PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998
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According to the standard classification of conformal quantum field the€@@FT) in two dimensions, the
massless continuum limit of the(®) model at the Kosterlitz-Thouless transition point should be given by the
massless free scalar field; in particular the Noether current of the model should be proportitimalcioal of
the gradient of the massless free scalar field, reflecting a symmetry enhanced(#pta O(2)x O(2). More
generally, the massless continuum limit of a spin model with a symmetry given by a Lie Grehpuld have
an enhanced symmetyx G. We point out that the arguments leading to this conclusion contain two serious
gaps:(i) the possibility of “nontrivial local cohomology” andi) the possibility that the current is an ultralocal
field. For the two-dimensional @) model we give analytic arguments that rule out the first possibility and use
numerical methods to dispose of the second one. We conclude that the standard CQFT predictions appear to be
borne out in the @) model, but give an example where they would fail. We also point out that all our
arguments apply equally well to ang symmetric spin model, provided it has a critical point at a finite
temperature[S1063-651X98)00601-1

PACS numbsd(s): 05.70.Jk

I. INTRODUCTION should not be overlooked that our general arguments apply
equally well to any two-dimension&2D) spin model with a
Ever since the ground-breaking works of Belavin, Polya-continuous symmetry described by a Lie grad@pprovided
kov, and Zamolodchikoy1] as well as Friedan, Qiu, and it has a critical point at a finite value of the inverse tempera-
Shenker [2], it has been taken for granted that two- tyre g.
dimensional critical phenomena can be fully classified by the | Sec. IV we turn to another possible failure of the con-
well-known two-dimensionalrationa) conformal quantum  formal classification: It could happen that in the continuum
field theories. In theories with a continuous symmetry groufimit the current becomes “ultralocal,” i.e., its Euclidean
G itis believed that the symmetry is “doubled” 8XG [3]  ¢orrelation functions are pure contact terms and the
with left and right chiral theories both separately invarianty;iniowski space correlations vanish. To exclude this possi-
underG. It is belleve_d that essentla_lly one only needs t_obility we use numerical simulations as well as heuristic ar-
construct the appropriate representation of the correspondmtﬂmemS These Monte Carlo simulations of th@anodel

Kac—l\_/loody(curren) algebra and out of it a representation O.f at its Kosterlitz-ThouleséKT) transition point also illustrate
the Virasoro algebra by the so-called Sugawara constructio

to be able to read off the properties of the critical theory. the features denyed analyt|cally.|n Seq. ll. While t_husz n
Applying this philosophy to the model with the simplest f[he end, we conflrm the cqnvent|onal pIC.tL.JI’e, we think '.t IS

continuous symmetry, namely, the criticalZ) model, Af- |mpqrtant to realize that W|th.out.t_he gddmonal qurmqﬂon

fleck concluded that the corresponding Kac-Moody and yj-Provided here, there was no justification for accepting it.

rasoro algebras are those of the massless free[B&ld his

means in particular that the Noether current is a gradient and

hence its curl vanishes. However, in Sec. Il we point out a Il. GAPS IN THE STANDARD ARGUMENTS

gap in these conventional arguments that is related to the AND A COUNTEREXAMPLE

so-called problem of local cohomology and we also provide . . . I

a countertlaoxample. In Appendix A wegé/iscuss the IocerlJI coho- Conventlonally_, the arguments 'ef’id_'”g to the__ doubling

mology problem in a little more detail. Our counterexample®f the symmetry in the continuum limit of a critical theory

also shows the existence of critical theories that do not fignd the splitting of the theory into two independent “chiral”
into the conformal classification. It is discussed in detail inthories are given in the framework of quantum field theory
Appendix B. in Minkowski space[3]. Here we want to rephrase these
In Sec. lll we give analytic arguments that show that in&rguments in the Euclidean setting, point out that one of the
the case of the @) model the situation is different from that assumptions needed is not necessarily true, and give an ex-
in the counterexample and the curl of the current indeed@mple violating that assumption.
vanishes in the continuum limit. These arguments make cru- Assume that we have a scale-invariant continuum theory
cial use of the property of reflection positivit)RP). We  with a conserved current,(x). Euclidean covariance re-
concentrate on the @) model as a typical example, but it quires that the two-point functiog ,, of j , is of the form
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_ _ b ax,x, itself makes sense as a quantum field only if it is smeared
GL,=(] u(0)],(x))= Suviz ey (x#0). (1) with test functionsf,, satisfying

