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Bound states of dark solitons in the quintic Ginzburg-Landau equation
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We report results of systematic simulations of interactions between dark solitons in the complex quintic
Ginzburg-Landau equation. Bound states of the solitons are found. The boundstatésare not possible in
the cubic equatiorexist in a wide range of parameters and are highly stable, providing an example of a stable
bound state of solitary pulses in a generalized Ginzburg-Landau equitd63-651X%97)08508-5

PACS numbdrs): 42.65.Tg

[. INTRODUCTION is not only an interesting object for fundamental research,
but may have practical importance too. Very recently, effec-
The particlelike nature of solitons most clearly demon-tive data transmission in nonlinear optical fibers has been
strates itself in interactions between them. For bright soli-demonstrated using dark solitofs5]. The relevance of the
tons, an outcome of the interaction depends on amplitude§S problem for the analysis of the operation of a soliton-
velocities, phases, and initial separation between the solitor@gsed communication line is obvious. It is believed that dark
[1,2]. For initially motionless ones, the interaction is attrac-Solitons have some advantages over bright ones, in particu-
tion or repulsion, depending on their relative phase. For darlk@r, a lower Gordon-Haus jitte17].
solitons, the picture is simpler, as two adjacent solitons may In this paper we analyze interactions between the dark
be in phase o#r out of phase only. In addition, the amplitude solitons in the presence of perturbations, namely, in the com-
and velocity of the dark soliton are related, hence one iPlex quintic GL equation(a perturbed NLS equation with a
dealing with fewer arbitrary parameters. Two initially mo- nonlinear saturable gainSpecial attention is paid to the for-
tionless(i.e., black dark solitons always repel each otf8t. mation and stability of the two-soliton BS’s. The eventual
The soliton interaction is a very sensitive effect that isresultis that the BS’s do exist and appear to be fully stable in
greatly affected by perturbatioh,4—6. It is known that for ~ the quintic equation. As a matter of fact, this is example
bright solitons, some perturbations tend to attenuate the iref an absolutely stable BS of solitary pulses in an intrinsi-
teraction and may even lead to formation of bound state§ally driven generalized GL equatiofthe driven damped
(BS's). For the complex Ginzburg-Landa(GL) equation NLS equation, where BS’s were found earli@d], does not
[which may be regarded as a perturbed form of the nonlinedpelong to this class of the modgls
Schralinger(NLS) equation, such a BS, with the phase dif- The rest of the paper is organized as follows. In Sec. Il we
ference 0 orr between the solitons was predicted # (for introduce the GL equation and discuss the existence and sta-
more details se¢8]). The existence of this BS has been bility of its dark-soliton solutions. Section 11l is devoted to
confirmed numerically9,10], although the subsequent stud- an analysis of the interaction between the dark solitons. In
ies have shown that apparently it is weakly unstable to perSec. IV we demonstrate the existence of stable BS'’s in the
turbations of the relative phase between the two soliton§luintic GL equation. Section V concludes the paper.
[11,12. The bound state has been observed also numerically
in the dispersionless capE3]. Finally, it is relevant to notice Il. THE GINZBURG-LANDAU EQUATION
that BS can exist in a different model, viz., the driven AND ITS DARK-SOLITON SOLITON SOLUTIONS
damped NLS equation, where the phases of the interacting

solitons are independently locked to the driving fofdd]. We take the perturbed NLS equation in the form

However, the separation between the bound solitons in this 152
model is twice as large as in the GL equation. i&_u+ - &—u—|u|2u=iP[u] (1)
The problem of existence of BS’s dfrk solitons was not a2 px? ’

