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Asymmetric solitons in coupled second-harmonic-generating waveguides

William C. K. Mak,1,* Boris A. Malomed,2,† and P. L. Chu1,‡

1Optical Communications Group, School of Electrical Engineering, University of New South Wales,
Kensington, New South Wales 2052, Australia

2Department of Interdisplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
~Received 14 May 1997; revised manuscript received 13 August 1997!

We report results of analytical and numerical consideration of solitons in a system of two linearly coupled
second-harmonic-generating waveguides. We consider the system with arbitrary coupling constants for the
fundamental and second harmonics, and with an arbitrary~but equal! mismatch inside each waveguide~in a
previous work, only the limit case of equal coupling constants, and a single value of the mismatch, were
considered!. Two regions of existence of nontrivial asymmetric soliton states, along with bifurcation lines at
which they bifurcate from obvious symmetric solitons, are identified. The analytical approach is based on the
variational approximation, which is followed by direct numerical solution of the stationary ordinary differential
equations. The analytical and numerical results are found to be in fairly good agreement, except for a very
narrow parametric region, where the second-harmonic component of the soliton is changing its sign, having a
nonmonotonous shape. We further establish the stability of the asymmetric solitons, simulating the correspond-
ing partial differential equations, and simultaneously show that the coexisting symmetric solitons are unstable.
We then analyze in detail the effects of a walkoff~spatial misalignment! between the two cores. We demon-
strate that the asymmetric solitons remain stable if walkoff is small. When the walkoff becomes larger, the
solitons get strongly distorted, and finally destruct when walkoff gets too large.@S1063-651X~97!05912-6#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

The study of waveguides with quadratic nonlinearities
gan more than two decades ago@1#. The solitons in such
waveguides have, however, attracted a lot of attention o
recently@2,3#. Coupling effects in systems of this type we
dealt with in a few works@4,5#; nevertheless, solitary-wav
states were not considered there. In a recent work, soliton
a model of parallel-coupled waveguides with quadra
~second-harmonic-generating! nonlinearity were studied by
the present authors@6#. The solitons in this system shar
some qualitative properties with the ones previously stud
in detail in models of nonlinear dual-core optical fibers w
the cubic~Kerr! nonlinearity, see, e.g.,@7# and @8#. A bifur-
cation that transforms obvious symmetric solitons in
coupled quadratically nonlinear waveguides into nontriv
asymmetric solitons has been found in@6#. The asymmetric
states were shown to be stable, while the coexisting symm
ric solitons were unstable. A drastic difference from t
symmetry-breaking bifurcation in the dual-core fibers w
the Kerr nonlinearity, where the bifurcation is subcritical,
the fact that, in the parallel-coupled second-harmon
generating waveguides, the bifurcation is supercritical.

However, in Ref.@6#, only a very limited situation was
considered, the most essential limitation being the assu
tion of equal coupling constants between the fundame
harmonics~FH! and between the second harmonics~SH!.
Additionally, a single special value of the mismatch para
eter between the two harmonics inside each waveguide

*Electronic address: w.mak@ee.unsw.edu.au
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‡Electronic address: p.chu@unsw.edu.au
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dealt with ~the one at which the single waveguide has
exact analytical solution@1#!. Both these assumptions ar
evidently, very restrictive; in particular, the former one im
plies a very small separation between the waveguides. M
over, consideration of the general case of unequal coupl
is of principal interest because it has no analog in terms
the single waveguide@2,3#.

The aim of the present work is to extend the study of
solitons in parallel-coupled quadratically nonline
waveguides, removing the assumption of equal coupling
efficients, and also varying the mismatch parameter. We
denote the FH and SH coupling constants asQ and K, re-
spectively. The main issues to be considered are the as
metric solitons and bifurcations that give rise to them, sta
ity of the asymmetric and symmetric solitons, and walko
effects.

The exact location of the point of the bifurcation th
gives rise to asymmetric solitons found in@6# for the limit
caseK5Q and for the single value of the mismatch was
Q55/13. In the present work, it will be shown that the b
furcation point moves, depending on the value ofQ/K. It
may be located anywhere betweenK55/13 andK521.
Outside this range, the bifurcation does not occur, hence o
the obvious symmetric solitons exist.

In the generic case, with different coupling coefficien
and for different values of the mismatch parameter, we w
demonstrate that general conclusions on stability of the s
ton states are in line with those in@6#: the bifurcation is
supercritical, with the asymmetric states stable and the co
isting symmetric ones unstable. Moreover, we will also sh
that the asymmetric states remain stable when a misal
ment between the two beams, producing a spatial walkof
added to the model, provided that this misalignment is
too large. When the misalignment becomes too large,
1092 © 1998 The American Physical Society
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57 1093ASYMMETRIC SOLITONS IN COUPLED SECOND- . . .
solitons will finally destruct. We also interpret the charact
istic values of the misalignment in terms of the correspo
ing angle between the beams in the two cores.

