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Analysis of self-written waveguides in photopolymers and photosensitive materials
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We develop a series expansion technique for analyzing the waveguides which can be self-written in photo-
sensitive materials and photopolymers. Series expansions of the electric field amplitude and the refractive
index distribution in the propagation distance are used to describe the primary eye, a feature that indicates that
a waveguide is being formed in the material. We apply this technique to arbitrary incident beams and geom-
etries, and we also take the material loss and saturation of the refractive index into account.
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[. INTRODUCTION solutions to this problem are known. The most straightfor-
ward approach is to solve these equations numerically, and
Previous theoretical workl,2] indicates that a channel we have done this for both photosensitivity and photopoly-
waveguide can be self-written in a planar slab of photosenmerization using a beam propagation method combined with
sitive glass by a Gaussian beam at a wavelength at which tHépdates of the refractive ind¢g,2]. Although this technique
material is photosensitive' This occurs for both one- ancprOVideS a detailed and accurate description of the process, it
two-photon photosensitivity modelg]. We have found that requires intensive use of both computer time_and memory.
self-written waveguides also form in bulk photosensitive ma-WWe have also developed a modal decomposition technique
terials, where no waveguide is present initially. [6] for thg photosensitivity process Where we de_compose_the
Consider a Gaussian beam incident on a photosensiti\/%'ecmc field and thg refracyve mdex into ngmlte—Gau33|an
material. Initially, the beam diffract&@s in Fig. 1 for a bulk modes._ Although this tec_hnlque is more effl_(:lent than the full
materia). The photosensitivity of the material causes the re-Simulation, it also only yields purely numerical results. Here
fractive index to increase, and it increases most where th&/€ describe an analytical series expansion technique that al-
intensity is highest. Hence the refractive index change i$0WS US to describe some important features of self-writing
greatest on the axis of propagation of the beam, and so tH@avegwde_s exactly. In pa.rtlcular., we d.escrlbe_the formatlon
beam is guided more strongly along this axis. We haveand evolution of maxima in the intensity and md@x_hlch
shown that over time this effect leads to the formation of awe refer to as ey@swhich are precursors to waveguide for-
channel waveguide in the glass. The structure of the resulting'ation. . . _
waveguide depends on the choice of input beam profile. Dif- N previous work, we applied the series expansion tech-
ferent choices of the incident beam shape allow the propefidue to a Gaussian beam incident on a planar photosensitive
ties of the resulting waveguide to be tailored to suit the deMaterial[1,2]. Here we generalize the technique to both pla-
sired application. nar and bulk geometries, and to an arbitrary input beam. We
Although self-writing in a photosensitive glass has yet to
be demonstrated experimentally, other self-writing processes .
have been observed. For example, photopolymerization has '
been used to create permanent, self-written solid structures in
bulk liquid photopolymer$3,4]. The features of this process ,
are similar to the self-writing process described above. The Tx
principal difference between photosensitivity and photopoly- '
merization is that in a photopolymer, the index response is
delayed by 0.01-1 s relative to the illuminatip®,4]. Ta-
pered waveguides have also been written in UV-cured epoxy
using a similar, dynamic self-writing procefs]. All these ;
self-writing processes are qualitatively similar. 7\
Here we present an analytical technique developed to ‘ y
study some of the principal features of this class of self-
writing processes. We apply this technique to both photosen-
sitivity and photopolymerization, and it can be used to study
either the planar or bulk geometry. %
We use two partial differential equations to describe self- z
writing; one to describe light propagation, and another to
describe how the refractive index changes in response to FIG. 1. Schematic of a bulk photosensitive material, showing
light. This model is described in detail in Sec. Il. No exactthe initial diffraction of the Gaussian beam.
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also take the saturation of the refractive index change and thgg. (2) because it is simple, and so can give useful analytical
material loss into account. This allows us to obtain a greateresults. This model has been previously used to describe
physical insight into the types of waveguides that can behotopolymerization3,4].
self-written in real photosensitive materials and photopoly- In previous work on the planar photosensitive geometry
mers. [1,2,6], we ignored the effects of saturation. We did this

Sections Il and Il describe the model we use to study thidecause the typical maximum refractive index changes re-
self-writing process. In Sec. IV we discuss the maxima thatjuired for waveguide formation in the planar geometry are
form in the intensity and refractive indefprimary eyeg not large. For example, consider a Gaussian beam of width
which are precursors to the formation of a waveguide in the20 um incident on a planar waveguide at the one-photon
material. Section V outlines the way in which series expanphotosensitivity wavelength of 244 nm. Numerical simula-
sions for the intensity and refractive index distributions intions indicate that a fairly uniform channel waveguide can be
the material are calculated, and how they can be used taritten with a maximum refractive index of*410™’ (at the
calculate the trajectories of the primary eyes, and hence caprimary eye in the refractive indgxwhich is so small that
culate the shape of the resulting waveguide. Section VI givethe effects of saturation can be ignored. However, for bulk
the series expansion results found when the saturation of thghotosensitive materials, we find that the index grows with-
refractive index or loss are included in the model. The result®ut bound before any waveguiding structure evolves. If satu-
of the series technique for photopolymerization are also preration is included, we find that by the time a fairly uniform
sented in this section. channel waveguide has formed, the maximum refractive in-
dex is close to the saturation value. Thus saturation cannot be
ignored in bulk geometries.

