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Asymmetric solitons in coupled second-harmonic-generating waveguides
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We report results of analytical and numerical consideration of solitons in a system of two linearly coupled
second-harmonic-generating waveguides. We consider the system with arbitrary coupling constants for the
fundamental and second harmonics, and with an arbiftauy equal mismatch inside each waveguidie a
previous work, only the limit case of equal coupling constants, and a single value of the mismatch, were
consideregl Two regions of existence of nontrivial asymmetric soliton states, along with bifurcation lines at
which they bifurcate from obvious symmetric solitons, are identified. The analytical approach is based on the
variational approximation, which is followed by direct numerical solution of the stationary ordinary differential
equations. The analytical and numerical results are found to be in fairly good agreement, except for a very
narrow parametric region, where the second-harmonic component of the soliton is changing its sign, having a
nonmonotonous shape. We further establish the stability of the asymmetric solitons, simulating the correspond-
ing partial differential equations, and simultaneously show that the coexisting symmetric solitons are unstable.
We then analyze in detail the effects of a walk@fpatial misalignmentbetween the two cores. We demon-
strate that the asymmetric solitons remain stable if walkoff is small. When the walkoff becomes larger, the
solitons get strongly distorted, and finally destruct when walkoff gets too 168§€63-651X97)05912-§

PACS numbes): 42.65.Tg

[. INTRODUCTION dealt with (the one at which the single waveguide has an
exact analytical solutioril]). Both these assumptions are,
The study of waveguides with quadratic nonlinearities be-evidently, very restrictive; in particular, the former one im-
gan more than two decades aph. The solitons in such plies a very small separation between the waveguides. More-
waveguides have, however, attracted a lot of attention onlpver, consideration of the general case of unequal couplings
recently[2,3]. Coupling effects in systems of this type were is of principal interest because it has no analog in terms of
dealt with in a few workg4,5]; nevertheless, solitary-wave the single waveguidg2,3].
states were not considered there. In a recent work, solitons in The aim of the present work is to extend the study of the
a model of parallel-coupled waveguides with quadraticsolitons in parallel-coupled quadratically nonlinear
(second-harmonic-generatingonlinearity were studied by waveguides, removing the assumption of equal coupling co-
the present authorfS]. The solitons in this system share efficients, and also varying the mismatch parameter. We will
some qualitative properties with the ones previously studiedlenote the FH and SH coupling constantsasand K, re-
in detail in models of nonlinear dual-core optical fibers with spectively. The main issues to be considered are the asym-
the cubic(Kerr) nonlinearity, see, e.gl7] and[8]. A bifur- metric solitons and bifurcations that give rise to them, stabil-
cation that transforms obvious symmetric solitons in theity of the asymmetric and symmetric solitons, and walkoff
coupled quadratically nonlinear waveguides into nontrivialeffects.
asymmetric solitons has been found[8]. The asymmetric The exact location of the point of the bifurcation that
states were shown to be stable, while the coexisting symmegives rise to asymmetric solitons found [i&] for the limit
ric solitons were unstable. A drastic difference from thecaseK=Q and for the single value of the mismatch was at
symmetry-breaking bifurcation in the dual-core fibers withQ=5/13. In the present work, it will be shown that the bi-
the Kerr nonlinearity, where the bifurcation is subcritical, is furcation point moves, depending on the value@f. It
the fact that, in the parallel-coupled second-harmonicmay be located anywhere betwekr=5/13 andK=—1.
generating waveguides, the bifurcation is supercritical. Outside this range, the bifurcation does not occur, hence only
However, in Ref[6], only a very limited situation was the obvious symmetric solitons exist.
considered, the most essential limitation being the assump- In the generic case, with different coupling coefficients
tion of equal coupling constants between the fundamentadnd for different values of the mismatch parameter, we will
harmonics(FH) and between the second harmon{&H). demonstrate that general conclusions on stability of the soli-
Additionally, a single special value of the mismatch param-ton states are in line with those [6]: the bifurcation is
eter between the two harmonics inside each waveguide wasipercritical, with the asymmetric states stable and the coex-
isting symmetric ones unstable. Moreover, we will also show
that the asymmetric states remain stable when a misalign-

*Electronic address: w.mak@ee.unsw.edu.au ment between the two beams, producing a spatial walkoff, is
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solitons will finally destruct. We also interpret the character- To obtain stationary solutions, one should drop the
istic values of the misalignment in terms of the correspondz-derivative terms in Eqs(1)—(4), and set all the variables
ing angle between the beams in the two cores. real. In[6], the variational approximatiofVA) was used to