addressed thus far. One of the reasons is that the perturbation
theory for dark solitons, which allows one to analyze theirwhereu=u(z,t) is the complex fieldt is the evolution vari-
dynamics under the action of perturbations in a consisterable (“time” ), andx is a spatial variablé“space”). Notice
way (in particular, their stability and interactionshas been that, in application to the nonlinear optical fibetds actu-
derived only recently15]. The stable BS of the dark solitons ally the propagation distance, whibe is the so-called re-
duced time. The real terfd[ u] represents a perturbation that
combines gains and losses.
*Electronic address: afanasjev@cse.unsw.edu.au We are interested in dark-soliton solutions on a nonvan-
"Electronic address: malomed@eng.tau.ac.il ishing background|u|—uq for |x|—. We introduce the
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FIG. 2. Dynamics of the soliton interaction for differentvary-
FIG. 1. Separation between the dark solitong at200 vs the ing from e=0 (top curvg to e=0.8 (bottom curve, at Ay=2.25,
initial separation\. e varies between Qtop curve and 1(bottom  k=0.4.
curve. The inset shows the part of the figure related to the bound-
state formation. ture (“chirp,” in terms of the fiber optic} of the dark soliton
(6). This means that the dark soliton is in fact a sink that
new variablesuzuoe“‘gtv(t,x), gzugt, and £=ugx, in absorbs incident waves. If the system as a whole is in a

terms of which the equation takes the form stationary statéi.e., if the background does not de¢agb-
sorption of energy by the sink must be compensated for.
v 1d% There are other localized solutiofsourcey that provide for
ia—§+§ﬁ—§2—(|v|2—1)v=ip[v]- (2)  this [20,21). The source looks like a hump on the back-

ground; see, e.g., Figs. 2 and 4 of R&2]. The existence of

For P=0 this equation has the commonly known exact dark-s.UCh hu_mps prevents the dark salitons from an interaction,
soliton solution “insulating” them from each other.

It should be noted that the perturbation theory predicts
(¢, €)= cosptantz —ising, (3)  that the dark solitons are unstable in the cubic GL equation
[15], although the analysis did not take into account the

whereZ=(¢— {sing)cosp. The soliton amplitude and veloc- above-mentioned diffusiotspectral filtering term. Numeri-
ity are determined by théconstank soliton phase angle, cal simulations allowed one to identify a small region where

|| <m/2. The phase shift across the solitbnis connected the quiescent darkblack) soliton is stablg22] . However,

with ¢ by a simple relationb=7—2¢. one cannot use these stable solitons to study the interaction
We now choose the perturbation in the form between them because everywhere in this region a direct
interaction between dark solitons is prevented by a source

Plv]=6v+elv|?v+ulv|*, (4  that is formed between them.

We have found that the dark-soliton interaction and
where 5, €, and u are, respectively, the coefficients of the pound-state formation are possible in the full quintic GL
linear, cubic, and quintic gain or dissipati¢depending on  equation. An exact solution in this case is known only in a
their signg. We intentionally omit the diffusion terrfspec-  |imited range of parametef&1]. Nevertheless, the perturba-
tral filtering, in terms of the fiber opti¢gbecause we suspect tjon theory allows one to identify the stability range for dark
that it may slow down the interaction and also because agolitons, which is much broader than that for the cubic GL
effect of this term on the dark soliton has not yet been StUdequation[lS]. In this case, the phase modulation is much

ied by means of the perturbation theory. For convenience, wgeaker, sources are not formed, and the soliton interaction
represent the coefficients in the form may be studied in detail.

=—ke, u=—(1l—-K)e. (5)
I1l. SOLITON INTERACTION

In terms of this notation, both the cw background and dark

solitons itself are known to be stable at 4/B<1/2 [18]. First, we recall how the dark-soliton interaction occurs in

If u=0, Eqs.(2) and (4) are known as cubic GL equa- the unperturbed NLS equation. Two initially motionless dark

tions, which have an exact dark-solitgihole” ) solution _sql!tons aIv_vgys_repeI each oth8]. If one starts from an
[19] , initial condition in the form

v(€)=tani a&)exdiycoshifag)], (6) vo(é)=tanh(§—Ag)tani({+A,), @)

where real constants andy may be found by direct substi- then twogray solitons are eventually formed. Their depar-
tution of Eq.(6) into Eq.(2). Note the nontrivial phase struc- ture from the black onéi.e., the phase angleb|) is roughly
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FIG. 3. Same as in Fig. 2 foA,=2.2,...3.0 and fixed FIG. 5. Separation between the dark solitons in the bound state
c=0.4. v vs € at {=200.

