and the
lower bound. In the limit of extreme localization {~ * )
bothE andH tend to infinity. In the opposite case where the
wave numbei approaches the linear spectriisee Eq(4)]
two different cases have to be distinguistisée also Fig. 1
If the boundary is set by the linear spectrum of the Fot
staggered and/or unstaggered DSWs;>2c,*+A/2) both
the power and the Hamiltonian vanish simultaneously. This
i A\ corresponds to the upper branches in Figa) &nd 3b), e.g.,
0" _1'0"_5’ 0 "5 ‘1'0 : A=0 in the analytical model. On the contrary if the boundary
is set by the SHfor staggered and/or unstaggered DSWs:
n (a) n (b) 2c,<c,*A/2) both quantities diverge due to a spreading
SH field (a=1 in the analytical modgl This result can be
easily verified in the analytical model where the denominator
vanishes in Eqg(7c). As a consequence a power threshold for
the DSWs together with a backbend branch in the Hamil-
tonian versus energy plot exidisee lower area in Figs(8&
and 3b), e.g.,A\==1—A/2 in the analytical modé¢lWe note
that this threshold can appear for either topology of DSWs
depending on wher& andH diverge. At the turning point
the odd as well as the even solutions transform to solutions
of similar shape but different distribution between the FH
and SH components. These backbend branches coincide for
even and odd modes for our set of parameters. The results
with respect to the stability of DSWs can be summarized by
using Fig. 3 as follows.

Both models yield that odd staggered as well as unstag-
RN | 1 L N | R gered DSWs may be stable whereas their even counterparts
-10-5 0 5 10 -10-5 0 5 10 are always unstable. They immediately transform into the
n © n @ respective odd DSWs. If odd DSWs of one topology have a

finite power threshold the backbend branch near the linear
aband is unstable. This instability manifests itself in a com-
[Xlete decay of the DSW into linear waves. It is interesting to
note that this instability beyond the turning point is accom-
panied by a power transfer to the SH and a complete spread-
ing of that power across the arrgsee Fig. 4a)].
A In some respects it is surprising that our analytical model
a_Z(1+a2) predicts the stability behavior correctly. We note that the

50
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FIG. 5. Power-dependent steering of a beam across the arr
(A=0,c,=1,c,=1). Initial shape: that of an unstaggered DSW
(A=2.5), but with an initial phase tilt of 0.1 per channel and with
different power levels.

Hodd_ _ 2 _hz()\_aJré exis.tence of a power th_reshold_ ig a peculiarity of the qua-
1— a2 2) dratic system. The stability predictions based on the study of

the Hamiltonian and the related PNB could be confirmed in

5 A+l performing a conventional linear stability analysis.
[ (even — +onn= @ Moreover these results have been double checked by nu-
—a? 2 ’ merically solving Eq(1) with the DSW to be probed as the

initial distribution. To perturb the stationary solution even
A harder we have added some stochastic noise to this initial

a=z o2 g A+1 distribution. In Fig. 4a) the decay of an unstable odd unstag-

Heven— )2 - 2)\2( A— —> (8b)  gered DSW that belongs to a backbend brajgimond in

1-a? 2 2 Fig. 3(b)] is shown. As mentioned above the power is trans-

formed to the SH, which spreads over the array. Note that in
for odd and even DSWs, respectively. the continuous case this unstable solitary wave with an ex-
To discuss the stability behavior it is convenient to plotcess power would not decay completely but transform into a
the Hamiltonian normalized by the guided power versus thesolitary wave oscillating around a stable solut[@®].
guided power. The plots for both cases are shown in Fig. 3 Next we excited an unstable even unstaggered DSW
where the qualitative agreement is evident. A straightforwardcross in Fig. 8)]. After some propagation distance it trans-
estimation, by using Eq2), yields that the absolute value of forms to a slightly oscillating, but stable odd DS&ke Fig.
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4(b)]. In some respect this transformation can be regarded as 100
the onset of localization, which is a peculiarity of discrete :g 7 14§ input Power per Soliton Power
—_— 225 .

systems. Relying on the idea of a Peierls-Nabarro barrier
introduced above it is clear from Fig. 3 that the solutions
obtained for the limiting case of vanishing coupling between
the FH waves are always localized. Thus the unstable even
solutions transform into a resting, but oscillating, stable odd
realization. In this case we did not succeed in exciting mov- S -

ing solutions. Energy transfer and motion across the array 0 10 20 30 40 50 60 70
seem to be mediated by the FH wave. Indeed, staggered as z

well as unstaggered DSWs exhibit an almost vanishing PNB FIG. 6. Collisions and interactions of DSW4 €0, c,=1,c,

for small power if the (,:OUpI'ng in the FH is taken into ac- =1). (a) Elastic collision of two unstaggered DSWs with large
count[see Fig. 8)]. This leads to the conclusion that up to yejocity (\=-+2.5). (b) On-site collision of the same DSWs but
a certain power level DSWs of both topologies can moveyithout velocity formation of a quasibound state) Collision of
across the array. This power dependent dynamical behavigfie same DSWs as inb) but collision site between two
of discrete DSWs can be exploited in a beam steering experiyvaveguides—formation of a moving DSWd) Collision of two
ment(see Fig. $ Assuming a nonlocalized DSW an initial DSws of different topologyA = =2.5—*"annihilation” of DSWSs;
phase tilt causes the solution to move across the array witteontour lines at 0.5, 1, 2.
out changing its shape. If the power is increased the same ]
scenario as discussed above in the analytical model can be If two DSWs of different topologystaggered and unstag-
observed. The PNB between the unstable even DSW and tr€red collide their interaction results in a complete destruc-
odd one grows larger and localization sets in. Eventually alfion of both DSWs and the emission of a dispersive wave
the power rests in the initial wave guide which decoupledsee Fig. &)]. Hence in some respect staggered DSWs can
from the rest of the array. Hence a continuous power inbe regarded as “antiparticles” of staggered DSW because
crease allows one to address different Waveguides at the eﬁﬂe collision of both DSWSs evokes their mutual annihilation.
facet of the device.