A general model to describe the copropagation of FHu
and SHv in the linearly coupled waveguides was put fo
ward in @6#:

iu1z1 idu1x1
1

2
u1xx2qu11u1* v152Qu2 , ~1!

2iv1z12idv1x1
1

2
v1xx2v11

1

2
u1

252Kv2 , ~2!

iu2z2 idu2x1
1

2
u2xx2qu21u2* v252Qu1 , ~3!

2iv2z22idv2x1
1

2
v2xx2v21

1

2
u2

252Kv1 , ~4!

where the subscripts 1 and 2 pertain to the first and sec
waveguides,z andx being, respectively, the propagation a
transverse coordinates in them, andd is the walkoff param-
eter. The second derivatives and the nonlinear terms in
~1!–~4! account for, respectively, diffraction and FH-S
conversion, while the terms on the right-hand sides repre
the linear coupling between the waveguides. Lastly, the
rameterq measures the phase mismatch between the
harmonics inside each core~individual waveguide!. Note
that the other frequently used mismatch parametera, defined
as a coefficient in the equation for SH@2#, is q21. The usual
definition of the full matching refers toq5 1

4. However, the
case most convenient for consideration isq51, when the
single-core model has the famous Karamzin-Sukhoru
analytical solution@1#. The terms on the right-hand side
represent the linear coupling between the waveguides.

In most of this work, the phase mismatch parameterq will
be fixed at this ‘‘convenient’’ value,q51. Thus, we can
concentrate on the effects of changing the ratioQ/K, which
corresponds, physically, to varying the separation betw
the two cores. In this part of the work, result will be form
lated in the form of the three-dimensional bifurcations d
grams, which are a far-reaching extension of the simple
gram obtained in@6#. Then, arbitrary values of the mismatc
will be considered~which was not done at all in@6#!. A
general conclusion is that, asq gets smaller than 1, the re
gions of the existence of the asymmetric soliton sta
shrink, while the opposite happens whenq.1. As q in-
creases, the asymmetry between the soliton componen
the two cores increases rapidly. This leads to quite a nat
conclusion that the two waveguides get decoupled as
phase mismatch increases.

In most of this work, we will deal with the no-walkof
case,d50. However, at the end of the paper, effects p
duced by the walkoff will be considered too. Note that, f
the limit caseK5Q, the stability of the asymmetric solito
states against moderate walkoff has been established in@6#.
In the present work, we will show, gradually increasing t
value ofd in direct partial diferential equation~PDE! simu-
lation, that the solitons get distorted, and finally destruct ad
gets too large.
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To obtain stationary solutions, one should drop t
z-derivative terms in Eqs.~1!–~4!, and set all the variables
real. In @6#, the variational approximation~VA ! was used to
obtain an analytical approximation to the stationary solutio
in the limit caseK5Q. VA has produced approximate solu
tions with very good accuracy, when compared with nume
cal results obtained by means of the well-known shoot
method. In this work, dealing with the general case, we w
have to both generalize the corresponding VA~we will use
the Gaussian ansatz in order to allow for different widths
all four components of the soliton! and use, instead of the
shooting method, a modifed version of the method of lin
~see, e.g.,@9#!, in order to obtain numerical stationary solu
tions to Eqs.~1!–~4!. The reason to change the numeric
technique is that it must now handle a system offour equa-
tions, while in the particular case considered in@6#, the equal
coupling coefficients made it possible to reduce the system
two equations. Hence, initial estimates, which are nee
when using these numerical methods, have to be made
four variables, instead of just two for the particular ca
K5Q. The use of the shooting method, which requires
very good initial guess, has turned out to be very difficult,
not impossible, in this case. On the contrary, the method
lines allows even rather poor initial guesses. Moreover,
the process of this work, it was also found that the method
lines was more numerically stable, allowing one to fi
asymmetric solutions at more negative values of the coup
constants, where the shooting method used in@6# had failed.
This resolves a problem encountered in@6#: premature termi-
nation of the bifurcation curves atQ5K'20.3. We can
now make sure that the termination was a numerical artif
and the genuine bifurcation curves can be continued all
way along the path predicted by VA.

Thus, our present solution methods, both analytical a
numerical, impose no technical restrictions on the values
the coupling constantsK and Q in Eqs. ~1!–~4!. However,
there is a physical limitationuKu<uQu: it is very unlikely that
the SH coupling can be stronger than the FH coupling. W
regard to this restriction, the rangeK.5/13 was not consid-
ered, because only evident symmetric solutions exist th
In the negativeK domain, we will limit our investigation to
K.21, which is another boundary for the existence
asymmetric solutions. As for the bifurcation points, at whi
the asymmetric soliton solutions set in, branching off fro
the obvious symmetric ones, it will be found that, asK de-
creases, the bifurcation occurs at increasing values ofuQu, Q
ranging between21 and 1.

Stability of both symmetric and asymmetric solitons w
be investigated both in the linear approximation and by
rect simulations of Eqs.~1!–~4!, using the split-step Fourie
method~also called the beam propagation method!. As men-
tioned above, the asymmetric soliton solutions prove to
stable always when they exist, while the symmetric on
coexisting with them are always unstable.