Many of the results in this paper are based on a Gaussian
The paraxial wave equation is used to describe lighteam, which is incident from the left on theput face

1. MODEL

propagatior{ 7,8]: (z=0). For a planar material
e 1 _ E(y,01)=Eqexp(—y?la?), ©)
i
; 2 2 _
ikono— +5 Vi€+konoAnE+skonoaf=0, (1) apq for a bulk material

E(x,y,01)=Eexd — (x3+y?)la?], 4
wherek, is the free space wave numberg is the initial (Y00 = Egexl ~( el @
refractive indexAn(x,y,z,t) =n—n,, wheren is the current  wherea is the width of the beam, corresponding to a full

refractive index and(x,y,z,t) is the electric field envelope width at half maximum(FWHM) of \/2In2a in the intensity.
amplitude. We explicitly include a constant loss term in Eq.

(1), where« is the attenuation coefficient. The loss in deci- IIl. THE MODEL IN DIMENSIONLESS FORM

bels per unit length is 4.343 For a planar material,

Vtzz‘?zmyz' and we assume that the field profile is unaf-  yere we minimize the number of independent variables

fected in thex direction [1,2,8. For a bulk material, py reducing the equations to a dimensionless form. Because

Vi=a%19x*+ % dy>. We have approximated the refractive the typical time and length scales in this problem depend on

index term in the paraxial wave equation by a linear factorthe intensity and the spatial extent of the input profile, we

because the refractive index changes we consider are smalroduce the dimensionless transverse coordinates

(typically less than 1%]7]. X=x/a, Y=yla, wherea is the beam width, as defined in
We use the following simple phenomenological model,Eqs.(3) and(4). We also define a dimensionless field ampli-

which includes saturation effeCtS, to describe the evolution O{ude E:g/go For non-Gaussian input beanm,is propor-

the refractive index for both photosensitivity and photopoly-tional to some characteristic measure of the transverse spatial

merization[2—-4,9,1Q: extent of the input profile, andy, is a characteristic field
amplitude. The paraxial wave equatiffgg. (1)] and the in-
dAn An dex evolution equatiofEq. (2)] can be made dimensionless
7=A(55*)p( 1- Ans)' (2)  using the scalings
Z=Z/(k0n0a2), (5)
wheret is the time andAng is the fixed saturation value of
the refractive index change. For a photosensitive matefial, N:azkgnoAn, (6)
is calculated at timé. For a photopolymer, the refractive
index change due to photopolymerization is delayed by time TzazkgnoA(gogg)Pt, (7)
7 (typically 0.01—1 s relative to the illumination3]. Hence
£ is calculated at timeé— 7 for a photopolymel3,4]. For L=a%konoa, (8)
photopolymerization or a one-photon photosensitivity pro-
cess,p=1, and for a two-photon photosensitivity process szazkgnoAé’oé’gr 9)

p=2. The real coefficienA depends on the material prop-

erties, the number of photong), and the wavelength of the Z andY are related to the dimensionless distanfemnd »
light. As no consensus has been reached on the best modeded in our previous papdrs,2,6| as follows:{ =k?a?Z and
for saturation in a photosensitive material, we choose to usg=kay.
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Using these dimensionless quantities, E4sand(2) are  cal simulations suggest that the eye is always a precursor to
the formation of a waveguide at that transverse position in

] 1 ) i the material. Furthermore, our simulations indicate that the

I—5+ 5 VE+NE+ 5E=0 (100 structure of the self-written waveguide is closely related to

the trajectories of eyes within the material. Hence we con-
and centrate here on describing the behavior of the primary eyes,
and use this information to make predictions about the types
N p ) of waveguides that can be self-written using photosensitivity

——=(EE") :

T (1)  or photopolymerization.

In the following discussion, although we refer to eyes in
the intensity distribution, the analysis is equally valid for
eyes in the refractive index distribution. Also, in the remain-
der of this section we consider only the planar geometry
here. The eye is a local maximum, and so the following
conditions must hold at the eye:

LN
N

S

where in Eq.(11), E is calculated at tim& for photosensi-
tivity, or at T— T, for photopolymerization. Now we take
V2=42/9Y? for the planar geometry, orV2=9?/9X?

+ 0%/ 9Y? for the bulk geometry. The Gaussian input profile

IS
al
E(Y,0,T)=exp —Y?) (12 270 (14)
for the planar geometry or 1
—=0, (15)
E(X,Y,0T)=exg — (X2+Y?)] (13) Y

) ) ‘wherel =1(Y,Z,T) is the intensity. Lefl =T, be the time at
for the bulk geometry. In these new dimensionless coordiyhich the eye forms. FGF < T,, the only maximum that can
nates, the system of equations formed by E#6) and(11)  exist is the trivial one aZ=0, and forT>T,, there is a
along with the initial condition[Eq. (12) or (13)] do not  maximum somewhere within the material. Hence at time
depend ora or &, and hence the only remaining parametersy— 1, the following condition must be satisfied:
in this dimensionless system akg, L, andTy4. This sim-
plification makes our problem much more tractable: for a 22l \2 A 44
Gaussian beam, or any beam that can be described by two (m) _Eﬁ:
parameters, we now only have to explore a three-

dimensional parameter space, as opposed to a fiveyp that at the eye position, the local curvature is zero. Given