A general model to describe the copropagation of FH obtain an analytical approximation to the stationary solutions
and SHu in the linearly coupled waveguides was put for- jn the limit caseK = Q. VA has produced approximate solu-
ward in[6]: tions with very good accuracy, when compared with numeri-
cal results obtained by means of the well-known shooting
method. In this work, dealing with the general case, we will
have to both generalize the corresponding Wxe will use
the Gaussian ansatz in order to allow for different widths of
all four components of the solitprand use, instead of the
shooting method, a modifed version of the method of lines
(see, e.g.]9]), in order to obtain numerical stationary solu-
tions to Egs.(1)—(4). The reason to change the numerical
technique is that it must now handle a systenfofr equa-
tions, while in the particular case considered8m the equal
coupling coefficients made it possible to reduce the system to
two equations. Hence, initial estimates, which are needed
when using these numerical methods, have to be made on
four variables, instead of just two for the particular case
where the subscripts 1 and 2 pertain to the first and second=Q. The use of the shooting method, which requires a
waveguidesz andx being, respectively, the propagation and very good initial guess, has turned out to be very difficult, if
transverse coordinates in them, afids the walkoff param-  not impossible, in this case. On the contrary, the method of
eter. The second derivatives and the nonlinear terms in Egéines allows even rather poor initial guesses. Moreover, in
(1)—(4) account for, respectively, diffraction and FH-SH the process of this work, it was also found that the method of
conversion, while the terms on the right-hand sides represetines was more numerically stable, allowing one to find
the linear coupling between the waveguides. Lastly, the paasymmetric solutions at more negative values of the coupling
rameterq measures the phase mismatch between the twoonstants, where the shooting method useld]rhad failed.
harmonics inside each coréndividual waveguidg Note  This resolves a problem encounteredé premature termi-
that the other frequently used mismatch parametetefined nation of the bifurcation curves @=K~—0.3. We can
as a coefficient in the equation for 8, is g~ 1. The usual now make sure that the termination was a numerical artifact,
definition of the full matching refers tq=3. However, the and the genuine bifurcation curves can be continued all the
case most convenient for considerationgis 1, when the way along the path predicted by VA.
single-core model has the famous Karamzin-Sukhorukov Thus, our present solution methods, both analytical and
analytical solution[1]. The terms on the right-hand sides numerical, impose no technical restrictions on the values of
represent the linear coupling between the waveguides. the coupling constant& and Q in Egs. (1)—(4). However,
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In most of this work, the phase mismatch paramgtell
be fixed at this “convenient” valueg=1. Thus, we can
concentrate on the effects of changing the r&id, which

there is a physical limitatiofK|<|Q|: it is very unlikely that
the SH coupling can be stronger than the FH coupling. With
regard to this restriction, the rangfe>5/13 was not consid-

corresponds, physically, to varying the separation betweeared, because only evident symmetric solutions exist there.
the two cores. In this part of the work, result will be formu- In the negativeK domain, we will limit our investigation to
lated in the form of the three-dimensional bifurcations dia-K>—1, which is another boundary for the existence of
grams, which are a far-reaching extension of the simple diaasymmetric solutions. As for the bifurcation points, at which
gram obtained i6]. Then, arbitrary values of the mismatch the asymmetric soliton solutions set in, branching off from
will be considered(which was not done at all ifi6]). A the obvious symmetric ones, it will be found that, asle-
general conclusion is that, @sgets smaller than 1, the re- creases, the bifurcation occurs at increasing valu¢®pfQ
gions of the existence of the asymmetric soliton statesanging between-1 and 1.
shrink, while the opposite happens whg»1. As q in- Stability of both symmetric and asymmetric solitons will
creases, the asymmetry between the soliton components be investigated both in the linear approximation and by di-
the two cores increases rapidly. This leads to quite a naturakct simulations of Eqg1)—(4), using the split-step Fourier
conclusion that the two waveguides get decoupled as thmethod(also called the beam propagation methds men-
phase mismatch increases. tioned above, the asymmetric soliton solutions prove to be
In most of this work, we will deal with the no-walkoff stable always when they exist, while the symmetric ones
case,6=0. However, at the end of the paper, effects pro-coexisting with them are always unstable.
duced by the walkoff will be considered too. Note that, for The paper is organized as follows. In Sec. II, we briefly
the limit caseK =Q, the stability of the asymmetric soliton describe the basic analytical and numerical techniques that
states against moderate walkoff has been establishi@l.in  will be used for analysis of the model. In Sec. I, we display
In the present work, we will show, gradually increasing thethe results for the stationary soliton solutions, as obtained by
value of § in direct partial diferential equatioPDE) simu-  means of VA and by direct numerical integration of the cor-
lation, that the solitons get distorted, and finally destrucé as responding ODE's. In Sec. IV, we display results of the sta-
gets too large. bility analysis for the asymmetric and symmetric solitons. In
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Sec. V, we consider the walkoff effect and demonstrate that

the asymmetric solitons remain robust when this effect is £= ——[(U1)2+(U2)2+(01)2+(vz)2]— Q(U§+ u3)

small. We will then demonstrate the distortion of the solitons

as walkoff is increased. In all these sections the cpsé is 1, 1, 1,

considered. Lastly, in Sec. VI we will show the effect of — 5 (L1+02)+Quilz+ Koyt S uivs + 5 Uzv;,

varying the phase mismatalp between the FH's and the

SH's. Conclusions are formulated in Sec. VII. 9)
Il. THE MATHEMATICAL TECHNIQUES where the prime stands fadx. To search for soliton solu-

tions by means of VA, we should adopt ansatz Unlike the
Equations determining stationary solutions are obtaine@ectf-based ansatz used 6], here we will use the more
from Egs. (1)—(4) by dropping thez-derivative (and the versatile Gaussian ansatz, which admits different widths of
walkoff) terms: different components of the solitofthis ansatz was earlier
applied to description of solitons in the single-core quadrati-