The paper is organized as follows. In Sec. II, we brie
describe the basic analytical and numerical techniques
will be used for analysis of the model. In Sec. III, we displ
the results for the stationary soliton solutions, as obtained
means of VA and by direct numerical integration of the co
responding ODE’s. In Sec. IV, we display results of the s
bility analysis for the asymmetric and symmetric solitons.
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Sec. V, we consider the walkoff effect and demonstrate
the asymmetric solitons remain robust when this effec
small. We will then demonstrate the distortion of the solito
as walkoff is increased. In all these sections the caseq51 is
considered. Lastly, in Sec. VI we will show the effect
varying the phase mismatchq between the FH’s and th
SH’s. Conclusions are formulated in Sec. VII.

II. THE MATHEMATICAL TECHNIQUES

Equations determining stationary solutions are obtai
from Eqs. ~1!–~4! by dropping thez-derivative ~and the
walkoff! terms:

1

2
u1xx2qu11u1* v11Qu250, ~5!

1

2
v1xx2v11

1

2
u1

21Kv250, ~6!

1

2
u2xx2qu21u2* v21Qu150, ~7!

1

2
v2xx2v21

1

2
u2

21Kv150. ~8!

The Lagrangian of the ordinary differential equatio
~ODE’s! ~5!–~8!, L5*2`

1`Ldx, can be derived with the La
grangian density
at
s
s

d

L52
1

4
@~u18!21~u28!21~v18!21~v28!2#2

1

2
q~u1

21u2
2!

2
1

2
~v1

21v2
2!1Qu1u21Kv1v21

1

2
u1

2v11
1

2
u2

2v2 ,

~9!

where the prime stands ford/dx. To search for soliton solu-
tions by means of VA, we should adopt anansatz. Unlike the
sech2-based ansatz used in@6#, here we will use the more
versatile Gaussian ansatz, which admits different widths
different components of the soliton~this ansatz was earlie
applied to description of solitons in the single-core quadr
cally nonlinear waveguide with a varying mismatch para
eter in @3#!:

u1,25A1,2expS 2
1

2
a1,2x

2D , ~10!

v1,25B1,2expS 2
1

2
b1,2x

2D , ~11!

where A1,2, B1,2, a1,2, and b1,2 are the amplitudes and
widths of the FH and SH of the soliton solution sought fo
The subscripts 1 and 2 pertain to the two cores.

Inserting Eqs.~10! and~11! into Eq. ~9!, we calculate the
effective Lagrangian,
of
2

Ap
L[

2

Ap
E

2`

1`

Ldx52
1

4
A1

2Aa12
1

4
A2

2Aa22
1

4
B1

2Ab12
1

4
B2

2Ab22qA1
2a1

21/22qA2
2a2

21/22B1
2b1

21/22B2
2b2

21/2

12A1A2QA 2

a11a2
12B1B2KA 2

b11b2
1A1

2B1A 2

2a11b1
1A2

2B2A 2

2a21b2
. ~12!

The variational equations are obtained by demanding the variations of the effective Lagrangian with respect to eachA1,2,
B1,2, a1,2, andb1,2 to be zero. Then, we obtain the following eight equations:

2
1

2
A1a1

1/222qA1a1
21/212A2QA 2

a11a2
12A1B1A 2

2a11b1
50, ~13!

2
1

2
A2a2

1/222qA2a2
21/212A1QA 2

a11a2
12A2B2A 2

2a21b2
50, ~14!

2
1

2
B1b1

1/222B1b1
21/212B2KA 2

b11b2
1A1

2A 2

2a11b1
50, ~15!

2
1

2
B2b2

1/222B2b2
21/212B1KA 2

b11b2
1A2

2A 2

2a21b2
50, ~16!

2
1

8
A1

2a1
21/21

1

2
qA1

2a1
23/22A2A1A2Q~a11a2!23/22A2A1

2B1~2a11b1!23/250, ~17!

2
1

8
A2

2a2
21/21

1

2
qA2

2a2
23/22A2A1A2Q~a11a2!23/22A2A2

2B2~2a21b2!23/250, ~18!



57 1095ASYMMETRIC SOLITONS IN COUPLED SECOND- . . .
2
1

8
B1

2b1
21/21

1

2
B1

2b1
23/22A2B1B2K~b11b2!23/22

A2

2
A1

2B1~2a11b1!23/250, ~19!

2
1

8
B2

2b2
21/21

1

2
B2

2b2
23/22A2B1B2K~b11b2!23/22

A2

2
A2

2B2~2a21b2!23/250. ~20!
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Because these algebraic equations cannot be solved an
cally, we resort to the numerical Newton-Raphson meth
This involves calculation of the Jacobian matrix by findi
the partial derivatives of expressions on the left-hand side
Eqs. ~13!–~20! with respect to the eight unknowns,A1,2,
B1,2, a1,2, andb1,2. The Jacobian matrix is thus of dimen
sion 838. We will not go into further technical details her
as the Newton-Raphson method is well known.