0, (16)

dimensional one. I, Egs.(14)—(16) allow us to find the time and position at
which the eye forms. Equationd4) and (15) can also be
IV. PRECURSORS TO WAVEGUIDE FORMATION used to find the trajectory of the eye as a functiorT of

. . . ) , ) We observe from our numerical simulations that eyes are
Using the numerical S|mulat!on descnbe_d in Sec. |, Weyynijcally located near the input face, at small Hence we
have solved Eqg10) and(11) using a Gaussian input beam (se series expansions for the intensity and the refractive in-
[1]. The major steps in the evolution of a self-written wave-jex in the propagation distanc&, about the input face
guide in a photosensitive mater{a@] or photopolymer are as (7—0) to explore the behavior of the eyes. We leave the
follows. The refractive index on axis increases with time anddependences on time and the transverse coordinates exact in

thus the diffraction of the beam decreases. Initially, the waisfnege expansions, and use them to predict the behavior of the
of the beam is at the input face, and so the intensity has 8yes.

trivial maximum at the origin. After some time, the refractive * |, sec. v we describe our method for calculating the se-

index becomes large enough to counteract the diffractionyjes expansions for the intensity and the refractive index in a
and this maximunithe primary ey¢ moves away from the  aterial that is undergoing a self-writing process.
input face, along the propagation axis. A similar maximum

also forms in the refractive index profile. The locations of V. SERIES EXPANSION TECHNIQUE

these maxima change over time. As this process continues, o o . .

the waveguide beyond the eye gradually becomes more uni- We assume that the refractive mdex is initially uniform in

form. Ultimately a channel waveguide is formed in the re-the plane for the planar waveguide geometry. For a bulk

gion beyond the primary eye. For the one-photon photoser{naterlal(ﬁg. 1), we assume that the refractive index is ini-

Slthlty process and the photopo|ymerizati0n proceg'ﬁh t|a”y uniform throughout the material. Hence®t0,N=0,

reasonable physical values for the déJay particularly uni- and the loss (), is constant and uniform throughout. The

form channel waveguide is formed. For more complicatednput beam profile is taken to be the arbitrary functigy{Y)

beam shapes, such as beams with multiple maxima in thir the planar case, dqo(X,Y) for the bulk case.

transverse profile, multiple primary eyes typically form, with  In calculating these series expansions, we keep the depen-

one eye corresponding to each transverse maximum. dences on the transverse coordinates and time exact. We de-
An eye forms when the refractive index change in thefine the normalized intensity to de=EE* and write

material has become sufficient to overcome the initial dif- w

fraction of the beam, and hence the self-written refractive | = E | 79 (17)

index structure has begun to guide light. Indeed, our numeri- o ¢
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Substituting the expansions intensity drops off due to loss. For the remainder of this
section we consider the planar geometry, and so we can take

e i £2e 19 Ng=o. If we write Eq=r(Y)exdi4(Y)], Eq.(22) becomes
a=0 a| ¢
_ W(IOW):LIO’ (23
N=2 NyZ¢ (19 . ,
q=0 wherer<=1,. Any physically reasonabllg, must go to zero

asY— *oo, Hence if we integrate Eq23) over all Y, the

into the paraxial wave equation, EG.0), and the index evo-  right side is a positive constant, and the left side is zero, as
lution equation, Eq(11), recurrence relations can be derived jong as¢ is not rapidly varying at-c. This indicates that
for the coefficients in these series by equating powerg.of Eq. (23) can only be satisfied for al if L=0, and hence
Note that the coefficientg,, 14, and Ny depend on time  can only be satisfied if the beam has a flat phase front. Hence
and the transverse coordinates. The recurrence relations afethere is loss, or the beam does not have a flat phase front,
then the expansions must contain at least one odd tein in

We find that if we take the loss to be zelo< 0), and the
beam phase front to be flat, then there are no odd terms in the
expansions for either the planar or bulk geometries. Hence

i(1_, -1 iL
Eq=a 5V Eq_1+k2O NiEq-1-k+ 5 Eq-1]  (20)

and (for p=1) for simplicity we consider a flat phase front beam in a loss-
less planar geometry. For a beam with a flat phase figgt,
fTIq(T’—Td) , can be made real. Thdg=E3, and
TJrQ(r-m 1 . 2
g1 , , =7 (E?~ EoEg") - T(E3EG—3ESE,D) (24
1 fTNk(T MNg-w(T _Td)dT’ (21)
Nsk=o J14 Q(T'—T) ’ for the p=1 photosensitivity process, whekg is the de-