. _ _ . width. In the alternative case, the perturbation affects not
inversely proportional ta\,, i.e., for strongly overlapping only each soliton separately, but the interaction between
solitons (small Ag) |¢| is large and vice versa. In the nu- them as well. In particular, a BS may be formed. The BS
merical experiments, the soliton interaction is usually studiedormation may be observed as independent of the output
in the form of a dependence of the outgfihal) separation  separatiom ,, of the input oneA,,.

Ao vs the input(initial) separationd,. This dependence for |n the first series of simulations, we fix,=2.25 and vary

the dark solitons in the Unperturbed NLS equation is dlS'E (See F|g 2 As one can see, the perturbati(gaturab|e
played in Fig. 1(the bold curvg As one can see, the repul- gain) is braking the motion of the solitons. However, starting
sion is strongest for small,, (although the difference from from e=0.4, the motion of the solitons becomes nonuniform

the case of the bright solitons is that,, is finite at  and this cannot be explained by the action of the perturbation
Ap=0), then Ay, attains a minimum, and finally it ap- on each soliton individually.

proaches\, at largeA,. The empirical solution for the soli-  |n the next series of simulations, we increase the propa-
ton interaction has been given in RE3] and it describes the  gation time from 50 to 200, fix= 0.4, and study the inter-
soliton interaction with very good precision. action for several values df, (Fig. 3). One can clearly see

If we add the perturbation, we can expect two distinCtformation of the BS, with the separation between the solitons
scenarios in the simulations. In the first case, the perturbatiof ss=2.25. Note the oscillatory type of the soliton trajectory
affects each soliton but not the interaction. This means thag, Ap=2 and 2.2.
each of two moving gray solitons that are initially formed  Now we can return toA,,(Ao) dependence, which is
from the initial condition(7) transforms into a black soliton, most easily observed numericaligee the inset in Fig.)1
gradually dropping its velocity. Finally, two parallel propa- The BS formation may be observed starting fram0.2 as
gating solitons are formed; however, this cannot be attributeghe nearly horizontal asymptotic part of thg(A,) curve.
to the bound-state formatidisee, e.g.[18]). The interaction A ¢ increases, the size of this part also increases, and for
is affected only indirectly as the solitons acquire a different.~ g g the bound state is formed fany initial separation in

the[0,4] range.
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FIG. 4. Profiles of the bound states fertaking values from FIG. 6. Example of formation of the bound state from the soli-

0.2 (top curve to 1.0 (bottom curvé. tons with ;=0 and ¢,= m/24.
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Figure 4 shows the profiles of the established BS’s forHowever, the inner soliton in the multiple-pulse BS experi-
several values ok. As one can see, solitons are strongly ences different perturbation in comparison to outer solitons.
overlapped in the bound states, even at smaaland the  So such BS have never been observed because of the insta-
overlapping increases witk. Note that the separation be- bility to phase perturbations. In our case, the BS is highly
tweeg) solitons in the BS rather weakly dependseo(see stable and it may consist of an arbitrary number of solitons.
Fig. 5.

To check the stability of the BS of two dark solitons, we
used a perturbed asymmetric initial condition, viz., one soli- IV. CONCLUSION
ton with ¢, =0 and a second soliton witth,# 0. The simu-
lation shows that after some transition process, the bound We have simulated interactions of dark solitons in the
state is formed and remains stalffég. 6). quintic Ginzburg-Landau equation. We observe stable two-

Finally, we observed the multiple-soliton bound states,soliton bound states. This is an example of a stable bound
which consist of three, four, or more solitons. In fact, suchstate of solitary pulses governed by a generalized Ginzburg-
structures have been predicted in Ré&f, for bright solitons.  Landau equation.
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