The next step is to obtain stationary numerical solutio
of Eqs. ~1!–~4! directly. We will do this by means of the
method of lines. To make a partial discretization, we d
cretize the transverse space variablex. We replace the inte-
gration domaindm of x by a set ofn points:

xk5~k21!h, k51,2, . . . ,n, h[
dm

n21
. ~21!

Along each of the lines (xk ,z) for z>0, we denote the val-
ues ofu1 by u1k ~and similarly foru2 andv1, v2). Then, the
finite-difference approximation is used foruxx :
to
th

t

lv
b

in
o

yti-
.

of

s

-

uxx5
uk2122uk1uk11

h2
,

the error of the numerical scheme beingO(h2).
Ignoring the walkoff terms, Eqs.~1!–~4! can be thus

transformed to

i S dwk

dz D5Fk , ~22!

where we further denote

wk[5
u1k for 1<k<n

u2~k2n! for ~n11!<k<2n

v1~k22n! for ~2n11!<k<3n

v2~k23n! for ~3n11!<k<4n,

and F is a 134n vector function defined by
be
n-

ted
he
it-

s
hat,
be-
di-
Of course, thewk21 andwk11 terms have to be equated
zero at the boundaries of the integration domain to get
correct solitary wave solutions.

To find the necessary stationary solutions, we equate
above expressions to zero:

F50. ~23!

Again, the Newton-Raphson method is used here to so
Eq. ~23!. The corresponding Jacobian matrix is obtained
calculating]Fj /]wk , where 1< j <4n, and 1<k<4n. It is
a 4n34n matrix. Further technical details on how to obta
the solutions from here onward will not be elaborated
here.
e

he

e
y

n

The above-mentioned Jacobian matrix will then also
used for the linear stability analysis, by evaluating its eige
values, which is a well-established method, see, e.g.,@10# for
details. Independent of this, the stability will also be tes
directly by means of the split-step Fourier method. T
walkoff effects will be investigated by means of the spl
step Fourier method too.

III. THE STATIONARY SOLUTIONS

First, we will display results for the stationary soliton
obtained by means of VA. We should stress, however, t
except for a peculiar narrow parametric region described
low, the variational results are always fairly close to the
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rect numerical ones. A detailed comparison will be given
the end of this section. In this and subsequent sections,
Sec. VI, the results will be presented for the caseq51.

We have found that the asymmetric soliton solutions e
only in the regionsR andS in the (K,Q) plane as shown in
Fig. 1. The solid lines mark the loci of the bifurcation poin
whereas the dotted lines areQ56K, which mark off the
physically unrealistic regions where the SH coupling
larger than the FH coupling~i.e., uKu.uQu). Thus, in the two
triangular regions delineated by the dotted lines and the
tical axes, the asymmetric solitons do exist, but are ph
cally unrealistic. It is also interesting to note that the range
existence of the asymmetric solitons is found to be

21,K,0.385, ~24!

which is the same as predicted in@6# ~in @6#, the upper limit
was found exactly as 5/13, which is approximated by 0.38

It is necessary to mention that there was a serious disc
ancy between the analytical~variational! and direct numeri-
cal results obtained in@6# for the limit caseK5Q: while the
analytical solution was obtained for the whole interval~24!,
numerically they had been found only in the subinter
20.3,Q,0.385. In view of the results obtained in th
present work, this limitation was produced not by any hidd
bifurcations or instability, but solely by technical limitation
of the numerical scheme employed in@6#.

The variational results allow us to construct twothree-
dimensionalbifurcation diagrams shown in Figs. 2 and 3, f
FH and SH, respectively. They are plots, versus the coup
constantsK and Q, of the effective asymmetry paramete
QF andQS defined as follows:

QF5
u1

22u2
2

u1
21u2

2
, ~25!

QS5
v1

22v2
2

v1
21v2

2
, ~26!

FIG. 1. The bifurcation regions. Asymmetric solitons exist
the regions marked byR and S. The corners of the regions are
(21,61), (0,0), and (0.385,60.385). The dotted lines are the line
Q56K, to separate the unphysical area whereuKu.uQu. The solid
lines are the loci of the bifurcation points found numerically.
t
ve

t

,

r-
i-
f

).
p-

l

n

g

where u1,2 and v1,2 without the argumentx are the peak
values of the corresponding waves.QF andQS are defined to
be compatible with the asymmetry parameter cos(2u) that
was used in@6#. Note that the middle portions of the curve
surfaces, corresponding to the unphysical situation w
uKu.uQu, have been eliminated. We stress that, although
shown in Figs. 2 and 3 that bothQF andQS are zero in these
regions, asymmetric solitons do exist in these regions
mathematical objects.