Imposing current conservation means J' d2x f (x)=0 (10)
u .
3,G,,=0 (2
On the other hand, it is not hard to see tita(x) = curl(j)
for x#0, which implies can be written as a function of the gradients
a=-2b, 3) be(x)=2{[3,2D(X)][9:9?(x)]
8. 2X,X, ~[3, 00 ][0,2? ()]} (12)
GMV(X)Zb F—W . (4)

and its two-point function is of the form

This is, up to the factob, equal to the two-point function of 1

d,¢, where¢ is the massless free scalar figitis irrelevant ($e(0) (X)) —55. (12
here that the massless scalar field does not exist as a Wight- (x%)

man field. If we look at the two-point function of the dual

currente,,,j,, it turns out to be In Appendix A we give some explicit formulas concerning

this model starting from its lattice version.
(5) The problem in the @) model is then the following: It is
mye conceivable that both cyrland diyj have bona fide con-

so the dual-current two-point function satisfies automaticallytinuum limits, but the current itself does not. This is a so-
the conservation law. Conservation of the two currgrasd  called local cohomology problem, which has been discussed
7 is equivalent to conservation of the two chiral currentsfor decades in axiomatic quantum field theory and has also
i+=jo*j1 in Minkowski space. been toucheq upon more rece.ntly in the_ context of string
By general properties of local quantum field theorytheory. We give a short discussion of this issue in Appendix

(Reeh-Schlieder theorem; s¢4]) it follows that the dual ~B- In Sec. Ill we will use general arguments such as RP
current is conserved as a quantum field. So the two consefogether with the fact that the(@) model becomes critical at

G/_“/E E,UJ\EPVG)\[):G

vation laws together imply that a finite value of the inverse temperatyseto rule out this
possibility for the @2) model. Our arguments will show that
jM:\/B(qug, (6) both curf and diyj have correlations that are pure contact

terms in the continuum limit; this means that in Minkowski
where ¢ is the massless scalar free field, and also that space both the current and its dual are conserved, in accor-
dance with Affleck’s claim.
.= \/Eewavzp, (7) This leaves, however, still another possibility open, which
would make the conformal classification inapplicable in the
where ¢ is another copy of the massless scalar free field. critical O(2) model: It could happen that the current itself has
As presented, this argument is certainly correct. Howevegorrelations that are pure contact terms, in which case the
it depends on the assumption that the Noether curexits  Minkowski space Noether current would simply vanish in
as Wightman fields and this assumption is in fact nontrivialthe continuum limit. We do not see any way to rule out this
and coulda priori fail in the critical O2) model. A simple  possibility by pure thought; but our numerical simulations
example of a quantum field theory with(®) symmetry in  reported in Sec. IV make it very likely that this does not
which the Noether current does not exist as a Wightman fielthappen and the current is indeed a nonvanishing multiple of
is given by the two-component free field in two dimensionsthe gradient of a massless free field, as Affleck claims.
in the massless limit. It is simply given by a pair of indepen-  Wwhile our arguments establishing the enhancement of the
dent Gaussian field®®),®®), both with covariance symmetry toG X G would apply to any other 2D model with
continuous symmetry grou@ possessing a massless phase
B 2 at finite 8, one would have to appeal to numerics to decide
Cx)= (27T)2f d pp2+m2' ®) whether or not the current becomes ultralocal. The standard
wisdom is that 2D Of) models withN>2 haveB. =
where we are interested in the limit—0. This system has a [5]- We disputed this scenario and argued that for any finite
global O2) invariance rotating the two fields into each other. N, Bcri<* [6,7]. One may wonder what the numerics re-
It is well known that the massless limit only makes sense foveal; we give some preliminary report at the end of Sec. IV.
functions of the gradients of the fields. But the Noether curlt suggests that the situation for ®f, N>2, is not different
rent of the @2) symmetry is given by from that for G2).

eipx

i,(0)=2P(x)3,0?(x) - D@ (x)d, 6P (x)  (9) lll. THE NOETHER CURRENT OF THE O (2) MODEL:

. . . . . ANALYTIC ARGUMENTS
and it cannot be written as a function of the gradients. It is

also easy to see directly that its correlation functions do not The Q2) model is determined by its standard Hamil-
have a limit asn— 0 (see Appendix B The Noether current tonian(action