) rivative of E, with respect toY evaluated al.
where Q(T)=exp(~1¢°T/Ny). The time dependences are  \yhen there are only even terms in the expansion(E4).
given exactly in Eq.(21) and the spatial dependences arejs always satisfied =0, as there is always either a maxi-
suppressed. The recurrence relationfier2 is obtained by  myum or a minimum there. Using Eq&5), (16), and(24), it
replacing thel, in Eq. (21) by =¢_l¢l, . is straightforward to show that an intensity primary eye
Equations(20) and(21) can be used to generate the elec-forms at timeT,, which can be found using
tric field amplitude and refractive index series expansions for
both the photosensitivity and photopolymerization processes. AE3E;T,=E}?—EoEy". (25
The intensity series expansion is generated using
lq=2{_oExE%_ . The terms in these expansions rapidly be-This is consistent with the earlier result for a Gaussian beam
come quite complicated for the general case, and we used thél- The right-hand side Eq(25) is a measure of how
mathematical analysis programaTHEMATICA to calculate  Strongly the beam diffracts at smail The presence of the
them. fourth derivative indicates that the initial diffraction is very
Some of the first few terms for the photosensitivity pro- Sensitive to the beam profile, because beams that differ only
cess are in the Appendix. Further terms in these expansior8 the fourth derivative of the intensity can diffract at dra-
have been calculated, but they become increasingly compimatically different rates. This feature is independent of the
cated. Later we present some of the higher order terms fdpdex evolution. The refractive index change in the input

special cases. The first few terms for the photopolymerizaface region acts like a lens on the incident beam. The left-
tion process are discussed in Sec. VI C. hand side of EC](25) is a measure of the Strength of this lens.

HenceT, is the time at which the lens has grown strong
enough to counteract the initial diffraction of the beam, and
hence form an eye.

We find that some quite general and exact results can be e now calculate the initial trajectory of the intensity eye
obtained for the trajectory of the eyes in the intensity and th%fter it has formed. Most primary eyes format O, and we
refractive index if the series expansions only contain everkonsider only this case here. We expand the intensity series
powers ofZ. In this section we discuss the conditions in expansion about the formation pointi.e., Z=5Z,

which the expansions have this form, and the resulting imy =y 1 sy andT=T,+ oT). If we assume thaZ, sY, and

A. Investigation of eye trajectories

plications for the eye trajectories. _ _ ST are small, this expansion is of the form
Equation(A3) shows that the first odd term in the inten-
sity expansion disappears if | ~ag+a,0Y2+a,0To6Z%+az6Y6Z2+a,6Z2*  (26)
IM[E§ VZ(Eo)]=LIg (22 for p=1, where they; are constants that depend on the beam

profile. Since at the eye there must be a maximum inYthe

for all values of the transverse coordinabésand Y. The  direction, we put this expansion into E@.5). This leads to
term on the left in Eq(22) describes the curvature of the

incident beam, and the term on the right describes how the 2a,8Y=—ay6Z>. (27
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FIG. 2. The intensity in the transverse direction for a second- FIG. 3. The initial movement of the primary intensity eyes for a

order Hermite-Gaussian bedisee Eq.(29)]. second-order Hermite-Gaussian bda®e Eq(30)]. The solid lines
are the predictions of the series technique, and the dots are results

Hence regardless of the input beam shape, the eye alwayp$ the full numerical simulation.
initially moves away from the input face in a parabolic tra-
jectory. This occurs for both one and two-photon photoseneye at Y=0 forms at T=1/5=0.2, and the eyes at
sitivity processes. The Gaussian beam is a degenerate eXp= =+ /5/2 form atT=e>%40~0.30.
ample: for this case the trajectory is a straight line along the The beam is symmetric abo¥t=0, and so the eye that
central axig2]. In general, any eye that forms on the centralforms on this axis remains on axis, as for the Gaussian input
symmetry axis of a symmetric beam moves in a straight lingbeam. The eye that forms ¥p=\/5/2 initially moves along
along this axis. the path

At the eye, Eq(14) must also be satisfied, as the eye is a
local maximum, and using this condition we find an equation 2122:5\/§(Y—Yo), (30)
of the form

which is a special case of E(R7), and the eye that forms at
Yo=—/5/2 follows the mirror image trajectory. The solid
lines in Fig. 3 show the way these eyes move just after they
form as predicted using this technique. The results of the full
umerical simulation agree with these predictions for small
, as shown by the dots in the inset in Fig. 3. As expected for
series expansion result, the prediction deviates from the

a,6T+agdY+2a,6Z?=0. (28

Combining Eqgs(27) and(28), we can find the rate at which
the eye moves along its parabolic path.

The same analysis can be performed for the trajectory
the refractive index eye. We find the unexpected result th

to lowest or.der th.e index eye moves along the same raJeGimulation results aZ becomes larger. As described in Sec.
tory as the intensity eye, but at a different rate. This is trug, A, we know that the refractive index eyes follow the same
for both one- and two-photon photosensitivity processestrajectory as the intensity eyes. The eyes are precursors to

Whef? loss is inCIrl]Jd.ed’ the gye trr;jectolr iesf_czn r?e fcr)]uqd u%/Y/aveguide formation, and the eye trajectories can be used to
Ing the same technique, and we then also find that the Interb'redict the resulting structure of the self-written waveguide
sity and index eyes initially follow the same trajectory, re- (see Sec. IV,

gardless of the lossL. Hence our series expansion predicts that three waveguides

form; one corresponding to each primary eye. One wave-
guide forms along the central axis of the material, corre-
As an example of the application of the series techniquaponding to the eye on this axis. As the other two eyes move
we present the analysis of the eye movement for a seconypart (at least at smalk), we predict that the waveguides
order Hermite-Gaussian profile in a lossless planar structureorresponding to these eyes curve in opposite directions. We
without saturation. We choose this particular example behave verified this using the full numerical simulation. Figure
cause it demonstrates how the structure of quite complicatedl is a contour plot of the refractive index in the material at a
self-written waveguides can be predicted using the serierte time in the evolution of the self-written waveguide, and
technique. We consider only the one-photon process here fahe waveguide indeed is of the form predicted by our ana-