1 . . ) . .
“ U= QU+ UF v+ Qu,=0, (5) caIIy.nonll'near waveguide with a varying mismatch param-
2 eter in[3)):

1 1 5 1

2V vat U KuR=0, © u1,2=A1,zeXP( B zal,zxz) : (10

L +ulv,+Q 0 (7) 1
5Uaxx— QU T U v+ QU =0,

27 U12= Bl,zexl{ - 5131,2)(2) , (11

1 1,

§szx_02+§“2+KU1:0- ®  where Aj,, By, ajp, and B, are the amplitudes and

widths of the FH and SH of the soliton solution sought for.
The Lagrangian of the ordinary differential equations The subscripts 1 and 2 pertain to the two cores.
(ODE’s) (5)—(8), L=["ZLdx, can be derived with the La- Inserting Eqs(10) and(11) into Eqg.(9), we calculate the
grangian density effective Lagrangian,

2 +oo
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The variational equations are obtained by demanding the variations of the effective Lagrangian with respect téAeach of
By, a1, andg; ; to be zero. Then, we obtain the following eight equations:

——Ala —20qAsa; 1/2+2A2Q\/ +2A181\/2a B (13)
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1 \/ 2 \/ 2
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5 B2y~ 2B, M 281K\ g AS\ 5 =0, (16)
1
—§A§a11’2+2qA L P V2A1AQ ey + ap) ¥ \2A%B, (20, + B;) " ¥2=0, (17)
——A2a2 V2 q/'\ 52— 21 AQ( s + arp) ~¥2— \2A3B,(2a,+ B,) ~3?=0, (18)

8 2
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oy 1 a0y V2 )
— 5 BB P+ 5 BB *P— 2B1BoK (1 + B) - - AlBy(2as+ 1) =0, (19
2 Hh—1/2 1 2 h—3/2 —3/2 \/E 2 —3/2
- ngﬁz + 55232 —\2B1B,K(B1+ By) ¥~ 7"'\252(2“2““32) =0. (20)

Because these algebraic equations cannot be solved analyti-
cally, we resort to the numerical Newton-Raphson method. Uyx= 5
This involves calculation of the Jacobian matrix by finding h
the partial derivatives of expressions on the left-hand sides of
Egs. (13—(20) with respect to the eight unknowns, ,, the error of the numerical scheme bei@gh?).
B1,, a1, andBy,. The Jacobian matrix is thus of dimen- Ignoring the walkoff terms, Eqs(1)—(4) can be thus
sion 8x 8. We will not go into further technical details here, ransformed to
as the Newton-Raphson method is well known. d

The next step is to obtain stationary numerical solutions ,(ﬂ) =F, (22)
of Egs. (1)—(4) directly. We will do this by means of the dz
method of lines. To make a partial discretization, we dis-
cretize the transverse space variakl\Ve replace the inte- Where we further denote
gration domainrdm of x by a set ofn points:

Ug—1— 2Uxt Uk

Ui for 1<k=n
dm
x=(k—1)h, k=1,2,...n, hETl_ (22) - Upk-ny for (n+1)sks=2n
n . Uik—2m fOr (2n+1)<ks=3n
Along each of the linesx,z) for z=0, we denote the val- Ugk—3m for (3n+1)sks=4n,
ues ofu; by u;, (and similarly foru, andv4, vy). Then, the
finite-difference approximation is used fay,: and F is a 1X4n vector function defined by

+qwi=wiEwo, = QWpyy  for 1<k<n,

+qwi—wiwoa, 1 —Qwi—, for (n+1)sks<2n,

1 1
+= WK™ Wk w5

—Kwyy, for (2n+1)sk<3n,

Wi 1'2Wk+Wk+1)

1 1
+2wk 4wi 2n_§'KWk—n for (3n+1)<k=4n.

Wi—1— 2wt Wiy

(Wk 1—2Wk+Wk+1

h2

Of course, thew,_; andw, ; terms have to be equated to  The above-mentioned Jacobian matrix will then also be
zero at the boundaries of the integration domain to get theised for the linear stability analysis, by evaluating its eigen-

correct solitary wave solutions. values, which is a well-established method, see, EL§],for
To find the necessary stationary solutions, we equate theetails. Independent of this, the stability will also be tested
above expressions to zero: directly by means of the split-step Fourier method. The
walkoff effects will be investigated by means of the split-
F=0. (23 step Fourier method too.