57 CONTINUUM LIMIT OF TWO-DIMENSIONAL SPIN . .. 113

) ) (for p#0). Because the current is conserved, its divergence
H=— 2 s(i)-s(j), (13)  in the Euclidean world should be a pure contact term and for
) dimensional reasons the two-point function should be pro-
where the sum is over nearest-neighbor pairs on a squaR@rtional to as function, i.e.,
lattice and the spins(-) are unit vectors in the plari¢’. As 1
usual, Gibbs states are defined by using the Boltzmann factor F~(p,L)=const. (21)
exp(— BH) together with the standaalpriori measure on the . . . Lo
spins first in a finite volume and then taking the thermody—The constant s in tact determmed by a. Ward' 'fje”“ty n
namic limit. terms ofE=(s(0)-s(u)): Considen(for a suitable finite vol-
The model has been studied extensively both theoreticallyme the partition function
[5] and by Monte Carlo simulationgsee, for instance,
[8—19]). lts most interesting property is its so-called KT 7= H d¢(i)H exp{Bcod o(i)— ()]}  (22)
transition from a high-temperature phase with exponential [ i)
clustering to a low-temperature one with only algebraic de- ] ) ) ) )
cay of correlations; according to a recent estimate this traneplacing under the integra(i) by ¢(i)+a(i) does not
sition takes place g8~ 1.1197[10]. change its value. So expanding in powersagfall terms
The nature of the transition is supposed to be peculiar€xcept the one of ordex’ vanish identically ina(i). This
with exponential instead of the usual powerlike singularities!€ads in a well-known fashion to Ward identities expressing
but this is not our concern here. Instead we want to study thée conservation of the current. Looking specifically at the
model at its transition point. We are in particular interesteds@cond-order term ia and Fourier transforming, we obtain
in the correlations of the Noether current, given by ) o AL
(lia(p,0[%)=F*(p,L)=BE. (23

Ju()=Bls1(1)Sa(i + 1) = Sp(1)81(1 + ) ] This is confirmed impressively by the Monte Carlo simula-
— fci CnN g tions that are reported in Sec. IV.
A g(i+ )= ¢, a4 The thermodynamic limit is obtained by sendihg-
where for fixed p=2an/L, so that in the limitp becomes a con-
tinuous variable ranging over the interyat 7, 7). The Q2)
si(i)=cog p(i)], sy(i)=siM¢(i)]. (15  model not only does not show spontaneous symmetry break-
ing according to the Mermin-Wagner theorem, but it has a
To our knowledge this observable has not been studied in thénique infinite volume limit, as shown long ago by Bric-
literature. mont, Fontaine, and Land4lil]. In Sec. IV we illustrate the
On a torus the current can be decomposed into threeonvergence to the thermodynamic limit with Monte Carlo
pieces: a longitudinal one, a transverse one, and a constagifnulations.
(harmonig piece. This decomposition is easiest in momen- The continuum limit in a box, on the other hand, is ob-
tum space and effected by the projections tained as follows: We take a fractia. =L/l of L as the
standard of length{since the system does not produce an
T (ePu—1)(e Pr—1) intrinsic scalg¢ and look at the correlations of}’"(x)
Puv=| Ouv— (1=0p0), (18) = (L/1)j (i), with x=il/L for L—0; | becomes the size of
> (2—2co9,) the box in “physical” units (see[12] for the principles of
“ this construction In Fourier space that means that one has to
(ePu—1)(e~Pr—1) study, e.g., the.behavior cﬁT(p;L) fOI: fixgq n wherep
ple:: (1= 8p0), (179  =2mn/L. We will prove that this limit is trivial: It is inde-
2 (2—2com,) pendent ofp, corresponding to a contact term xnspace.
m « This behavior is also illustrated by our numerical simulations
in Sec. IV. More precisely, we want to prove rigorously that
and the continuum limit of the thermodynamic limis"(p,»)
and Ft(p,*) of F'(p,L) and F-(p,L) are constants; the
PTw= 8,v0p0s (18)  second fact is of course again just a restatement of the Ward
identity (12), whereas the first one expresses the vanishing of
with p,=2mn,/L,n,=0,12 ... L—1. curlj in the continuum, thus confirming Affleck’s claim re-
In the following we will mostly discuss these correlations garding the enhancement of the continuous symmetry.
in momentum space. In particular we study the tranverse The continuum limit in the infinite volume is obtained as

