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Short-time dynamics of a two-dimensional majority vote model
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Short-time Monte Carlo methods are used to study the nonequilibrium ferromagnetic phase transition in a
majority vote model in two dimensions. The existence of an initial critical slip regime is verified. The measured
values of dynamic exponents=2.170(5) and§=0.191(2) are in excellent agreement with those of the
kinetic Ising model universality claspS1063-651X98)00301-§

PACS numbegps): 05.70.Ln, 05.50tq, 64.60.Ht, 02.70.Lq

The identification and characterization of universality For a finite system it is expecté¢d0,11] that the moments
classes for nonequilibrium systems are far less settled than if the order parameten® (kth moment of the magnetiza-
the case of systems in thermal equilibrium. Neverthelessjon) have the scaling form
many model systems with microscopic irreversible dynamic
rules(no detailed balangeand two states per site have been m®(t,7,L,mg)=b~*"m® (b2, b~ ¥ 7 bL,b~*om),
found to fall in the Ising model universality class as far as 3)
the static behavior is concernedl1-8|. Grinstein,
Jayaprakash, and Yu H®] have argued that, provided the i _ . by
rules are up-down symmetric, both the statics and(libveg- nuII..Settlngrzo and the arbitrary scaling factbr-t*%, one
time) dynamics of those models are the same as those of tHPtains from Eq(3)
kinetic Ising model. However, we are not aware of any direct
determination of the dynamizexponent for such models. In
the present work we have applied the recently Ioroloose(\;\/heretL~LZ andtoszﬂxo. Following the scaling relations
early-time dynamic Monte Carlo techniq[&0—17 to inves- Lo 0 - .
tigate the dynamic behavior of a model in the above—for the magnetization and its higher moments, it is possible

mentioned class: the majority vote mod@ihose rates can © infer that the time-dependent Binder cumul§2]

where 7=(T—T,.)/T. and the initial correlation length is

m(t,L,mo)~t~#VE(t/t, ,t/to), (4

be seen as a combination of two Glauber dynamics in contact @
with two heat baths at different temperatyrgk3,1]. Previ- U(t,L)=1— _m (5)
ous studies of short-time dynamics were concerned either ' 3(m'?)2

with equilibrium systems, such as Isif#4,11,12 or Potts
[15—-17 models, or with a nonequilibrium phase transition in obeys
a distinct universality clasgl8].

Janssen, Schaub, and Schmittmfb@] have shown that U(t,Ly)=U(b™*,L,) (6)
when a system with relaxational dynamics is quenched from . .
T>T, to T,, the early times of evolution also display uni- 0F 7=0, Mo=0, and two system sized { and L) with
versal behavior. An independent exponénassociated with 2= L2/L1. The exponent can beﬁgbte.uned from a data col-
the anomalous dimension of the initial order parameter, wal@PS€ With a time rescaling factor *. Since only early times
introduced to describe the system behavior during dkits are congdered, this is a .rather eff|C|ent' method to extract
cal initial slip regime. Denoting byn, the initial magnetiza- ©Ncez is known, the static eéponem’z‘/v is recovered from
tion (0<my<1), this regime is found in the time range & Similar scaling analysis Qﬁ( ). . o
tmic<t<m5ﬂx°, wheret,;. is some microscopic time and Startlng_ with random_lnmal conflgurat_lor(svlth mo:O_)
Xo= 62+ Blv (B and v are the equilibrium critical indicas and following the evolution at; of the spin autocorrelation

The magnetizatiofim(t)=N"1Z,(c;)] increases with time function
as N
AD={ S a0 )
m(t)~mgt?. (1) N\& ! R
6 is also related to the decay of the autocorrelation functiorthe power-law decay?) is visible after a short transient re-
from a disordered initial state gime and\ (and therefored) can be obtainefll6]. A direct
measurement o is possible from Eq(1): The samples are
A(t)~t™>, (2)  then prepared with a sharply defined small valuengf After

a few Monte Carlo step8vICS) a straight line appears in the
with A=d/z— 6 in d space dimensions. The relation betweenlog-log plots andd is computed from its slope.
short-time dynamics and damage spreading was recently The two-state isotropic majority vote model is defirjéd
clarified by Grassberggd9]. by a set of “voters” or “spin” variables{o;} taking the
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FIG. 1. Collapse plot of the Binder cumuladit,L) as a func- FIG. 2. A log-log plot of the time evolution of the magnetiza-
tion of t/L? for L=8 (*), 16 (O), 32 (O), and 64 (X) with tiom m(t) for system size& =16, 32, 64, and 128 from bottom to
z=2.170. The inset showd(t,L) againstt (same symbols top. The initial magnetization was,=0.031 25. The dashed guide

line has slope 0.191 and was plotted for comparison.
values+1 or —1 and evolving in time by a single spin-flip-