Finally we performed numerical experiments to study col- V. CONCLUSIONS
lisions and interactions of two moving DSWs. From what

id ab it is ol that th tudi b | In conclusion we have shown that in contrast to the cubic
was said above 1t 1S clear that these studies can be oniy, e bright solitary waves of different topologstaggered
performed if the solutions are not localized. Thus we have t

take th i f the FH int t and 1o rel th %nd unstaggergaan exist in the same waveguide array with
axe the coupling or the INto account and to rely on e, guadratic nonlinearity. Even discrete solitary wave solu-

pumerical sqlutions. Aga!n we used a stable Qdd DSWs bufions always turned out to be unstable. Either the staggered
imposed a slight .phase difference betV\_/een aQJacent gwdgs 8 the unstaggered DSWwhich depends on the mismajch
grovokz tht? rgotlon aﬁrosshthe array Ifl requw?dhas N FigSey hibit a power threshold if the respective wave vector ap-
@ and_ﬁﬂ )- tue to the inherent comﬁ):_ex;ty oft ﬁ.jyjtfvrvn proaches the linear wave vector band determined by the SH.
many different scenarios may occur. First we cotlide OBeyond this threshold two kinds of odd and even solutions
moving u.nstaggered_ SQIUt'OnS' Figura)eshows a typu;al exist. The odd DSW the Hamiltonian of which is closer to
scenario 'f. t_he velocity is Iar_ge, €.9., a mere phase shift d.uﬁwat of linear waves decays into those linear waves. As in the
to_ t'he collision. By decreasing the v_elocny bglovy a certaing, hic case the solitary waves can move across the array pro-
Cr't'(.:al valug _the DSWs fuse, Wh'c.h IS an 'F‘d'Gat_'O” for thevided that their power is sufficiently small and that coupling
nonintegrability of the systerfl). This behavior is in agree- between the FHs is taken into account. If the power and

ment W'.th tgat In thebquhacligrgs\? cgntmuous c@gdﬂz].hlf .th_e. | likewise the Peierls-Nabarro barrier grows larger the solu-
separation between bot s decreases and the initial Vg, get progressively stronger localized. The collision be-

locity s setto zero we have obsgrveq an interaction bEhaV'qliavior critically depends on the velocity and topology of the
recalling the formation of a certain kind of bound state. ThatSolutions as well as the site of collision

very scenario appears if the DSWs collide on-$&tee Fig.
6b)]. _ o _ _ ACKNOWLEDGMENT

If a slight change in the initial separation causes a colli-
sion between two waveguides the interaction leads to the The authors acknowledge a grant from the Deutsche For-
formation of an intermediate unstable even DSW. Finally itschungsgemeinschaft, Bonn, in the framework of the initia-
translates into a moving DS\Fig. 6(c)]. tive on “Optical Signal Processing.”

[1] G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum [5] L. Torner, D. Mazilu, and D. Mihalache, Phys. Rev. Léty,
Electron.28, 1691(1996. 2455(1996.

[2] G. Assanto, Opt. Let20, 1595(1995. [6] C. Etrich, U. Peschel, F. Lederer, and B. A. Malomed, Phys.

[3] W. E. Toruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. Rev. E55, 6155(1997.
I. Stegeman, L. Torner, and C. R. Menyuk, Phys. Rev. Lett. [7] T. Peschel, U. Peschel, F. Lederer, and B. A. Malomed, Phys.
74, 5036(1995. Rev. E55, 4730(1997.

[4] A. Kobyakov and F. Lederer, Phys. Rev.93, 3455(1996. [8] E. Fermi, J. Pasta, and S. Ulannpublished



57 DISCRETE BRIGHT SOLITARY WAVESN . .. 1133

[9] A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F.[15] D. Cai, A. R. Bishop, and N. Gronbech-Jensen, Phys. Rev.

Lederer, S. Trillo, and S. Wabnitz, Phys. Rev.58, 1172 Lett. 72, 591 (1994.
(1996. [16] A. C. Scott and MacNeil, Phys. Lett. 88, 87 (1983.
[10] W. Krolilowski and Y. S. Kivshar, J. Opt. Soc. Am. B3, 876 [17] A. V. Buryak and Y. S. Kivshar, Phys. Lett. A97 407
(1996 (1995.
[11] Y. N. Karamzin and A. P. Sukhorukov, Zh. Eksp. Teor. Fiz. [18] J. B. Page, Phys. Rev. &1, 7835(1990.
68, 834 (1975 [Sov. Phys. JETR1, 414(1976)]. [19] Y. A. Kivshar and D. K. Campbell, Phys. Rev. &3, 1138
[12] R. Schiek, Opt. Quantum ElectroB6, 415 (1994). (1995.
[13] R. Schiek, Y. Baek, and G. |. Stegeman, Phys. Re’3FE.138  [20] C. Etrich, U. Peschel, F. Lederer, B. A. Malomed, and Y. S.
(1995. Kivshar, Phys. Rev. B4, 4321(1996.

[14] R. Schiek, Y. Baek, G. Krijnen, and G. I. Stegeman, Opt. Lett.[21] C. Etrich, U. Peschel, F. Lederer, and B. A. Malomed, Phys.
21, 940(1996. Rev. A52, R3444(1995.