1. Example: second-order Hermite-Gaussian beam

simplicity. The input beam is of the form lytical results.
For this example we find that we can also use the results
E(Y,Z=0T)=(4Y?=1)exp—Y?), (29 of the series technique to estimate the relative depths of these

waveguides. If we evaluate the intensity using the series ex-
as shown in Fig. 2. This beam has maximaYgt=0 and pansion at the eye position just after the eye has formed, we
Yo= *+/5/2 (see Fig. 2 For an eye to form, there must be a find that for the outer eyes,
maximum in the transverse direction, and so in this instance,
eyes form at these transverse coordinates. UsingZsy. the 1(Yyax »Zmax » T)~1.31+0.24 (T—0.3)? (32
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CT T T we treatT—1 as a small parameter also. Neglecting small
- terms, the intensity expansion becomes

| |~1-LZ+2(T—1)Z%-227%. (33
Using Eqgs.(14) and(16) for an eye to form gives

4(To—1)Z,—88Z3~L (34)
and

(To—1)~66Z3. (35

15 o We do not need to use E@L5) here because we know by
symmetry that the position of the transverse intensity maxi-
v mum is alwaysY=0. Solving Eqgs.(34) and (35 simulta-
neously, the eye forms at time
FIG. 4. A contour plot of the refractive index profile, which can

be self-written in a planar photosensitive slab using a second-order . E 2\1/3
Hermite-Gaussian beafsee Sec. VAL To~1+ 4 (2205 (36)
for T>0.3, while for the central eye Hence as expected, the presence of loss increases the time

taken for the intensity eye to form. The eye forms at position
I(Ymax »Zmax » T)~140.09 (T—0.2)2 (32 1/ L\18
. . Zg~ 5( 2—2) - (37)
for T>0.2. Hence the outer eyes always have a higher inten-

sity than the eye on the central axis. This suggests that th

waveguides corresponding to the outer eyes are likely to bfhe fractional powers in Eq¢36) and(37) show that even a

more strongly guiding, which is supported by the contours irsmall amount of loss dramatically changes the dynamics of

Fig. 4 this process; the eye forms later, at a finite position in the
o slab.
WhenL =0, there is always a trivial minimum at the ori-
VI. EFFECT OF OTHER MATERIAL PARAMETERS gin after the eye forms. For small using Eq.(14), we find
ON SELF-WRITING PROCESSES the following equation for the position of the eye at tifig

As all materials exhibit some loss and saturation effectsj,USt after it has formed:
we present here series expansion analysis of these effects on
the waveguides that can be self-written in a material. The T—T0~22( 72-372+42
effect of the time delay of the index response in a photopoly-
mer is also explored using this technique.

Z5
=3 (39)

Equation(38) shows that loss causes two stationary points to
form at a finite position within the slabz=2,); one is a
maximum and the other a minimum. The position of the
We consider here the effect of loss in the planar geometryninimum moves towards the input face, while the position
for the one-photon photosensitivity process. We expect thadf the maximum moves away, as it did in the previous re-
the effect of loss on this self-writing process would be simi-sults. Hence loss causes the minimum to form at a different
lar for a bulk material. For simplicity, we again take the position, and change its location over time.
input beam to be GaussidRg. (12)]. By symmetry, the eye The leftmost dashed line in Fig. 5 shows the eye location
moves along the central axis, so it suffices to consider thas a function of time in the absence of loss. When the loss is
expansions on th&¥ =0 axis. Even though this beam has a 0.5 dB/cm, the movement of the maximum and/or minimum
flat phase front, there are odd terms in the series expansiopsir is given by the other dashed line. The corresponding
for a lossy materialsee Eq(A3)]. This is because to lowest simulation results are given by the solid lines in Fig. 5. From
order, the effect of loss is to cause the intensity to drop ofthis figure, we see that for zero loss, the series expansion
linearly with distance into the material. This always occurs,agrees very well with the full simulation results for smal
which can be seen by noting that E&3) does not depend as expected. When the loss is taken to be 0.5 dB/cm, the
onT. Hence from Eq(A3), if a primary eye forms in a lossy series prediction, although excellent, is not as good as for
material, it cannot form at the origin, and so must form aL=0 (see Fig. 5. This is because in calculating these series
finite distance into the sample, dt=Z,. We treat the loss results, we have assumed that the loss is a small parameter.
(L) as a small parameter in order to make this problem tracFor the realistic value of loss chosen here, the agreement is
table: we know that il is small, thenZ, is also small, and still excellent.
so we can ignore higher orders4y. If there is no loss, then For large values of loss, the minimum becomes deeper.
we know that the eye forms a8,=1 [see Eq.(25)]. Hence This region reduces the fraction of light guided along the