momentum space two-point function follows. Let F(p;>)=T(p) be the Fourier transform of the
. . . one-dimensional lattice functiof(n). In general, T has to
FT(p,L)=G(0,p;L)=(]]1(0,0)|?) (19  be considered as a distribution ¢r 7r,7) and it can be

extended to a periodic distribution on the whole real line.
(for p#0; the caret denotes the Fourier transfprand the  The continuuum limit ofT(n) also has to be considered in
longitudinal two-point function the sense of distributions; it is obtained by introducing an
integerN as the unit of length, making the lattice spacing
Fl(p,L)=G(p,0;L)={(|j1(p,0)|?) (200  equal to IN. For an arbitrary test functiof (infinitely dif-



114 ADRIAN PATRASCIOIU AND ERHARD SEILER 57

ferentiable and of compact suppoon the real axis we then for x;#0 and
have to consider the limil— o of

FT(x1,L) =2 (ja(X1,X2)j2(0,0)=0 (33
T(n). (29 X2

n
(T,f)NEEn‘, f(N
for all x;. From these two equations it follows directly that
We claim that the right-hand side of this is equal to . ~ . .
. O<F'(p,L)<FT(OL)=F~(0L)<F"(p,L)=BE.
EJ dq T(%)f(q). (25 39
* These inequalities remain of course true in the thermody-
Proof. Insert in Eq.(24) namic limit, but we have to be careful with the order of the
limits. If we defineF(p,») and F-(p,*) as the Fourier
1 (7 . _ transforms of lim_..F'(x,L) and lim _.F(x,L), respec-
T(n)= ﬂf dp T(p)e™*" (26) tively, one conclusion can be drawn immediately.
o7 Proposition FT(p,) andF'(p,=) are continuous func-
and tions ofpe[— ).
The proof is straightforward, because due to the inequali-
1l - ipr/N ties (32)—(34) together with the finiteness @ the limiting
AN = ﬂJ_de f(p)e (27 functionsF" and FT in x space are absolutely summable.
However, it is not ensured that the limits—«~ and p—0
and use the identity can be interchanged, nor that the thermodynamic limit and
Fourier transformation can be interchanged. On the contrary,
by the numerics presented in Sec. IV, as well as finite-size

ipn+igna_—
zn: € 2772 o(p+qat2mr). (28) scaling arguments, it is suggested that
This produces, after carrying out the trivial integral oeger lim lim IEL(p,L)> lim F-(0,L) (35
using theé distribution, p—0 L—o» Lo
N (= o and therefore also
o= dp 2 T(-pfp+2mr)N)
2m ) —m 15 lim lim Et(p,L)> lim lim FT(p,L). (36)
- p—0 L—o» p—0 L—x
1 N A g\,
“om 2 | dg T| — g |f(a+2aNr). (29  This will play an important role in the justification of Af-

fleck’s claim. However, for now we want to show only the
following. A

Proposition In the continuum limit bothF(p,*) and
FT(p,) (p#0) converge to constants.

Proof. The proof was essentially given above in Egs.
(26)—(30). We only have to notice that due to E(B4)
lim, .oF(p,) and lim, .oFT(p,) exist.

1. . 1 ) In spite of this result, Affleck’s claim could still fail in a
lim (T,f)N=2—T(O)f dqg f(q)=2—f(0)T(0), (30 different way if FT(p,) and F-(p,*) converged to the
N—o & i same constant in the continuum limit. Let us denote the con-
tinuum limit of IET(p,w) by g. Then the current-current cor-
relation in this limit is

Finally, using the periodic extension @{p), this becomes
what is claimed in Eq(25).