like dynamics with a probabilitj; given by In Fig. 1 Binder's cumulant)(t,L) is displayed against
t/L? for different values of system size and initial magneti-
, (8) zationmy= 0. The value of the exponent obtained from the
best collapse was 2.1{®), which is in very good agreement
. ] with the ones obtained by Grassberg&8] from a damage
whereS(x) =sgn) if x=0, S(x)=0 if x=0, and the sum  gpreading study and by Nightingale and ®§22] from a
is over nearest neighbors afi. The control parameteq  variance-reducing Monte Carlo algorithm for the two-
plays the role of temperature in equilibrium systems andjimensional Ising model with nonconservative dynamics.
measures the probability of aligning antiparallel to the Matigure 2 shows a plot of lag(t) against log for
jority of neighbors. In two dimensions this model has a fer—m0:0_031 25 and different system sizds< 16, 32, 64, and
romagnetic stationary phase for<@=gq. undergoing a 128): for comparison a straight line with slope 0.191 is also
second-order phase transition to a paramagnetic phage at grawn. The dependence 6fon m, was analyzedsee Table
[q.=0.075(1) for a square latticld,5]]. The static critical | A Jinear extrapolation tan,=0 yields §=0.19%2). It is
behavior is Onsager-likgl,5,8. According to the argument clear from Fig. 2 tha® can be estimated from the study of
of Grinsteinet al. [9], its dynamic critical behavior is the very small system sizes.
same as model A(lsing [21] and therefore the | our case, even fdr =16, the power-law behavior lasts
renormalization-group analysis of Jans®tral. should also o two decades of MCS with an exponent close to our best
apply to such a nonequilibrium model. The aim of this papen,gjye, This shows that for the measuremen®ddhe finite-
is to report a direct confirmation of the above conjecturegj¢ effects are not important, in contrast with the behavior
from the results of a short-time dynamics study of thisyf the autocorrelation function, where higher values afre
model. The exponenisand ¢ are found to be indistinguish- ecessary. From Fig. 2 we can also obtain an estimate of the
able from the corresponding Ising values; 2.172(6)[19],  crossover timet, when the magnetization changes to the
z=2.1665(12)[22], and §=0.191(3)[19] and the existence decreasing power-law behavior ¢?) before entering the
of an intermediate scaling regime is verified. _ultimate exponential regime. It is clear that foxt, the
Simulations were carried out for square lattices of sideynagnetization presents a power-law increase for all values of

L=16, 32, 64, and 128 with periodic boundary conditions.| ith no significative finite-size effects. It is also remark-
Random initial configurations witmy=0 were used in the

study of U(t) and A(t), whereas a small excess of plus TABLE | E 0 function ofn- for L=32. The val

spins, randomly distributed on the lattice, was taken to pro-, . - EXponenteas a tunction om, for L= 22 The vajue

duce a selected value of,=0. In order to prepare a sample obtained formy—0 is §=0.19%2), in good agreement with the
; ; 0=~ ) .~ values in the literaturg16,19.

with a precise magnetization and negligible correlation

length, we generated a lattice state with equal probability of

1
Wi(o) =5

1—oi<1—2q>8(2§ Ui+5)

occupation for both spin states and then flipped the spin at

randomly chosen sites until the desired magnetization was 0.023 437 500 0.1870(20)
obtained. The lattice was updated by flipping randomly 0.031 250 000 0.1856(20)
picked spins[23] with probability given by Eq.(8) with 0.058 593 750 0.1809(20)
g=9.=0.075. The evolution was followed for up to 1000 0.080 078 125 0.1783(20)
MCS. Averages were performed over a large number of his- my—0 0.191(2)

tories (up to 4x 10° independent initial configurations
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N=d/z— 6 is well obeyed for the values obtained before,
within the statistical errors.

In summary, we have investigated the dynamic behavior
of a critical nonequilibrium model, the two-dimensional ma-
jority vote model, making use of the early-time dynamic
Monte Carlo method. By following the time evolution of the
magnetization, Binder cumulant, and time autocorrelation
function for systems of various sizes, we were able to calcu-
late numerically the values of the exponenrts2.17(5),
#=0.19%2), and A=0.7355). These values are in very
good agreement with their corresponding two dimensional
Ising results: a direct confirmation of the stability of the ki-
netic Ising fixed point with respect to irreversibility of the
microscopic rategof a certain king. The effect of the ab-

_4.0 ‘ ‘ sence of detailed balance probably has to be sought in prop-
1.0 20 8.0 40 erties such as the cluster structure and the dynamics of pat-
1ogyo! tern formation [24]. Another dynamic exponent,, the

FIG. 3. A log-log plot of the autocorrelation functio®(t) for QIObaI persistent exponent, was recen_ﬂy introduced b,y Ma-
system sized =32, 64, and 128bottom to top with initial mag- jumdaret aI_. [25]. It measures the persistence _of the sign of
netizationmy=0. The dashed guide line has slope 0.735. the magnetization and is relatedddor a Markovian system

[25]. Evidence of non-Markovian nature was reported for a
) . nonequilibrium mode]26], but the situation is unclear in the
able that this power law appears at a very small timggjng casg25,27. The persistence probability of the major-

(tmiCNEI- MCS. o ity vote model is currently being investigated.
In Fig. 3 we show a double-logarithmic plot of the auto-

correlation functionA(t) as a function of time for different

values ofL. To get the critical exponemt we discarded the M.A.S. wishes to thank J. Drugowich de Feh for a very

first 10 MCS. helpful discussion. This work was supported by JNICT/
The best value obtained farwas 0.73%5), which agrees PRAXIS XXI (Portugal under Project No: PRAXIS/2/2.1/

with recently published resultgl6]. The scaling relation Fis/299/94.

log,, A(t)
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