A. Effect of loss in a planar geometry
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FIG. 5. The left dashed line is the series expansion prediction of. FIG. 6. The for.matllon time of th.e primary ey@) as a fur?c-
the eye movement for zero loss. The right dashed line shows thiion Of, the refractive |nde>_(_saturat|o_n valuélg for a Gaussian
positions of the maximum and minimum for 0.5dB/cm. The upperbearn in a bulk phc_)to_serlsmve material for=1. If N_S<e’_ an eye
part of this curve corresponds to the eye, and the lower part corrgZannot form.Ns=e is indicated by the dashed vertical line.

sponds to the minimum. The solid lines show the corresponding . . .
numerical simulation results. waveguide cannot form. Conversely, for a given diameter

beam, ifAng is too small a waveguide cannot form. We find
central axis. If the loss is large enough, we find that thisthat for typical beam widths a primary eye, and hence a
effect prevents a channel waveguide from forming along th&vaveguide, forms in most materials.
central axis. Note that as in this case the primary eye form&at0,
We have also used the series expansion to investigate tiée formation time can always be found, regardless of the
effect of loss for the two-photon photosensitivity processegion of validity of the series. We find that for smail
with a Gaussian beam incident on a planar geometry, and we€-, Ns=5), the range oZ over which the series expansion
find the same qualitative behavior as for the one-photon protesults agree with the simulation decreases dramatically.
cess. Equation§36), (37), and(38) all have the same form This is probably because the radius of convergence of the
for the two-photon process; the only difference is in the co-series decreases at small. Hence for smallNg, even
efficients. though we can predict whether an eye forms, the series ex-
pansions do not provide any useful information about the
B. Effect of saturation behavior of the eye after it forms.
) . ) i The regime wheré&\g is small is unlikely to be of interest
As explained in Sec. Il, in a bulk geometry, the saturationeyperimentally, because for typical beam diameters, this

of the refractive index needs to be included to avoid theange of saturation values is substantially lower than found
index growing without bpund before a waveguide can b&p real materials. For exampleNs=5 corresponds to
self-written in the material. Here we explore the effect OfAnS~1><10*5 for a 20 um beam diameter at =244 nm

saturation on our self-writing process using a Gaussian beag)gnjficantly less than typical values of the saturation index
mmdgnt for simplicity. We take the input profile to !oe of the [13]. Hence for realistic saturation values the series expan-
form in Eqg.(13), and we assume that the material is lossless;igng provide useful information.
(i.e.,L=0). As the material is lossless, and the input proﬂlt_a Equation(39) predicts that for both one- and two-photon
has a flat phase fro_nt, there are no odd terms in the expansighotosensitivity processds, increases all; decreases from
(see Sec. V A Again, by symmetry, we know that t_he €Y€ infinity, and so it takes longer to form a waveguide with
moves along the central axis, so it suffices to consider only,creasing saturation. This is shown for the one-photon case
the expansions on thé=Y=0 axis. ~__inFig. 6, which showsT, as a function olNg, as given by
The intensity series expansion up to théermis givenin  gq_(39).
the Appendix for both the one- and two-photon processes. e use the method described in Sec. IV to explore the
Using Eq.(A7), the intensity primary eye forms at time motion of the eye. Because the eye moves along the central

axis, and forms aZ=0, Eqg.(16) and Appendix A can be

T0=Eexp(T0/Ns). (39)  used to show that the trajectory is initially of the form
p
Z=\y(T-Ty), (40)

Although Eq.(39) cannot be solved exactly fdr, it can still
be used to obtain some insight. In particulalNif<e/p, Eq. where y is the rate at which the eye moves away from the
(39) can never be satisfied, and a primary eye can nevelhput face. For large\, this rate is

form. Equation(6) shows thatNg depends on the physical S

value of the saturation indexAfy), the diameter of the in- 1 1

cident beam, and the wavelength of the light. Hence in a y~ _(1+ _> (41)
given material, if the beam is too narrow, a self-written 4.2 96 Ns
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FIG. 8. The rate at which the intensity primary eye moves away
from the input face {) for a Gaussian beam in a photopolymer as
a function of the delayl .

FIG. 7. The solid line gives the rate at which the intensity pri-
mary eye moves away from the input face just after it has formedayed byT,. We have found this property is true in general,
(7) [as defined in Eq(40)] for a Gaussian beam in a bulk material for an arbitrary incident beam.
versusN; for p=1. The dashed line gives the first order approxi-  Thel, term in the series expansion is more complicated,
mation for largeNs [Eq. (41). and is not shown here. We find thiatno longer depends on

just T—T4. As for the case considered in Sec. VI B, the
for p=1, where the first order correction due to saturation ismotion of the eye is again of the form E0), where y
included. This correction is shown by the dashed line in Fig gives the rate at which the eye initially moves away from the
7. This figure shows that the eye begins to move morénput face. Figure 8 shows as a function of the delayy.
quickly as the saturation value of the index decreases frorrhis figure shows that the eye moves away more slowly as
infinity. This trend continues, as is shown by the solid line inthe delay is increased. This is not a large effacghanges
Fig. 7, which showsy as a function ofNg for p=1. If the  py less than 30% over the rangeTf values shown. Hence,
saturation indexN,) is sufficiently large, then itis irrelevant to this order, this process is no longer just a delayed replica
at small times, and so the value Nf has little effect on the of the processes we presented earlier. This is not surprising,
dynamics; this is demonstrated by the flatness of the curves in general we would expect differences to occur for dif-
(Fig. 7) at largeNs. For the two-photon process the rate is of ferent values off .