From Eq.(25) one sees that what is relevant for the con-
tinuum limit is the small momentum behavior ®(p). In
particular, if lim,_,,T(p)=T(0) exists, we obtain

expressing the fact that in this case the limitTofs a pure
contact term.
Next we use RP of the Gibbs measure formed with the

standard actiorfsee, for instancd,13]) on the periodic lat- (i 4 (p)=BEPL,+0gP},=gd,,+(BE—Q) p”g”,
tice. Reflection positivity means that expectation values of P
the form (37)

So we see that i§= BE, the current-current correlation re-
duces to a pure contact term and vanishes in Minkowski
are non-negative, whe#e is an observable depending on the SPace. Above we proved only that

spins in the “upper half’ of the latticéx|x;>0} and 6(A) <pE (39)

is the complex conjugate of the same function of the spins at g=pE.
the sites withx, replaced by—x,. Applied to the current owever, if the current-current correlation were a pure con-

(AO(A)) (31

two-point functions this yields tact term, it would be unavoidable to conclude that also the
spin field becomes ultralocal. This can be seen as follows: If
FL(Xl,L)ZE (j1(X1,%2)}1(0,0)=<0 (32 the current is ultralocal in the Euclidean world, by the
X2 Osterwalder-Schrader reconstructipi¥] the current field
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FIG. 1. Longitudinal current correlation.

0.

F(p.L)

0.

CONTINUUM LIMIT OF TWO-DIMENSIONAL SPIN . ..

by

dynamic limit.
operator in Minkowski space has to vanish and so does the

charge operato®@= fdx jo(x,t). However, if the charge op-
erator generates the(®) symmetry, it would have to have
the following commutation relation with th@enormalized,
Minkowskian spin fields(x):
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FIG. 2. Transverse current correlation: approach to the thermo-

=400 we only have one such run. The thermodynamic limit
is obtained by sending— < for fixed p;=2wn, /L. In Fig.
2 we show the values d&'(p,L) plotted againsp for dif-
ferent values ofL. The figure illustrates the convergence

towards the thermodynamic limit, although there might be

[Q,Sa(X)]= €apSp(X),

which would then imply thas(x) vanishes identically. This
argument is not fully rigorous because it assumes(&89).as

(39

some nonuniformity fop—0.
In Fig. 3 we plotFT(0,L)—FT(p,L) for L=50, 100, 200,

and 400 against the continuum momentum paramater

=pL/27. This figure illustrates how this difference con-

well as the validity of the Osterwalder-Schrader axioms;verges to zero as we approach the continuum limit, in accor-
both have not been proved in full rigor for the continuum dance with the analytic proof given in Sec. lIl.

limit of the O(2) model. Also there is only numerical evi-

dence, but no rigorous proof, that the continuum limit of thenamely, whether or not the continuum lingjtof IET(p,oc)

spin field is not ultralocal. For these reasons we think that it
is worthwhile to show in the next section numerical data that
(together with finite-size scaling argumentsle out directly
ultralocality of the current.

IV. THE NOETHER CURRENT: NUMERICAL
SIMULATIONS

As remarked before, a recent estimate for the transition3

point is[10]

Bxr=1.1197. (40

Of course this number is not exact, but for our purpose it is
sufficient that the correlation length is so large that on the
lattices we can simulate it may be treated as infinite.

In Fig. 1 we report some data of the longitudinal current-
current correlationF-(p,L), taken on a 6464 lattice at
different values ofB. The figure illustrates how well the
Ward identity(23) is satisfied by our data.

For the transverse current-current correlattdifp,L) we
took data atB=1.1197 on lattices of linear extemt= 50,
100, 200, and 400. For the three smallevalues we took
three or four runs of 500 000 clusters each, wheread for

0.L)-F(p

Pt
=
[

Let us finally turn to the question left open in Sec. I,

is
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FIG. 3.

Transverse current correlation on different lattices.
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TABLE I. Discontinuity d(L)=BE—g(L) at By for different TABLE II. Discontinuity d(L)=BE—g(L) at various values of
values ofL. B<pBkr andL.
L L/ e g(L) d(L) B L L/ Eer d(L)
25 1.2575 0.09769 0.71(10) 0.93 12 1.8319 0.36482)
50 1.2657 0.10666 0.7021B) 0.93 24 2.4441 0.19284)
100 1.2667 0.11638 0.69@0) 0.93 36 3.2259 0.08734)
200 1.2722 0.12357 0.636m1)
400 1.2839 0.12944 0.67¢%) 0.96 18 1.8314 0.36384)
0.96 36 2.4242 0.19291)
0.96 54 3.1996 0.09284)
equal toBE. For B< Bkt the current two-point function de-
cays exponentially, hence its Fourier transform is continuous 0-99 32 1.8595 0.35489)
(and even real analyticThe same applies then to the longi- ~ 0.99 63 2.4537 0.19184)
tudinal and transverse patf(p,») andF'(p,=); in par- 0.99 64 2.4467 0.18626)
ticular 0.99 96 3.2110 0.09093)
A i 1.04 63 1.5868 0.47099)
FT(0°)=F"(00)=BE (42)

. . 1.06 63 1.4549 0.54149
by the Ward identity(23).