Again, the Newton-Raphson method is used here to solve
Eq. (23). The corresponding Jacobian matrix is obtained by
calculatingdF; /dwy, where Ik=j<4n, and I=k=4n. Itis First, we will display results for the stationary solitons
a 4nX4n matrix. Further technical details on how to obtain obtained by means of VA. We should stress, however, that,
the solutions from here onward will not be elaborated onexcept for a peculiar narrow parametric region described be-
here. low, the variational results are always fairly close to the di-

lll. THE STATIONARY SOLUTIONS
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1 o8 o8 o oz . o2 o FIG. 2. The bifurcation diagram for the fundamental harmonics.

K The middle portions are chopped off sind€ >|Q| there.

FIG. 1. The bifurcation regions. Asymmetric solitons exist in \yhere u;» and v, , without the argumenk are the peak
the regions marked bR and S. The corners of the regions are at \5lues of the corrésponding wavék; and® are defined to
(-1,%1), (0,0), and (0.385;0.35_35).The dotted lines are the I_mes be compatible with the asymmetry parameter cés(at
Q: =K, to separate the qnphys_lcal area whete>|Q|. T.he solid was used irf6]. Note that the middle portions of the curved
lines are the loci of the bifurcation points found numerically. surfaces, corresponding to the unphysical situation with
4K|>|Q|, have been eliminated. We stress that, although it is

rect numerical ones. A detailed comparison will be given ai AN .
the end of this section. In this and subsequent sections, sa\%]own in Figs. 2 and 3 that bofh: and® are zero in these

Sec. VI, the results will be presented for the cesel regions, asymmetric solitons do exist in these regions as
We have found that the asymmetric soliton solutions exisf“""them"’mc"’II objects.

only in the regionR andS in the (K,Q) plane as shown in Itn_ genle;tral, at all values o, thet FH Ilelds oflthfe atsyr?-
Fig. 1. The solid lines mark the loci of the bifurcation points, metric solitons are more asymmetric at snjgl|. In fact, a

whereas the dotted lines af@g= *+K, which mark off the |Q|:.|K|.:0’ the wo wavegui(_jes_become decoupled, and
physically unrealistic regions where the SH coupling isthe f.|e|d in the second waveguide is absems adopt acon-
larger than the FH couplini.e.,|K|>| Q). Thus, in the two vention to allocate the number 1 to the waveguide carrying

triangular regions delineated by the dotted lines and the Vel]_arger fields, i.e.u;=u, andv;=v,). .AS Q| Increases from
.zero, the asymmetry of the FH fields monotonically de-

tical axes, the asymmetric solitons do exist, but are physi: ) 4
cally unrealistic. It is also interesting to note that the range o reases, on the other hand, the asymmetry of the SH fields at

existence of the asymmetric solitons is found to be Irst gets even stronger, and then rapidly decr(_aases as the
bifurcation point is approached. The asymmetric solutions

—1<K<0.385, (24)  finally merge with the symmetric ones at the bifurcation
points. These trends are more evident for more neg#tive
which is the same as predicted[i8] (in [6], the upper limit  Close toK=—1, the SH fields attain the strongest asymme-
was found exactly as 5/13, which is approximated by 0.385)try at very sharp parts of the bifurcation diagréig. 3). As

It is necessary to mention that there was a serious discrefic becomes more and more negative, the bifurcation points
ancy between the analytic@lariationa) and direct numeri- spread apart towards larger values Qf.
cal results obtained if6] for the limit caseK = Q: while the The characteristics of the asymmetric solutions can be
analytical solution was obtained for the whole inter¢2d),  further clarified by looking at Figs. 4 and 5, which are plots
numerically they had been found only in the subinterval
—0.3<Q<0.385. In view of the results obtained in the
present work, this limitation was produced not by any hidden
bifurcations or instability, but solely by technical limitations
of the numerical scheme employed[i#I.

The variational results allow us to construct twoee-
dimensionabifurcation diagrams shown in Figs. 2 and 3, for
FH and SH, respectively. They are plots, versus the coupling
constantsK and Q, of the effective asymmetry parameters
O and® g defined as follows:

2_ .2
u;—Uu;
F= % o (25)
ug+us
v%— vg . . . ;
®5=—2, (26) FIG. 3. The bifurcation diagram for the second harmonics. The

2 _ _ .
vitus middle portions are chopped off sinfi¢|>|Q| there.
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05 0 0.5 1 FIG. 6. The shape of the SH component of the asymmetric
Q soliton atQ=0.48 andK=—0.2, where the sign reversal of,
occurs. The solid line is the actual non-Gaussian shape of the soli-

