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Wave packets, rays, and the role of real group velocity in absorbing media
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In an absorbing medium, where the vectr= dw/ ok usually is complex for real values of the wave vector
k, the group velocity may become real for some complex valuekoThe role of real group velocity in the
propagation of one-dimensional wave packets in homogeneous absorbing media is examined. Applying the
saddle point method to an analysis of the asymptotic behavior of the Gaussian wave packets shows that for
absorbing media, at large times and distances, the real group velocity appears as a local characteristic of any
small section of a wave packet. For each section we can find the complex values of the local wave number and
the local frequency defining a real group velocity. Thus, the real group velocity concepts in absorbing media
do not have to be based on the signals having real wave vectors or real frequencies. The analysis of the exact
solution for a Gaussian wave packet in a medium with a complex law of dispersion describing whistler waves
in a collisional plasma is performed. It is shown that at all times the initial carrier wave number exists as a real
part of the local complex wave number at some point of the Gaussian envelope and this point moves with a
constant real group velocity. For large times the local wave group with the initial carrier wave number can be
found far away from the envelope centE81063-651X98)05601-3

PACS numbdss): 52.35.Lv, 42.15.Dp, 94.30.Tz

[. INTRODUCTION =0. These local characteristics of the WP remain constant
along the straight-line trajectories= X(t) termed the rays.
The concepts of wave packst(WP), group velocity, and The value of the local wave vectdr at the pointx=x.(t)

ray tracing come up in many areas of physics—quantungorresponding to the spatial maximum of the WP envelope
mechanics, optics, plasma physics, fluid mechanics, soli@qualsk.. The description of the rays associated with the
state physics, geophysics, and astrophysics. The group velo¥P propagation admits the Hamiltonian formalism: the vec-
ity concept seems to have been first introduced by RayleigkPrs X(t) andk determine the position of the dynamic sys-
[1] for the transverse sound waves propagating in thin elastitem in the configuratioticoordinat¢ space and in represen-
rods. Since then this concept was applied to studying W2tion (momentum space, respectively, while the frequency
and signals based on various kinds of waves in dispersivev(k,X) plays the role of the Hamiltonian. For a homoge-
nonabsorbing media. The theory of WP in dispersive medid€ous mediumw depends only ork and the Hamiltonian
without absorption of the wave energy has been amply disdifferential equations have the form
cussed in the literatur,3]. As is well known, any WP in a

homogeneous medium is constructed by the continuous su-dX do ~_ ~ dw
perposition (integration of the elementary plane waves, j = (9—?=W( ), o E+W(k) " k=— o
sinusoidal in both space and time, with neighboring values of 1)

the wave vectok and the frequencw. Usually such a su-

Ferpositiorgki)s p&e(s;nted ir;]the fr?”E of the intﬁgrgl of the  The solutions of this Hamiltonian system represent the

unction A(k)exdi(k-x—wt)] in the k space. The disper- . : . U

sion equatiorD (w,k) =0 characterizes the properties of the straight lines in the phase spagé.k} given by

medium with respect to wave propagation. The spatial Fou- ~ -~

rier transform of the WP at=0 is the functionA(k) con- X=XotW(ko)t, k=Ko, 2

centrated in some vicinity of the carrier wave vedtgr The _

spatial maximum of the WP envelope propagates with thevhereX, andk, are arbitrary constants of integration along

group velocityW = dw/dk calculated ak=K.. each ray. If an initial distribution of the wave vector in space
The concept of rays in the theory of WP propagation injs specified, therk, can be considered as a known function

nonabsorbing media appears in studies of the asymptotic bgg Xo.

havior of the WP for large values dfand|x|. A powerful In dissipative (absorbing or active (amplifying) media

tool that leads to the asymptotic formulas for the WP soluthe elementary waves that are harmonic in space decay or

tions is the saddle pointSP method for the Fourier inte- grow in time, while the time-harmonic waves decay or grow

grals. Whitham[3] shows that for large times each small jn space. This leads to a formally defined complex group

section of the WP can be characterized by the instantaneoyg|ocity vectorf4—6] W= dw/dk. The complex Hamiltonian

values of the local wave vectde(x,t) and the local fre- equations and their generalizations for the spatially inhomo-

quency w(x,t)=w[k(x,t)], where the dependences  geneous absorbing media whese w(k,x) lead to the com-

=w(k) is determined by the dispersion equatibrfw,k) plex raysX=X(t). The complex ray tracing was used as a
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mathematical tool for solution of some problems of waveity W represents the velocity of propagation of the SP wave
propagation in absorbing ionosphé¢fe7] and in a hot toka- number with the distinction that the wave number becomes
mak plasmd8]. complex.