That does not, however, imply that aB= Bk, 108 63

. o1 . 1.3722 0.60126)
lim,_oF ' (p,»)=BE, because the current two-point func-

. P 1.08 126 1.4188 0.58186)
tion cannot be expected to be absolutely summable there. On

the contrary, if we can find that 1.09 126 1.3990 0.61729)

lim F(0,L)< BE, (42
L—oo

with the data taken a8y, this tells us that lim_,..d(L) is
this implies also somewhere between 0.6 and 0(@&8actually might be equal
to 2/7). The two data sets together, in any case, provide
. convincing evidence that the Noether current is not an ul-
g=IlimFT(p,»)<BE (43 tralocal field.

p—0 In closing we want to repeat that none of our analytic
considerations in this paper were specific to thH@)®nodel:
They apply equally well to the Q{) model for anyN, pro-
vided it has(as we believea second-order phase transition at
some finite value3.,; . We ran some exploratory tests in the
O(3) model. If we run at8=3, a value at which this model
. may be in its massless phase, unfortunately any lattice ame-
—F-0L) (44 nable to numerical simulation is so “frozen” that Monte

Carlo data simply reproduce perturbation theory. Thus the
goes to a positive numbefless than 0.68 but probably only alternative is to run in the massive phase, vatAndL
greater than 0)6 suggesting that indeegl< BE. However, chosen such that we see massless behalierg) yetL is
the question is whether or not this “discontinuity” is a finite large enough so that the model can exhibit nonperturbative
volume artifact. To address this issue we took datgBat behavior. Our data revealed a behavior similar to the one
< Bk, keeping the ratic./¢ fixed while increasing. In this  found in Q2): At fixed L/¢ there is a discontinuity that
approach the massless continuum limit would correspond t@cales with increasing and is a function of./¢ only. How-
L/§—0 (while L/§¢—o would correspond to the massive ever, that should happen whether or t, is finite, hence
continuum limit in a thermodynamic baxActually we use )| we can say is that i3, is finite, the situation is quite

L/ & instead ofl/ £ as an independent variable, Whéigis  gjmilar to the one encountered in théZDmodel.
the effective correlation length measured on the lattice of

sizeL; in the finite-size scaling limit the two variables are
equivalent becaude/ ¢ becomes a unique monotonic func-
tion of L/¢. The data listed in Table Il indicate thd{L)

= BE—F"(p,L) [the discontinuity of--(p,L) at p=0] de- A.P. is grateful to the Alexander von Humboldt Founda-
pends only orL/&., in agreement with finite-size scaling, tion for financial support and to the Max-Planck-Institut for
and that it goes to a value above 0.6 in the massless coiits hospitality; E.S. is grateful to the University of Arizona
tinuum limit, which is reached around ¢.4~1.3. Together for its hospitality and financial support.

because by Eq34) FT(p,~)<lim,_..F-(0L).
The Monte Carlo data taken @ and listed in Table |
indicate that

) (2
dEBE—FL(O,L)zFL(TTr,L
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APPENDIX A: THE CURRENT . . . A . ~ .
curlf(X)=j1(X)—J1(X+2)+j(x+1)—jo(x
OF THE TWO-COMPONENT FREE FIELD 100 =1200 = Jalxt 2+ Jo(xH 1) = (%)

We first consider the massive two-component scalar field =[P100) =Py (Xx+1+2)J[Po(x+1) ~ Py(x+2)]

in a finite periodic box of siz& on the unit lattice. It consists _ _ 2.5 2
of two independent Gaussian lattice fiells and ®,, both [P20) = Po(x+ 1+2) [ P1(x+1)
with covariance — Dy (x+2)], (A3)
L-1 .
Clx—y)= iz D exp2min(x=y)it) divj (x) =1 (X) (AD,) (X) = Do (X)(AD)(X).  (Ad)
f1n2= m2+2 (2—2cog2mn, /L) It is obvious from these formulas that the massless limit of

curlj exist because it depends only on differencesbos,
(A1) whereas for diy it does not. Likewise the two-point function
t8f the transverse part of the current has a limitnas-0,
whereas the two-point function of the longitudinal part does
not.
Next we want to give explicit expressions for the two-
| (X)=0,(x)D (x+/l)—<1>2(x)d>1(x+[¢). (A2) point functions of the current in momer)tun_] space. We give
separately the transverse and the longitudinal gafte,L)
It is straightforward to compute the curl and the divergenceand FB(p,L), respectively, choosing the momentum