FIG. 4. The peak values af; , vs Q, with K fixed as a param-  ton obtained by the modified method of lines. The dashed line is the
eter. The solid lines stand far;, and the dotted lines are fop. K prediction of the variational approximation. Since the variational
takes the valuex=0.4,0.3...,-0.8,-0.9,-0.998. approximation uses the Gaussian ansatz, it fails to predict the cor-

rect shape in a narrow parametric region around this point.

of the peak values ai,; , andv, , versusQ, with K fixed as
a parameter. For both FH and SH fields in the Waveguide 1, In fact, atQ:O, whenK — — 1, the absolute peak values

as K decreasegbut remains positive the fields become of bothv, andv, approach the same value, but they are of
larger, and they reach a maximumiat=0. Then, aX keeps  gpposite sign, whereas, approaches zero ang is identi-
on decreasing further to negative values, the fields becomgally zero, so that the soliton becomes antisymmetric, with

smaller. The FH field decreases towards zeré&(as—1.In  the dominant SH field. However, since this is an unphysical
the waveguide 2, both FH and SH decreas& adecreases. case, we will not discuss it further.

We adopt a convention that the amplitudes of the fields inthe A noteworthy point is that wheK is negative, the field
waveguide 2 are negative when they have the sign oppositg, changes its sign from positive to negative |& de-

to that in the WaVeguide 1. SO, the amplitude of the SH fieldcreases past a certain Va|(d£pending on the value M)

in the waveguide 2 assumes a larger absolute value When when this sign reversal takes place, the figjds essentially

IS getting more negative. non-Gaussian over a narrow range@fand has a very small
value (see Fig. 6. Coincidently, these non-Gaussian solu-
tions correspond to the sharp portions of the strongest asym-
metry in the bifurcation diagram for SKFig. 3). Thus, VA
based on the Gaussian ansatz is inappropriate in this narrow
parametric region, but it proves to be appropriate in all the
other cases.

The widths of the components of the soliton solutions also
vary with K andQ. Figure 7 shows the plot of the spot size
versusK and Q for the componenti,, which is defined as
follows:

normalized amplitude

W, =1/ ay, (27)

15—
3

05

Q

0.5

a4 being the width parameter according to Ef0). In gen-
eral, the spot size increases towards infinity kas> —1,
|Q|—1. As the peak values of the fields are simultaneously
approaching zero there, this implies that the solutions are
spreading out indefinitely in this limit.

Before proceeding to a comparison of the analytical re-
sults obtained by means of VA and numerical findings, it is
relevant to mention that, in order to validate our numerical

FIG. 5. The peak values af, , vs Q, with K fixed as a param- results, we compared them as produced by different meth-
eter. The solid lines stand fer, and the dotted lines are for,. K ods. As a typical example, we can mention what was ob-
takes the valuek=0.4,0.3,...,—0.8,—0.9,—0.998 inthis tained for the peak valuas, of the FH in the waveguide 1.
plot. In the limit caseK=Q, we compared the results obtained
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FIG. 7. The spot size af; of asymmetric solitons versus and ) ’ ) x
Q. The middle portion has been chopped off becalise>|Q| , ) 3
there. Also, note that the other flat portion of the plot outside the  F!CG- 8- The shape of the asymmetric solitonkat 0, Q=0.5.

curved surface has no meaning, since data were not gathered f§rh0\(vn are the FH componermg‘z. Th? solid line is the res‘%" .
symmetric solitons there obtained from the modified method of lines, and the dashed line is

generated by the variational approximation.

from the modified method of lines with those produced by )
the shooting method that was employed previousljjeh ~ c¢an be seen that the agreement is very good; the largest de-
The modified method of lines used 101 lines; i.e., the disVviations are at the skirts of the soliton. The shape produced
crete grid in thex domain has 101 points. The results werePy VA is narrower there, which is a natural drawback of the
compared for the range @ from —0.2 to 0.3, the worst Gaussian ansatz. This feature is generic for all the values of
discrepancy being 1.7% &= —0.2; otherwise, the discrep- K andQ.
ancies are all under 1%.
To check the relevance of the results obtained by means
of VA, we compared them with those produced by two ver-
sions of the modified numerical method of lines, using, re- In this section, we will study the stability of the stationary
spectively, 101 and 161 lingshe latter number was a tech- solutions found in the previous section. First of all, we can
nical limit set by the computer usgdor K andQ taking on  perform a straightforward linear stability analysis, using the
different values. In this relation, it is relevant to note, first of Jacobian matrices computed in the process of directly solv-
all, that the modified methods of lines using, respectivelying the ODE’s(5)—(8) by the modified method of lines in the
101 and 161 lines agree very well with each other, the worsprevious section. We use the results of the method based on
discrepancy being 0.24%. Based on this, we believe that our01 lines, which means discretizing the variakleat 101
numerical scheme is reliable. points. The corresponding Jacobian matrices will thus have
Comparison between the variational and direct numericali04 eigenvalues. If any of these eigenvalues is positive, the
results shows that their differences range from about 2% tatationary solution is regarded to be unstable. Since the cal-
about 6%. Generally, the discrepancies are larger very closeulation of the eigenvalues is straightforwdtiking a stan-
to the bifurcation points. This is understandable because, afard feature of the software ugedhe linear stability was
shown in Figs. 2 through 5, the fields change rapidly v@th tested for all the stationary solutions found.
near these points. Particular results of the comparison are Without exception, all the stationary solutions considered
displayed in Table I. (including the symmetric ongshave at least one positive
As a typical case, we additionally show in Fig. 8 the eigenvalue. This, however, does not mean that all the solu-
shape of the asymmetric soliton Kt=0 and Q=0.5, as tions are truly unstable. Indeed, in the conservative system,
obtained from both VA and the modified method of lines. It the stability may be only neutral, implying the existence of at