In general, at all values ofK, the FH fields of the asym-
metric solitons are more asymmetric at smalluQu. In fact, at
uQu5uKu50, the two waveguides become decoupled, a
the field in the second waveguide is absent~we adopt a con-
vention to allocate the number 1 to the waveguide carry
larger fields, i.e.,u1>u2 andv1>v2). As uQu increases from
zero, the asymmetry of the FH fields monotonically d
creases; on the other hand, the asymmetry of the SH field
first gets even stronger, and then rapidly decreases as
bifurcation point is approached. The asymmetric solutio
finally merge with the symmetric ones at the bifurcati
points. These trends are more evident for more negativeK.
Close toK521, the SH fields attain the strongest asymm
try at very sharp parts of the bifurcation diagram~Fig. 3!. As
K becomes more and more negative, the bifurcation po
spread apart towards larger values ofuQu.

The characteristics of the asymmetric solutions can
further clarified by looking at Figs. 4 and 5, which are plo

FIG. 2. The bifurcation diagram for the fundamental harmoni
The middle portions are chopped off sinceuKu.uQu there.

FIG. 3. The bifurcation diagram for the second harmonics. T
middle portions are chopped off sinceuKu.uQu there.
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of the peak values ofu1,2 andv1,2 versusQ, with K fixed as
a parameter. For both FH and SH fields in the waveguid
as K decreases~but remains positive!, the fields become
larger, and they reach a maximum atK50. Then, asK keeps
on decreasing further to negative values, the fields bec
smaller. The FH field decreases towards zero asK→21. In
the waveguide 2, both FH and SH decrease asK decreases
We adopt a convention that the amplitudes of the fields in
waveguide 2 are negative when they have the sign oppo
to that in the waveguide 1. So, the amplitude of the SH fi
in the waveguide 2 assumes a larger absolute value wheK
is getting more negative.

FIG. 4. The peak values ofu1,2 vs Q, with K fixed as a param-
eter. The solid lines stand foru1, and the dotted lines are foru2. K
takes the values:K50.4,0.3, . . . ,20.8,20.9,20.998.

FIG. 5. The peak values ofv1,2 vs Q, with K fixed as a param-
eter. The solid lines stand forv1 and the dotted lines are forv2. K
takes the valuesK50.4,0.3,. . . ,20.8,20.9,20.998 in this
plot.
1,

e

e
ite
d

In fact, atQ50, whenK→21, the absolute peak value
of both v1 andv2 approach the same value, but they are
opposite sign, whereasu1 approaches zero andu2 is identi-
cally zero, so that the soliton becomes antisymmetric, w
the dominant SH field. However, since this is an unphysi
case, we will not discuss it further.

A noteworthy point is that whenK is negative, the field
v2 changes its sign from positive to negative asuQu de-
creases past a certain value~depending on the value ofK).
When this sign reversal takes place, the fieldv2 is essentially
non-Gaussian over a narrow range ofQ, and has a very smal
value ~see Fig. 6!. Coincidently, these non-Gaussian sol
tions correspond to the sharp portions of the strongest as
metry in the bifurcation diagram for SH~Fig. 3!. Thus, VA
based on the Gaussian ansatz is inappropriate in this na
parametric region, but it proves to be appropriate in all
other cases.

The widths of the components of the soliton solutions a
vary with K andQ. Figure 7 shows the plot of the spot siz
versusK and Q for the componentu1, which is defined as
follows:

W151/Aa1, ~27!

a1 being the width parameter according to Eq.~10!. In gen-
eral, the spot size increases towards infinity asK→21,
uQu→1. As the peak values of the fields are simultaneou
approaching zero there, this implies that the solutions
spreading out indefinitely in this limit.

Before proceeding to a comparison of the analytical
sults obtained by means of VA and numerical findings, it
relevant to mention that, in order to validate our numeri
results, we compared them as produced by different m
ods. As a typical example, we can mention what was
tained for the peak valuesu1 of the FH in the waveguide 1
In the limit caseK5Q, we compared the results obtaine

FIG. 6. The shape of the SH componentv2 of the asymmetric
soliton at Q50.48 andK520.2, where the sign reversal ofv2

occurs. The solid line is the actual non-Gaussian shape of the
ton obtained by the modified method of lines. The dashed line is
prediction of the variational approximation. Since the variation
approximation uses the Gaussian ansatz, it fails to predict the
rect shape in a narrow parametric region around this point.
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from the modified method of lines with those produced
the shooting method that was employed previously in@6#.
The modified method of lines used 101 lines; i.e., the d
crete grid in thex domain has 101 points. The results we
compared for the range ofQ from 20.2 to 0.3, the worst
discrepancy being 1.7% atQ520.2; otherwise, the discrep
ancies are all under 1%.

To check the relevance of the results obtained by me
of VA, we compared them with those produced by two v
sions of the modified numerical method of lines, using,
spectively, 101 and 161 lines~the latter number was a tech
nical limit set by the computer used!, for K andQ taking on
different values. In this relation, it is relevant to note, first
all, that the modified methods of lines using, respective
101 and 161 lines agree very well with each other, the wo
discrepancy being 0.24%. Based on this, we believe that
numerical scheme is reliable.