When the medium is absorbing, the WP acquires some In Sec. IV we present and investigate the exact analytical
new features in comparison with its behavior in nonabsorbsolution for a Gaussian WP in a medium characterized by the

ing media. Thus, the velocity of the WP envelope maximumduadratic complex law of dispersian=(a—iB)k? to illus-

V,, changes with time even in the case when the medium i§ate the features of the WP that are associated with the local
homogeneou$4,9,10. In addition, the local wave number 9roup v_elocny, _Wh|ch remains real in the presence of abso_rp-
that can be determined at the point of the envelope maximurf{on- This solution can describe the propagation of the whis-

also changes with timgt]. Consequently the vectox,, and tler WP in a collisional magnetosphere. In the particular

W are not identical. In an absorbing medium vectiris casesB=0 or «=0 the solution is converted to Gaussian
complex at the point of the envelope maximum. Althoughr.)aCke’[S for the systems d.escrlbed by the Sd:hgl_ar equa-
tion or the heat conduction equation, respectively. Some

Fhe vglocnyVm can be expressed n terms.of bOth real andproperties of a Gaussian whistler WP in the presence of ab-
imaginary parts oW, from the phys_|cal point of view the sorption were briefly discussed by Muschietti and Durf¥ih
concept of the complex group velocity pepomes obsc_:ure. Olith the emphasis on the propagation of the maximum of the
the other hand, several examples existing in the literaturgyp envelope. The main advantage of the exact solution ana-
show thatW may represent a real physical velocity in an|y;eq in Sec. IV is in the fact that it gives a complete de-
absorbing[5,9,11,12 or amplifying [13] medium if under  gerintion of the transition from the initial stage to the

some circumstances the vectbt becomes real. The case of 5gymptotic stage of the WP evolution in the presence of the
an absorbing system described by the one-dimensional he%dependent wave damping.

conduction equation was analyzed [ihl] where a purely The structure of the exact solution allows one to deter-
exponential “carrier wave” and a slow envelope in the form mine the local complex wave number and the local complex
of hyperbolic sine were considered. The carrier wave Sat'sfrequency, which differ from the SP values and approach
fied the condition Iv=0, which was fulfilled for purely ihem for large times.
imaginary values ok and the real group velocity repre- It is shown that the trajectory, along which the real part of
sented the velocity of propagation of the zero temperaturgqe |ocal wave number is equal to the carrier wave number,
point. As was suggested [112], the WP and the group Ve- yepresents the straight line and it is a genuine Hamiltonian
locity concepts in absorbing media do not have to be basegiy X(t) satisfying Egs.(1) with ImW=0. This property
on the signals having real wave vectors or real frequenciegiemonstrates the importance of the concept of the real group
To some extent, this suggestion is confirmed by the analysige|ocity for absorbing media. For the whistler WP the real
of the WP given in the present paper. . value of W represents the velocity of propagation of the car-
For a homogeneous absorbing medium the conditionier ywave number and it differs from the velocity of propa-
Im W=0 leads to some relationship betweenkrand Imk gation of a Gaussian peak studied[#].

(and between Re and Inw as wel). Under this condition The main results are summarized and discussed in Sec. V.
the solutions of the Hamiltonian syste(f) presented by

Egs. (2) still determine the real rayX=X(t) along which Il. THE SADDLE POINT METHOD FOR WAVE PACKETS

the SP wave vectdt keeps constant complex values that are IN ABSORBING MEDIA

different for different rays. The purpose of the present paper

is to examine the role of the real rays provided by the re- The description of linear waves propagating in a uniform,
quirement InW=0 in the propagation of the one- dispersive, and absorbing medium is commonly based on the
dimensional WP in the homogeneous absorbing media and ®lementary exponential solutions

show that such rays determine all local characteristics the ) _

WP for large times and distances. exp(iS) =exdi(k-x—ot)]. ()