IV. THE STABILITY ANALYSIS

TABLE I. Sensitivity analysigdiscrepancies when compared with method of lines using 161)lines

Discrepancies

K —-0.7 -04 0.0 0.3

Q 0.8 0.874 0.5 0.725% 0.5 0.56% 0.35 0.4258'

ML P 0.03% 0.01% 0.06% 0.04% 0.08% 0.09% 0.08% 0.24%
VA ¢ 2.9% 5.3% 2.4% 2.9% 2.1% 3.2% 2.3% 5.5%

#These columns correspond to points close to the bifurcation points.
bMethod of lines, using 101 lines.
“Variational method.
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FIG. 9. Evolution of a slightly disturbed asymmetric soliton at g 5 1‘02 (normaIiZed)1I5 2 %

Q=0.7 andK=—0.3. Shown are the fundamental harmonic fields

) . . . . FIG. 10. Evolution of the peak values of the unstable symmetric
in both waveguides. Distance of propagation simulated was 2

soliton atQ= —0.4,K=0. This figure illustrates evolution towards
. . . . . .the stable asymmetric soliton.

least one zero eigenvalue in the linear stability analysis. This
fact was, as a matter of fact, observed, for the limit case \ye aiso checked stability of the symmetric solitons that
K=Q, in[6] in the form of very persistent, nongrowing and ¢oexist with the asymmetric ones. Exactly as expegfid
nondecaying, internal vibrations of the asymmetric solitone symmetric solitons aralwaysdestabilized by the bifur-
generated by a small perturbation in the initial conditions. Insation. This is illustrated by Fig. 10. It shows that the un-
the numerical computations, however, the zero eigenvalugiaple symmetric soliton suffers spontaneous symmetry
can easily turn out to be a tiny positive one. On the othelyeaking and shows a trend to rearrange itself into a stable
hand, this implies that the straightforward numerical calcusymmetric soliton that exists at the same values of the cou-
lation of the stability eigenvalues does not provide for thepjing constants. However, damping of the internal vibrations
final answer, and direct simulations of the PDEB®—(4)  of the resultant strongly perturbed soliton is so weak that

with perturbed initial conditions are necessary. there is no sign of settling down even after a long distance.
The conventional method of lines, which was used above

to produce the stationary soliton solutions, can be used too to

solve the PDE’s. However, we did not use this method to V. BFFECTS OF SPATIAL WALKOFF

tackle the stability problem, because, when formulated as Because the spatial walkoff is unavoidably present in a
above to obtain the stationary solutions, the method turns oykal situation, we have also studied its effect by means of the

to be very inefficient for the PDE integration. Instead, wedirect PDE simulations, keeping the walkoff terms in Egs.
used the split-step Fourier method as dong6ih The study

of the stability was performed at various points in the para-
metric space where the asymmetric solitons exist. The se 18
lected points were 16

(K,Q)=(—0.3,0.7;(—0.1,-0.4);(0,— 0.4);

i
7
%
%
3
H
N
A
i

-

(0,—0.56);(0,0.566;(0.2,—-0.45,(0.3,0.4.

They were chosen so that areas close to and far from th
bifurcation points, as well as the regions with positive and
negative values of the coupling constants, were all tested. o2
The results of this analysis are in complete agreemen
with the inferences formulated if6]. All the asymmetric 07
solitons were found to be neutrally stable. This means that
slightly perturbed, the solitons will undergo minor fluctua- *s
tions around the stationary solutions over very long dis-
tances. The fluctuations do not have any sign of decay, bt 10}
. . .. 20
they are not growing either. This is exactly the same behav X (arbitary units)
ior as observed ifi6]. A quite typical example of the evolu-
tion of a slightly perturbed asymmetric soliton is displayed in F|G. 11. Evolution of the asymmetric soliton @=0.5, K=0
Fig. 9, which depicts a case @=0.7 andK=—0.3. This  under the influence of the walkoff effect with=0.05. Only the FH
figure displays simultaneously the FH components of theomponents are shown. The slanting propagation directions are due
soliton in both waveguides. to the walkoff terms. Distance of propagation simulated was 3

normalized amplitude
o
ford
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2 rajectoris ' ' a typical wavelength of about 2m [11], this corresponds to