Comparison between the variational and direct numer
results shows that their differences range from about 2%
about 6%. Generally, the discrepancies are larger very c
to the bifurcation points. This is understandable because
shown in Figs. 2 through 5, the fields change rapidly withQ
near these points. Particular results of the comparison
displayed in Table I.

As a typical case, we additionally show in Fig. 8 th
shape of the asymmetric soliton atK50 and Q50.5, as
obtained from both VA and the modified method of lines.

FIG. 7. The spot size ofu1 of asymmetric solitons versusK and
Q. The middle portion has been chopped off becauseuKu.uQu
there. Also, note that the other flat portion of the plot outside
curved surface has no meaning, since data were not gathere
symmetric solitons there.
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can be seen that the agreement is very good; the larges
viations are at the skirts of the soliton. The shape produ
by VA is narrower there, which is a natural drawback of t
Gaussian ansatz. This feature is generic for all the value
K andQ.

IV. THE STABILITY ANALYSIS

In this section, we will study the stability of the stationa
solutions found in the previous section. First of all, we c
perform a straightforward linear stability analysis, using t
Jacobian matrices computed in the process of directly s
ing the ODE’s~5!–~8! by the modified method of lines in th
previous section. We use the results of the method base
101 lines, which means discretizing the variablex at 101
points. The corresponding Jacobian matrices will thus h
404 eigenvalues. If any of these eigenvalues is positive,
stationary solution is regarded to be unstable. Since the
culation of the eigenvalues is straightforward~being a stan-
dard feature of the software used!, the linear stability was
tested for all the stationary solutions found.

Without exception, all the stationary solutions consider
~including the symmetric ones! have at least one positiv
eigenvalue. This, however, does not mean that all the s
tions are truly unstable. Indeed, in the conservative syst
the stability may be only neutral, implying the existence of

e
for

FIG. 8. The shape of the asymmetric soliton atK50, Q50.5.
Shown are the FH componentsu1,2. The solid line is the result
obtained from the modified method of lines, and the dashed lin
generated by the variational approximation.
TABLE I. Sensitivity analysis~discrepancies when compared with method of lines using 161 lines!.

Discrepancies
K 20.7 20.4 0.0 0.3
Q 0.8 0.874a 0.5 0.725a 0.5 0.56a 0.35 0.425a

ML b 0.03% 0.01% 0.06% 0.04% 0.08% 0.09% 0.08% 0.24%
VA c 2.9% 5.3% 2.4% 2.9% 2.1% 3.2% 2.3% 5.5%

aThese columns correspond to points close to the bifurcation points.
bMethod of lines, using 101 lines.
cVariational method.
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least one zero eigenvalue in the linear stability analysis. Th
fact was, as a matter of fact, observed, for the limit ca
K5Q, in @6# in the form of very persistent, nongrowing and
nondecaying, internal vibrations of the asymmetric solito
generated by a small perturbation in the initial conditions.
the numerical computations, however, the zero eigenva
can easily turn out to be a tiny positive one. On the oth
hand, this implies that the straightforward numerical calc
lation of the stability eigenvalues does not provide for th
final answer, and direct simulations of the PDE’s~1!–~4!
with perturbed initial conditions are necessary.

The conventional method of lines, which was used abo
to produce the stationary soliton solutions, can be used too
solve the PDE’s. However, we did not use this method
tackle the stability problem, because, when formulated
above to obtain the stationary solutions, the method turns o
to be very inefficient for the PDE integration. Instead, w
used the split-step Fourier method as done in@6#. The study
of the stability was performed at various points in the par
metric space where the asymmetric solitons exist. The s
lected points were

~K,Q!5~20.3,0.7!;~20.1,20.4!;~0,20.4!;

~0,20.56!;~0,0.566!;~0.2,20.45!;~0.3,0.4!.

They were chosen so that areas close to and far from
bifurcation points, as well as the regions with positive an
negative values of the coupling constants, were all tested

The results of this analysis are in complete agreeme
with the inferences formulated in@6#. All the asymmetric
solitons were found to be neutrally stable. This means th
slightly perturbed, the solitons will undergo minor fluctua
tions around the stationary solutions over very long di
tances. The fluctuations do not have any sign of decay, b
they are not growing either. This is exactly the same beha
ior as observed in@6#. A quite typical example of the evolu-
tion of a slightly perturbed asymmetric soliton is displayed i
Fig. 9, which depicts a case ofQ50.7 andK520.3. This
figure displays simultaneously the FH components of th
soliton in both waveguides.