the same form as E¢41), with different coefficients. In the photopolymerization experiment conducted by Ke-
witsch and Yariv[3,4], a typical value for the delay is
C. Effect of delay on the refractive index response 7=0.1s. Their experiment, as shown in Fig. 4 in R,

. . o takes 30 s, and hence the time delay is not large when com-
AS glscussed in Sec. I, for the photopolymerization pro-pareq with the time scale for the self-writing process in this
cessp=1, and the refractive index response is delayed relagase Hence we expect that their photopolymerization experi-
tive to the illumination. Previous results in this paper corre-meants should be well described by our bulk material model

spond to a zero delay. Here we present some results of theg,y 5o the results for the photosensitive process described
series expansion for the intensity for a nonzero delay. A"throughout this paper should apply here.

though we have calculated the terms for an arbitrary beam,
we present the results for a Gaussian input beam for simplic-vII GENERALIZATIONS OF THE SERIES TECHNIOUE
ity. As before, by symmetry we know that the eye remains " Q

on the central axisX=Y=0). We find thal ;=1 and Although the series technique is useful for describing the
behavior of the primary eyes while they remain within the

12=4(T=Tg)Qu=4 (42) radius of convergence of the series, they typically move out
of this region. The motivation for the class of techniques we
whereQg=exg —(T—Tg)/Ng. describe here is to extend the validity of the series to lafger
As before, an eye forms when Eqd4) and (15 are  gq that we can explore this self-writing process more fully.
satisfied. Using Eq(42), this occurs when However, we show below that the obvious attempts to gen-
eralize this problem fail.
To—Ta=exd (To— Ta)/Ns]. (43 One well-known generalization is to use Paajgproxi-

mants[11]. In particular, if the radius of convergence of a
It is interesting to note that Eq43) is the same as for our series is limited by a simple pole, then often Pag@roxi-
original one-photon photosensitivity procd€sg. (39)], ex- mants can be used to remove the singularity, and hence ex-
cept thatT, is replaced byTy,—Ty4. This implies that the tend the region of validity of the expansion. Thisl,(M)
time delay simply causes the eye formation time to be dePadeapproximant is the rational function
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tosensitivity. For photosensitivity, some experimental results

s, AZ suggest that the index evolution might be better modeled by
fum(2)=——""", (44  a power law{14] but we expect that the results produced by
SN, BZ! our simpler model should remain valid, except for a scaling

in the time parametdi2].

We have shown that in a planar geometry, where the ef-
where theAs and B; are unknown coefficients, and is @  fects of saturation can be ignored, the primary eyes in the
complex quantityf11]. The coefficients are found by setting intensity and the refractive index initially follow the same
fn,m(Z) equal to the series in question, and equating coeffi{paraboli¢ path. We have confirmed this using the full nu-
cients. merical simulation, and we find that the paths remain similar

We applied this technique to our problem for a number offor a very long time. This result is surprising, because the
different (N,M). No choice we made gave good quantitativerefractive index at timg@ depends on the entire history of the
predictions for the behavior of the eye. This can be underillumination. Also, although the two eyes follow the same
stood by considering the free propagation form of the electrigath initially, they travel along these paths at different times.
field amplitude. Assume we have a flat-phase front Gaussiahhis allows us to make predictions about the resulting self-
beam, in the planar waveguide geometry. Then the electri@ritten waveguide using only the intensity series expansion.

field in the slab aT=0, Y=0 is This is particularly useful, as the terms in the refractive index
expansion take longer to calculate and are often more com-
1 plex than the corresponding terms in the intensity expan-
E= —. (45 sions. This is because the calculation of the coefficiert%f
vi+2iZ in the index expansion involves the coefficientZf in the

intensity expansion.

As a concrete example of the use of our analytical tech-
(TR ¢ - )y ) nigue, we investigated the waveguide that forms when a
point limits the region of validity of any Padapproximant  second-order Hermite Gaussian beam is incident on a loss-
of the form in Eq.(44). _ o . _ less planar structure. We choose this beam because it has a

One established way of coping with singularities of thisfia; phase front, and so there are no odd terms in the expan-
type is to use the differential Padeneralizatio12]. Inthis  gjons which makes the analysis easier. Also, the resulting
generalization, some differential combination Bfis ap-  \yayeguide structure is complicated, and so is a useful test of
proximated by an expression of the form in E44). Here e series technique. Looking at the behavior of the primary
Eq. (45 suggests the form eyes, we predict that three waveguides form, one along the

propagation axis, the other two curve outwards. These pre-
=M AZS djction; agree wit_h the result; of our full nqme.rical simula-
_ _ (46) tion. Without running the full simulation, which is computa-
N ¢ tionally intensive, this technique allows us to determine the