1L i the actual misalignment of around 0.11-0.34 degrees be-
x tween the beams in the two waveguides. Actually, available
experimental techniques allow one to make the misalignment
- ' ; : : ' : essentially smaller than this, so these values are quite rel-

g1_50 O'SI 1 . " z : . * |3 **  evant to estimate limits of the soliton’s stability against the
2 nvsgeeguFig'ﬂ walkoff. The total distance of travel simulated was.3

§ ' lower: sH ’ In Fig. 12, we illustrate the evolution of another soliton
%o.s— 8 when the walkoff is larger. In this case$=0.5,

£, , ‘ , K=Q=—0.7. The total distance of travel simulatedsis It

:) 15 -10 5 0 5 10 15 can be seen that the shapes of the soliton components get
R ' ' ‘ ' ' distorted, and skew to one side. It can be also seen that the
E;‘ wevequide 2 smaller of the soliton components in the two waveguides
g OO lower: SH ] gets trapped by the larger soliton component and pulled to
E A travel in the same direction.

g o : : In Fig. 13, we summarize the distortion effect inflicted on

N
o«

-10 -5 0 5 10 15
x the soliton as both the walkoff paramet®and the coupling

FIG. 12. (a) Trajectories of the peak values of the soliton com- constantsK and Q are varied(we consider here the case

ponents. Initially, the upper two traces are those of the FH and SIJI<:Q)' We quantify the distortion by defining
in waveguide 1, and the lower two traces are those in waveguide 2.

It can be noted that they travel in opposite directions. However, the J’ |u2— u2-|d§

smaller waves in waveguide 2 are finally pulled by the larger waves W, 1 ™

in waveguide 1 and trapped to follow their direction of trav@él. D=—+F+—+—+—, (28
The shapes of the soliton components in waveguide 1(enthe f U%idf

shapes of the soliton components in waveguide 2, after propagating A

over a normalized distance af. In this analysisK=Q=—0.7,

q=1, andé=0.5. It can be seen that the walkoff distorts the soli- where the integrations are confined within the beam width
ton, making the wave forms to skew to one side. (the spot size W, as defined in Eq(27). u, is the FH in
waveguide 1 after the propagation distancempfanduy; is
(1)—(4). Firstly, we demonstrate that the asymmetric solitonghe same wave filed at the input€0). The integrations are
are not destabilized by the walkoff effect if the walkoff is done with respect to the transverse coordinétén the ref-
small enough. In Fig. 11, we illustrate the evolution of anerence frame that travels together with
asymmetric soliton under the action of a small walkoff. In It can be seen that, in general, the distortion becomes
this caseK=0, Q=0.5, and§=0.05. For typical nonbire- larger asé gets larger. Also, distortion is larger for larger
fringent group IlI-V semiconductor crystals, with a refractive absolute values of the coupling constants. This trend is very
index of 3.5, a coherence length of around-1M0 xm, and  prominent for positiveQ: as one sees in Fig. 13, the distor-

0.45—

04" FIG. 13. Distortion as a func-
035~ tion of walkoff parameters and
0.3 coupling constan®. In this analy-
- sis,K=Q, and distortion is shown
£ 025+ after a propagation distance af.
B In general, the distortion is larger
© for larger walkoff, and stronger
coupling (where the solitons get
more symmetrig
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0 1
K=0
08~ .
06 8
04r . FIG. 14. The asymmetry pa-
rameters,®¢ 5, as functions of
02r 8 the fundamental-harmonic cou-
pling constantQ, when the phase
_q p 15 mismatchq takes on values 0.125,
’ ’ 0.25, 0.5, 1 and 2. The second-
harmonic coupling constar is
fixed at 0. It can be seen that the
% 1 regions where the asymmetric
solitons exist expand af gets
08 i larger. The dashed curves corre-
06- | spond tog=1, which are cross
’ sections of the bifurcation dia-
04l 1 grams in Figs. 2 and 3.
02 |
0
15 1.5

tion produced by a fixed value @fsteeply increases with the K=0.3. The results are not displayed here as they do not
increase 0fQ>0, quickly leading to destruction of the soli- produce anything essentially different. To show the effect of
ton. Because the solitons become more symmetric with theven larger values af, we include Figs. 15 and 16, for the
increase of the absolute values of the coupling constants, weasesKk =Q and K=0, respectively, which show that the
can interpret this trend as an effect of pulling apart of twoasymmetry stays relatively constantess increased beyond
soliton component&eferring to the two corgshaving nearly  about 4.
equal energies. The case of very small values gfcan be easily consid-
We also considered the walkoff-induced deformation ofered by means of an approximation well known for the
the stable symmetric solitons, existing before the bifurcationsingle-core waveguiddg] (one should bear in mind that our
For instance, in the casé=Q=0.4, we observed that, in the parameteq, entering the FH equations, is the inverse of the
presence of quite a strong walko#=0.4, both components frequently defined mismatch parametem the equation for
of the soliton developed conspicuous side lobes after havingH). Namely, one assumes that, in E¢R) and (4), it is
traveled a long distance=3w. As walkoff becomes even possible to neglect all the terms but the last two terms on the
larger, até= 0.6, the components in the two cores get pulledleft-hand sides, so that SH can be eliminated in favor of FH:
apart into the lobes, and they are no longer trapped togeth%rnm%uﬁ (n=1,2). Substitution of this into Eq$1) and (3)

to travel in the same direction, which we interpret as deStrUCrmmediately yields a system of two linearly coupledbic
tion of the soliton at somé between 0.4 and 0.6.