FIG. 9. Evolution of a slightly disturbed asymmetric soliton a
Q50.7 andK520.3. Shown are the fundamental harmonic field
in both waveguides. Distance of propagation simulated was 2p.
is
e

n
n
e
r
-

e
to
o
s
ut

-
e-

he
d

nt

t,

-
ut
v-

e

We also checked stability of the symmetric solitons th
coexist with the asymmetric ones. Exactly as expected@6#,
the symmetric solitons arealwaysdestabilized by the bifur-
cation. This is illustrated by Fig. 10. It shows that the u
stable symmetric soliton suffers spontaneous symm
breaking and shows a trend to rearrange itself into a sta
asymmetric soliton that exists at the same values of the c
pling constants. However, damping of the internal vibratio
of the resultant strongly perturbed soliton is so weak t
there is no sign of settling down even after a long distan

V. EFFECTS OF SPATIAL WALKOFF

Because the spatial walkoff is unavoidably present in
real situation, we have also studied its effect by means of
direct PDE simulations, keeping the walkoff terms in Eq

FIG. 10. Evolution of the peak values of the unstable symme
soliton atQ520.4,K50. This figure illustrates evolution toward
the stable asymmetric soliton.

FIG. 11. Evolution of the asymmetric soliton atQ50.5, K50
under the influence of the walkoff effect withd50.05. Only the FH
components are shown. The slanting propagation directions are
to the walkoff terms. Distance of propagation simulated was 3p.
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~1!–~4!. Firstly, we demonstrate that the asymmetric solito
are not destabilized by the walkoff effect if the walkoff i
small enough. In Fig. 11, we illustrate the evolution of
asymmetric soliton under the action of a small walkoff.
this case,K50, Q50.5, andd50.05. For typical nonbire-
fringent group III-V semiconductor crystals, with a refractiv
index of 3.5, a coherence length of around 102100mm, and

FIG. 12. ~a! Trajectories of the peak values of the soliton co
ponents. Initially, the upper two traces are those of the FH and
in waveguide 1, and the lower two traces are those in waveguid
It can be noted that they travel in opposite directions. However,
smaller waves in waveguide 2 are finally pulled by the larger wa
in waveguide 1 and trapped to follow their direction of travel.~b!
The shapes of the soliton components in waveguide 1 and~c! the
shapes of the soliton components in waveguide 2, after propaga
over a normalized distance ofp. In this analysis,K5Q520.7,
q51, andd50.5. It can be seen that the walkoff distorts the so
ton, making the wave forms to skew to one side.
s

a typical wavelength of about 1mm @11#, this corresponds to
the actual misalignment of around 0.11–0.34 degrees
tween the beams in the two waveguides. Actually, availa
experimental techniques allow one to make the misalignm
essentially smaller than this, so these values are quite
evant to estimate limits of the soliton’s stability against t
walkoff. The total distance of travel simulated was 3p.

In Fig. 12, we illustrate the evolution of another solito
when the walkoff is larger. In this case,d50.5,
K5Q520.7. The total distance of travel simulated isp. It
can be seen that the shapes of the soliton components
distorted, and skew to one side. It can be also seen tha
smaller of the soliton components in the two waveguid
gets trapped by the larger soliton component and pulled
travel in the same direction.

In Fig. 13, we summarize the distortion effect inflicted o
the soliton as both the walkoff parameterd and the coupling
constants,K and Q are varied~we consider here the cas
K5Q). We quantify the distortion by defining

D5

E
W1

uu1
22u1i

2 udz

E
W1

u1i
2 dz

, ~28!

where the integrations are confined within the beam wi
~the spot size!, W1, as defined in Eq.~27!. u1 is the FH in
waveguide 1 after the propagation distance ofp, andu1i is
the same wave filed at the input (z50). The integrations are
done with respect to the transverse coordinate,z, in the ref-
erence frame that travels together withu1.

It can be seen that, in general, the distortion becom
larger asd gets larger. Also, distortion is larger for large
absolute values of the coupling constants. This trend is v
prominent for positiveQ: as one sees in Fig. 13, the disto

H
2.
e
s

ng
r

t

FIG. 13. Distortion as a func-
tion of walkoff parameterd and
coupling constantQ. In this analy-
sis,K5Q, and distortion is shown
after a propagation distance ofp.
In general, the distortion is large
for larger walkoff, and stronger
coupling ~where the solitons ge
more symmetric!.
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FIG. 14. The asymmetry pa
rameters,QF,S , as functions of
the fundamental-harmonic cou
pling constantQ, when the phase
mismatchq takes on values 0.125
0.25, 0.5, 1 and 2. The second
harmonic coupling constantK is
fixed at 0. It can be seen that th
regions where the asymmetri
solitons exist expand asq gets
larger. The dashed curves corre
spond to q51, which are cross
sections of the bifurcation dia
grams in Figs. 2 and 3.
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tion produced by a fixed value ofd steeply increases with th
increase ofQ.0, quickly leading to destruction of the sol
ton. Because the solitons become more symmetric with
increase of the absolute values of the coupling constants
can interpret this trend as an effect of pulling apart of t
soliton components~referring to the two cores! having nearly
equal energies.

We also considered the walkoff-induced deformation
the stable symmetric solitons, existing before the bifurcati
For instance, in the caseK5Q50.4, we observed that, in th
presence of quite a strong walkoff,d50.4, both components
of the soliton developed conspicuous side lobes after ha
traveled a long distance,z53p. As walkoff becomes even
larger, atd50.6, the components in the two cores get pul
apart into the lobes, and they are no longer trapped toge
to travel in the same direction, which we interpret as destr
tion of the soliton at somed between 0.4 and 0.6.