The paper is organized as follows: In Sec. Il the SP
method is employed for calculating the asymptotic form of
the Fourier integrals containing the complex eikonal
S(k,x,t) =kx— w(k)t and describing the WP in an absorbing D(w.k)=0 4)
medium. Both spatial and temporal WP corresponding to the ' '
initial-value and boundary-value problems are considered, Fqr apsorbing or active media the dispersion equation is
including the asymptotic form for the Gaussian packets andmplex: its solutiorw= w(k) determines the complex fre-
for the Green funptlons. Itis demonstrated that f_or the imagiguency w=w, +iw; for real values of the wave vectdr.
nary part of the eikonal I®considered as a function &f(or  This means that the initial perturbation having the sinusoidal
), the condition InW=0 is satisfied in the SR=k (or @  form in space will decay in time i&;<0 and grow in time if
=) of the function In& In Sec. Ill the main properties of 4, >0. The first case corresponds to an absorbing medium,
the complex SP wave numbd(x,t) are analyzed. It is while the situation withw;>0 is related to an active me-
shown that for absorbing media the role of the SP wavelium, in which the steady state is unstable with respect to
number in the asymptotic behavior of the WP is similar tosmall perturbations. We consider below only one-
what was described by Whithaf8] for the WP in the purely  dimensional problems and assume that the vektis di-
dispersive media where the values lofare always real. rected along th& axis, so that the complex eikon&lin Eq.
Analogously to the nonabsorbing case, the real group velod3) has the form

The relationship between the wave frequenrgynd the
wave vectork is given by the dispersion equation
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S=kx—e(kt, ® G(x,t)=(2w)_1fw exdiS(kx,t)]dk. (12

wherew(Kk) is the solution of Eq(4).
There are two main problems associated with the propa- The second problem is the boundary-value problem when
gation of WP. The first is the initial-valug€auchy problem o needs to obtain the solutiarfx,t) in the half-space

where we investigate the evolution of the initial distribution < 5 \which is resulted from a given signa{t) applied to the
in spaceu(x,0), of some wave fieldi(x,t), satisfying a bou,ndaryx:O

partial differential equation
L(a/at,alax)[u]=0. (6) u(O,t)zg(t)zJ'jo B(w)exp —iwt)dw, (13

Here the linear differential operataris a symbolic poly-
nomial in d/dt, d/dx with constant coefficients. The disper-
sion equation4) and the wave equatiof®) are related by

whereB(w) is the Fourier transform of the boundary signal

g(t). The solutionU(x,t) of the boundary-value problem

can be presented in the form of the Fourier integral
D(w,k)=L(—iw,ik). (7) "

U(x,t)=f B(w)exdi2(w,x,t)]dw. (14

If the ordern of the polynomialL with respect toj/dt is -

larger than 1, then the solution of the Cauchy problem can be _ ) o

determined when the functiom and its derivatives®u/ Jt® The eikonalX in Eqg. (14) is given by

for s=1,2,...n—1 are specified fot=0. Forn=1 the solu-

tion of the Cauchy problem can be presented in the form of 2 =k(w)x— ot (19

the Fourier integral . _ N
g Unlike the solutionu(x,t) of the initial-value problem,

o which is determined by the complex functi@n(k) for real
u(x,t)=f A(k)exdiS(k,x,t)]dk, (8)  values ofk, the solutionU(x,t) of the boundary-value prob-
‘°° lem can be determined when the complex functidw) is
specified for real values ab. If for a given value ofw Eq.
(4) admits more than one solution, then the solutidfx,t)
of the boundary-value problem may be presented as a sum of
. integrals of the type(14) with different functions X,
A(k)=(2w)‘1f f(x)exp —ikx)dx, f(x)=u(x,0). =kj(w)x—ot. ,
—o The Green function of the boundary-value problem
C) Gp(x,t) is the solution corresponding to the boundary signal
g(t)=4(t). Similarly to Eq.(12), this solution can be deter-

If n>1 and all rootsw;(k) of the dispersion equation are mined by the Fourier integral of ex() with the complex
different, then the solution of the Cauchy problem is givengjkonal -

by a sum ofn integrals of the typd8) with different A;(k)
and S;(k,x,t) =kx— w;(K)t. .
The spatial WP is the continuous superposition of the pla- Gp(x,t)=(2) f
nar waves 1), whose wave numbets are concentrated at N
=0 in the vicinity of the carrier wave numbé&y.. An often
used model of WP is the Gaussian packet, for which

where S is the eikonal given by Eq(5) and A(k) is the
Fourier transform of the initial distribution

)

exdi2(w,x,t)]dw. (16

One of the fundamental problems associated with the
propagation of WP in an absorbing medium is the asymptotic
behavior of WP for large values df and x when the WP
traverses a distance that is much longer than its initial width.
For most cases the asymptotic behavior of WP can be inves-
tigated by the saddle poii€P method. The SP method has

The corresponding initial distribution(x,0)=f(x) is the ~ been extensively employed for the WP in lossless dispersive