The Noether current is given by an expression analogous
Eq. (3), namely,

of this current: =(p1,0)=(27k4/L,0) in the 1 direction:
1 27Tn2
L)= 2 ! - - A5
Fo(p, 24, " 2mn, 2mn, 2m(ki—ny) 2mn, (A5)
+4— ZcosT 2COST m-+4— ZCOSf—ZCOST
and
27T(2n1_k1)
l-cos————
=5 S ! - (AB)
O(p 2 ny,Ny 2 27Tn 277!’]2 2 2 (kl nl) 27Tn2.
+4—2cos C —Zcos C +4—2cos 3 —2c0S C

The continuum limit of this function would be obtained by tion is then whether the field is exact, i.e., there exists a
sendingL —«, keepingk,=pL/27 fixed. It does not exist, local antisymmetric tensor field such thatd =dW¥.
but if we replaceFT(p,L) by FT(0L)—FT(p,L), the limit There are some well-known examples where the answer is
does exist. This is illustrated in Fig. 4. “no,” even though Minkowski space is topologically trivial:
The thermodynamic limit, on the other hand, is obtained(i) the free Maxwell fieldF in dimensionD=2 [15] and(ii)
by sendingL—o, keepingp=2wk,/L fixed. This limit  the gradient of the massless free scalar figloh two dimen-
does exist fop+#0, as illustrated in Fig. 5. sions because the field does not exist as a locaWight-
man) field.
APPENDIX B: LOCAL COHOMOLOGY In this paper we came across a different 2D example: Let
It has been noted long ag®5—-17 that the imposition of b= pdxtdx?, (B2)
locality (local commutativity, Einstein causaljtynay make
the cohomology of Minkowski space nontrivial. The prob-
lem of local cohomolgy may be stated as follows: Assume
that an antisymmetric tensor field, ﬂk(x) is given, 1

which satisfies Wightman’s axioms and is closed, i.e., satis- (h(0) (X)) = W (B3)
fies X

where ¢. has the Euclidean two-point function

.....

u Then ® is trivially closed in two dimensions, but it is not
db=d E q’ﬂl ----- Mkdx 1...duy|=0 (B1) exact, i.e., there is no local vector figjg such that

(in the notation of alternating differential formsThe ques- be=€,,0,] - (B4)
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FIG. 4. Transverse free current correlation: approach to the con- FIG. 5. Transverse free current correlation: approach to the ther-
tinuum limit. modynamic limit.

More recently, people working in string theory have also
come across the phenomenon of nontrivial local cohomol-
'ogy. Banks and Dixof18] have noticed a problem with the
current generating the Lorentz transformations of uncompac-

g?;;t'?on‘z;g;fytge (t:/lv(;_gﬂlc;]tir;unocs“:lgglizgzrfocgﬂ/lglrliemce tified space-time in the heterotic string, which is in essence
q P . just the local cohomology problem. Polchinsk$9] has

we find t_hat there is no scale-invariant solution. The COVainked the occurrence of this problem to the noncompactness
ant solutions are

of the target space in this case and so one might expect that
the problem cannot arise in the continuum limit of theNp(
) 5 nonlinearo mod_els. But we do not see how his arguments
G..(x)=—6 Inx +)\+x « Inx“+1+X B5) could be made into a real proof: It should not be forgotten
wv mv gy? IV : that quantum fields are always distributions and so the idea
of compactness of the target space cannot be taken literally;
This is not the two-point function of a local vector field, it is only a property of a particular lattice approximation of a
continued to Euclidean times: It violates the so-called refleceontinuum theory. This is the reason why we think the argu-
tion positivity [14] because the logarithm changes sign. Forments that we present in this paper to rule out nontrivial local
the same reason it is also not the two-point function of acohomology for the Noether currents of théXDmodel are
random field. necessary to close a gap.

This example can be made more explicit by requirihg
to be a generalized free, i.e., Gaussian, field, with its two
point function given by Eq(39). If we solve the differential
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