VI. VARYING THE PHASE MISMATCH

Effects produced by varying the mismatch parameteq
are practically important, and they turn out to be rather e
to investigate. Running the simulations with different valu
of q, we have found that, as it gets smaller, the regions wh
asymmetric solitons can exist shrink; the opposite happ
whenq gets larger. In fact, asq gets larger, the asymmetr
gets larger (QF,S becomes very close to 1) very rapidly. Th
means the two waveguides get effectively decoupled a
large phase mismatch.

Figure 14 shows the plots of the asymmetry paramet
QF,S , versus the FH coupling constantQ for a fixed value of
the SH coupling constantK of 0, with the phase mismatchq
as a changing parameter, taking on values 0.125, 0.25, 0.
and 2. Note that the dashed curves, corresponding toq51,
are cross sections of the bifurcation diagrams shown in F
2 and 3. Similar analyses had been done forK520.5 and
e
e
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K50.3. The results are not displayed here as they do
produce anything essentially different. To show the effect
even larger values ofq, we include Figs. 15 and 16, for th
casesK5Q and K50, respectively, which show that th
asymmetry stays relatively constant asq is increased beyond
about 4.

The case of very small values ofq can be easily consid
ered by means of an approximation well known for t
single-core waveguides@2# ~one should bear in mind that ou
parameterq, entering the FH equations, is the inverse of t
frequently defined mismatch parametera in the equation for
SH!. Namely, one assumes that, in Eqs.~2! and ~4!, it is
possible to neglect all the terms but the last two terms on
left-hand sides, so that SH can be eliminated in favor of F

vn' 1
2 un

2 (n51,2). Substitution of this into Eqs.~1! and ~3!
immediately yields a system of two linearly coupledcubic

FIG. 15. The bifurcation diagrams as a function of the coupl
constantQ and phase mismatchq for the caseK5Q.
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nonlinear Schro¨dinger equations for the FH fieldsun , which
is identical to that considered in detail earlier in the cont
of the twin-core nonlinear optical fibers@7,8#.

VII. CONCLUSIONS

In this work, we have presented detailed results fo
model of two linearly coupled second-harmonic-generat
waveguides. We have studied the general case with diffe
coupling constants for the fundamental and second harm
ics. We have completely identified the entire region~that
includes two subregions! where the asymmetric solitons ex
ist, along with the bifurcation lines, at which the asymmet
solitons branch off from the obvious symmetric-soliton so
tions. The asymmetric solutions were found in two differe
ways. One~analytical! approach was based on the variation
approximation, which used the Gaussian ansatz. As us
the main advantage of using this type of ansatz is a poss
ity to admit different components of the soliton to have d
ferent widths. Final solutions to the system of eight algebr
equations produced by the variational approximation w
found numerically. Another approach was based on dir

FIG. 16. The bifurcation diagrams as a function of the coupl
constantQ and phase mismatchq for the caseK50.
d
-
et

er

r,
t

a
g
nt
n-

-
t
l
al,
il-

ic
e
ct

numerical solution performed in terms of a finite-differen
scheme. The agreement between the analytical and d
numerical results turns out to be very good, except for a v
narrow region, where the SH component of the soliton
changing its sign, and its shape is strongly non-Gauss
~nonmonotonous!.

Then, the stability of these soliton states was tested
direct PDE simulations. The asymmetric solitons, whene
they exist, were shown to be neutrally stable, while the sy
metric solitons that obviously coexist with the asymmet
ones are always unstable. Moreover, simulations of evolu
of the symmetric solitons close to the bifurcation point a
farther from it show that the unstable symmetric solito
suffer spontaneous symmetry breaking and begin to evo
into the corresponding asymmetric solitons~which they do
faster if they are farther from the bifurcation point!.

We then investigated the effect of the walkoff~spatial
misalignment! on the solitons in the coupled waveguides f
different values of the coupling constants. An estimate
the values of the walkoff parameterd corresponding to ex-
perimentally relevant values of the misalignment angles w
obtained (d;0.05 for the angles;0.3 deg!. The walkoff
term being small enough, the asymmetric solitons, as we
the symmetric ones existing before the bifurcation, rem
robust. With an increase of the parameterd, the solitons
develop a distortion, and they finally get destroyed wh
walkoff becomes too large.

Finally, we have also investigated effects produced
varying the phase mismatch parameter. As the phase
match parameterq gets smaller than 1, the regions where t
asymmetric solitons exist shrink, whereas these regions
pand whenq gets larger than 1. However, asq increases
beyond about 4, the asymmetry stays more or less cons
especially for the caseK50. We have also demonstrate
that, in the opposite limit of very smallq, one can eliminate
the second-harmonic fields to transform the model into t
for the twin-core fiber with the Kerr nonlinearity.

Thus, the results obtained in this work completely ch
acterize the asymmetric soliton states in the linearly coup
second-harmonic-generating waveguides with arbitrary c
pling constants.
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