(k_kc)z

C
A(k): m ex;{ - T . (10)

Gaussian WP in the space media[3]. Extensions of the SP method to the cases of ab-
sorbing media were made j4,9,10. Applications of the SP
f(x)=C explikex—x2/h?) (h=2/A), (11  method to calculating the Fourier integrals of the tyge

usually includes three elemen): (i) determining the SR
whereC is the amplitude of the WP envelope ahds the  for the function ImS considered as a function of the complex
half-width of the envelope at=0. The half-width of the WP  variablek=k, +ik; ; (i) changing the integration conto(8)
in thek space isA=2/h. In the limith—o Eq. (11) repre-  from the realk axis to some other path in the compléx
sents the harmonic wave in space and E3).results in  plane, which passes through the 82k and yielding the
A(k)=Cd8(k—k). The transition to the opposite liit—+0  same value of the initial integration apart from contributions
with C=(hy7) ! results in the initial distributioru(x,0) of singular points of the integrand if such exi§fj) evalu-
= §(x) andA(k)=1/(27). The solutionu(x,t) correspond- ating the asymptotic value of the integral over the new path
ing to this initial condition is the Green function for the making use of the fact that the integrand changes rapidly in
Cauchy problem the vicinity of the SP.
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The SP of the function II®(k) is determined from the 2T vz o~ _
equation u,/(x,t)~(t(d T )k—E) A(k)exdiS(k,x,t) —im/4].
IS(K,x,t) do(k)] o (24)
ok k:i;_ T dk k;k_o' 17 Here k=Kk(x/t) is the complex coordinate of the SP de-

termined by Eq(18). In the case wheA(Kk) is given by Eq.
Sincedw/dk is in general a complex quantity, for real (10), the asymptotic expression for the spatial Gaussian

andt Eq. (17) is equivalent to two real equations: packet is obtained from E¢24) as
do X do . Ch
Re(m) ~—?, Im(m ~—O. (18) U(X,t) ’2t(d2w/dk2)k:‘|;
k=k k=k
. . h2(k—ko)?  ~ o
For a lossless medium, wheta/dk is always real for Xexpg — —————+iS(k,x,t)—i —|. (25)
real values ok, Egs.(18) prescribe the real SP=k,. The 4 4

guantitydw/dk is recognized in the theory of WP in lossless For Ch=1/\7 and h—0, Eq. (25) is reduced to the

media as the group velocit)/(k). Thus, for a purely disper- ic f la for th functi f th h
sive medium the SP of the function 8ris characterized by asymptotic formula for the Green function of the Cauchy

the conditions problem
- -~ —~ 1 —~
k=k,, k=0, (deo/dk),-x=W(K)=x/t. 19 G(x,t)~ exdiS(k,x,t)—im/4].
- k=0, (dw/dk)_i=W(k) (19 )~ g XISt —imid)
In the general case where Ed) is complex, (26)

As is seen from the comparison of E4) with Eq. (26),
the asymptotics of the general solution of the Cauchy prob-
lem is determined by the value of the spectral functidk)

is complex too for real values df. The SPk=k of the ¢ the SP and by the asymptotics of the Green function
eikonal S satisfying Eq.(18) is therefore complex. We shall G(xt):

assume that at the poikt=k the second derivative of the _
function S(k) does not vanish: u(x,t)~27ALK(x/t)]G(x,t). (27)

W(k)=Re(dw/dK)+i Im(dew/dk) (20)

(d2S/dk?) %= —it(d?w/dk?),_5#0. (21 The application of the SP method to the solution of the
boundary-value problem presented by Et¥) contains the
In the complexk plane one can find the line of steepest Same steps as the asymptotic calculation of the Fourier inte-
descenty passing through the poirk=k, along which 9ral (8). The complex SP ¢=®) of the eikonalX(w) is

ImS(k) takes the minimal value and, thereforexpiS determined from two real equations
=exp(—ImS) is maximized. The line of steepest descent can dk t dk
be found from the equation e(d—) =2 m( )

w o~ o~

dow

w=w w=w

=0. (28

ReS(k,x,t) =ReSk(x,0).x,0). (22 These equations are similar to E¢$8) and they indicate

that in the SP of the eikonal(w) the group velocityW
=dw/dk is real and its value ig/t, while the SP itselfw
=w,tiw; is complex, and both quantities, and w; are
functions ofx/t. The same value ofV is obtained at the
Eomplex SP of the eikonalS(k). The analog of the
asymptotic formuld25) can be obtained also for the solution

For givenx andt, which are considered as parameters in
Eq. (22), this equation gives the relation betwelgnandk;
and, therefore, it determines some curve in the comglex
plane.