VI. VARYING THE PHASE MISMATCH g 1

Effects produced by varying the mismatch parameter  °5
are practically important, and they turn out to be rather easy
to investigate. Running the simulations with different values o5
of q, we have found that, as it gets smaller, the regions where
asymmetric solitons can exist shrink; the opposite happen:
whenq gets larger. In fact, ag gets larger, the asymmetry
gets larger @ - s becomes very close to 1) very rapidly. This
means the two waveguides get effectively decoupled at &% !

=
large phase mismatch. 05 w
Figure 14 shows the plots of the asymmetry parameters
O s, versus the FH coupling consta@tfor a fixed value of 0
0
-0.5 T 5
Q

the SH coupling constamt of 0, with the phase mismatah -
as a changing parameter, taking on values 0.125, 0.25, 0.5, :
and 2. Note that the dashed curves, correspondirg=ta,

are cross sections of the bifurcation diagrams shown in Figs. FIG. 15. The bifurcation diagrams as a function of the coupling
2 and 3. Similar analyses had been doneKetr —0.5 and constantQ and phase mismatal for the caseK=Q.

6

q
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numerical solution performed in terms of a finite-difference
scheme. The agreement between the analytical and direct
numerical results turns out to be very good, except for a very
narrow region, where the SH component of the soliton is
changing its sign, and its shape is strongly non-Gaussian
(nonmonotonous

Then, the stability of these soliton states was tested by
direct PDE simulations. The asymmetric solitons, whenever
they exist, were shown to be neutrally stable, while the sym-
metric solitons that obviously coexist with the asymmetric
ones are always unstable. Moreover, simulations of evolution
of the symmetric solitons close to the bifurcation point and
farther from it show that the unstable symmetric solitons
suffer spontaneous symmetry breaking and begin to evolve
into the corresponding asymmetric solitofwghich they do
faster if they are farther from the bifurcation point

FIG. 16. The bifurcation diagrams as a function of the coupling _W? then mvestlgate_d the_effeCt of the Walkcﬁﬁ‘p_atlal
constantQ and phase mismatai for the casek =0. misalignmenf on the solitons in the coupled waveguides for
different values of the coupling constants. An estimate for

nonlinear Schidinger equations for the FH fields,, which  the values of the walkoff parametércorresponding to ex-
is identical to that considered in detail earlier in the contextP@rimentally relevant values of the misalignment angles was
of the twin-core nonlinear optical fibef3,8]. obtained ¢~0.05 for the angles-0.3 deg. The walkoff

term being small enough, the asymmetric solitons, as well as
the symmetric ones existing before the bifurcation, remain
robust. With an increase of the parametrthe solitons

In this work, we have presented detailed results for adevelop a distortion, and they finally get destroyed when
model of two linearly coupled second-harmonic-generatingvalkoff becomes too large.
waveguides. We have studied the general case with different Finally, we have also investigated effects produced by
coupling constants for the fundamental and second harmonvarying the phase mismatch parameter. As the phase mis-
ics. We have completely identified the entire regighat = match parameteq gets smaller than 1, the regions where the
includes two subregionsvhere the asymmetric solitons ex- asymmetric solitons exist shrink, whereas these regions ex-
ist, along with the bifurcation lines, at which the asymmetricpand whenq gets larger than 1. However, &sincreases
solitons branch off from the obvious symmetric-soliton solu-beyond about 4, the asymmetry stays more or less constant,
tions. The asymmetric solutions were found in two differentespecially for the cas&=0. We have also demonstrated
ways. Onganalytica) approach was based on the variationalthat, in the opposite limit of very smatj, one can eliminate
approximation, which used the Gaussian ansatz. As usudhe second-harmonic fields to transform the model into that
the main advantage of using this type of ansatz is a possibifor the twin-core fiber with the Kerr nonlinearity.
ity to admit different components of the soliton to have dif- Thus, the results obtained in this work completely char-
ferent widths. Final solutions to the system of eight algebrai@cterize the asymmetric soliton states in the linearly coupled
equations produced by the variational approximation wereecond-harmonic-generating waveguides with arbitrary cou-
found numerically. Another approach was based on direcpling constants.

VIl. CONCLUSIONS
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