Zi=0 BZ structure of the resulting waveguide. Our results for this
beam profile suggest that the magnitude of an eye can be
This form removes singularities of the type shown in Eq.used to predict the relative strength of the waveguide which
(45) exactly. It might be hoped that it would continue to give corresponds to that eye. Further work needs to be done to
an improved region of validity at later times also. However,determine how universal this hypothesis is for other beam
we have proved that even though E¢6) can be used to profiles.
represent the field exactly at=0, an infinitesimal timed T We find that even if we consider flat phase-front beams in
later, the field contains singularities that cannot be expresseal lossless planar geometry, the primary eyes do not always
by Eq.(46). This explains why these Patkchniques cannot form at the origin. For example, if our input beam is a su-
be used here to extend the region of validity of our seriegerposition of two singly peaked beams, then the overlap-
expansion results, and it is not clear how Ep) should be  ping tails of these beams can cause a maximum to form at

If we takeZ to be a complex quantity, then the electric field
amplitude has a branch point 2t=i/2 initially. This branch

generalized to account for these singularities. largeZ. We do not consider any such cases here. Also, if the
eyes form too far away from the origin, they may lie outside
VIII. DISCUSSION AND CONCLUSIONS the radius of convergence of the series, and hence cannot be

studied with the series expansion technique.

We have developed an analytical technique to describe The effect of loss on this self-writing process can also be
the types of waveguides that can be self-written in photosenstudied using this analytical technique. We have presented
sitive materials and photopolymers. It should be straightforthe results for a Gaussian beam in a planar structure. Loss
ward to apply this approach to other self-writing processescauses a minimum to form along with the primary eye. Even
as long as the index evolution can be described by a simpler small values of loss, we have shown that the effect of this
model that can then be used to derive the necessary recunrinimum is significant. Our analysis only considers the case
rence relations. where the loss is small. We do this for two reasons. As

As discussed in Sec. Il, we use H@) to model the re- explained in Sec. VI A, if the loss is small, the analysis is
fractive index evolution because it is the simplest model thamore tractable, as we can treat the formation position as a
is consistent with experiment. Equati¢®) has been previ- small parameter. Also, the location at which the maximum-
ously used to model the index evolution, which occurs due teninimum pair forms is further inside the material for large
photopolymerization3,4], and here we also apply it to pho- loss, and so clearly if the loss is too large, they form outside
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the radius of convergence of the series, and cannot be APPENDIX: TERMS IN THE SERIES EXPANSIONS

tracked using this technique. .
In a bulk material, the effect of saturation needs to be The recurrence relatiori&gs (20) and (21)] can be used

included(see Sec. )| and we find that saturation causes the.to geqerate the coefficigntg in the series expansions o.f.the

primary eye to form later, and hence the time taken to forn{menS'tyﬁnd thle refrgctl\_/e index for both the_ ﬁhot(r)]sensmv-

a waveguide is slightly increased. We expect this to be tru%[y an(rj] P ot0|;o ymerization processes. F?rgn er the one- or

for other beam profiles also, because saturation slows dowi{©0P oton photosensitivity process, we fin

the index change, particularly near the saturation index. For | = E.E* (A1)

the Gaussian beam, we have shown that for very low values 0— =0=0

of the saturation refractive index, no primary eye can form,

and hence no waveguide is self-written in the material. This

occurs because the refractive index change can never become

large enough to focus in the incident beam. However, for

practical values of the saturation index, we find that a pri-

mary eye always forms, and leads to the formation of a fairly

uniform channel waveguide. 1 1 | L2
Real materials display both a nonzero loss and a finite _Ty2 2F% _ = *gds y ) 0

refractive index saturation. Although we have studied these 2= VBV Ey — g REE VB0 ~luL = =

effects separately in this paper, we expect that the cumulative p—1

effects of these parameters can be inferred from our separate _&“ V2 5+ p(Vig)2n(Qe)] (A5)

studies. If the loss is not too large, a waveguide still forms. 2 o0 0 '

Values of the saturated refractive index tend to be large for

both photosensitive materiald .= 0.001)[13] and photo- WhereQ=exp(-1o"TIN). o

polymers (A\n,=0.04)[3,4], and so we expect the saturation If we co_nsuder a Gaussian be.am quent_on a bulk _Ioss-

to typically increase the time taken to form self-written less material, and takis# >, the intensity series expansion

waveguides slightly. Hence, as the effects of loss and sat1as the following terms. For either photosensitivity process,

ration of the index are often small in a real material, wee find

would expect the effects of saturation and loss to combine in

a straightforward way. This could be tested using the series

technique presented in this paper by keeping both loss and l.—4(pTO—1

saturation terms in the series expansions. 2=4(pTQ-1).
The region of validity of our series expansions is re-

stricted by poles in the analytic continuation of the electric

No=Ns(1-Q), (A2)
l,=Im(EqV?E})—Ll,, (A3)

Ny =Im(QTIoP 1EGV2ES)— ploPQTL, (A4)

lo=1, (AB)
(A7)

For the one-photon process, the next term in the expansion is

field amplitude and refractive index ¥t=0 to the complex 2

o . - 8QT 7 12T
Z plane. If a generalization of the series technique could be |,=16— ——|36+Ny(1-Q)—7T| —+Q |+ >
found, which accounted for these singularities, then it would 3 Ns Ng
be valid for much larger values &, and thus give improved (A8)
descriptions of the structure of the waveguides which can be
formed. and for the two-photon process,
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