The main advantage of the SP method for the asymptoti
calculations of the WP’s as—« stems from the fact that
after replacing the path of integration the integral alopg Y (%:t) of the boundary-value problem.

: It must be emphasized that our whole discussion pivots on
can be easily evaluated due to the presence of a very shar ; . . .
maximum of the integrand dt=k [2]. The value of the tf?e choice of Eqs(18) and (28) (which for us is physically

) . . lausiblg thatx,t are real. Mathematically it is equally con-
integral (8) can be calculated by taking the integral alopg Eistent t?) assume complex rays, e.g. asydone t?y annor and

Felsen[9].
u(x,t)=u7(x,t)=f A(k)exdiS(k,x,t)]dk. (23
Y I1l. LOCAL REAL GROUP VELOCITY AND

. . ) THE SADDLE POINT COMPLEX WAVE NUMBER
Recasting the eikonal in the for@=t[kx/t— w(k)] and AS ASYMPTOTIC CONCEPTS

employing the well-known asymptotic formuld] for the

integrals of the typ&23) results in the asymptotic expression ~ We concentrate here on the concept of the real group
for u,(x,t) whent—oo and|x/t| does not exceed any given Velocity W=x/t as the velocity of propagation of the con-
constant value: stant wave numbek=k(x/t) and the constant frequeney
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=w(x/t), which corresponds to the SP for the eikor&al Such signals usually are considered in the form
=kx—w(k)t in the complexk plane. This is the generaliza- A(r,t)exdiS(r,t)] whereA is the slowly varying amplitude
tion of the concept of group velocity given by Whitham for andS is the rapidly varying eikonal function. The local wave
WP in dispersive lossless systefig to the case of disper- vector is defined byk=4S/dr, which is equivalent to the
sive and absorbing media. For a spatial WP in an absorbingommerfeld-Runge law of refractidd X k=0 [14]. The lo-
medium the function eXiS(kx,t)] determining the asymp- cal frequency is defined by = —dS/dt. These two relations
totics of the Green function for large values tond for a  ensure the uniqueness of the eikonal integral representation
finite ratiox/t is not purely harmonic aniéxp(S)| is varying ~ given by integration ok - dr —  dt and provide the equation

in time and space. The value Bfat the SP is complex and JK/dt+ dw/Jr =0 [compare with Eq(31)]. The ray trajecto-

given by ries in an inhomogeneous medium are described by the ana-
~ . log of Egs. (1) with the distinction thatdw/dX does not
S(x,t)=F k(x/t),x,t]=0(x,t) +id(x,t), vanish. This analogy stems from the fact that for large times

and distances, in both situations the spatial and temporal

=~ X _ (X =~ X _[X variations of the WP envelope or the wave amplitude are
O D)=k 7|x=@ |t PO =ki| r|x—@i| 7|t slow in comparison with the eikonal variations.
(29 Employing the Fourier integra(16) for studying the

_ asymptotic behavior of the Green function for the boundary-
Here o=, +iw;=w[k(x/t)], the SP frequency, is the value problemG,(x,t) for large values ok and finite ratio
value of the frequency calculated from the complex dispert/x facilitates the definition of the complex SP frequerngy
sion equationy = w (k) at the pointk=k, the SP wave num- =4 (x/t) on the basis of Eqg28). The analog of Eq(29)
ber. In general bottk and @ are complex. Equation&l8)  can be obtained for the value of the eikozaht the SP,

indicate that foik=k and hence fow =, the group veloc-
ity W=dw/dk=x/t is real. This allows defining the real
straight-line rays</t= const in the X,t) plane as the trajec-
tories, along which the wave numblerand the frequenc®
remain constant.

Thus, the real group velocityW=x/t appears in
asymptotic analysis as the velocity of propagation of the con
stant SP wave numbde=Kk(x/t). It should be noted that
only this concept of realV (and not the concept of group
velocity as the velocity of propagation of maximum of the
WP envelopgwill persist in the presence of absorption. The
local central wave number that can be determined in the
vicinity of the envelope maximum doe®t remain constant In this section we consider the evolution of the spatial

in an absorbing medium. Thus, for whistler WP in a colli- Gaussian WP characterized by the dispersion equation
sional plasma, the initial carrier wavelength of spatial oscil-

S(x,0)=3[@(x/t),x,t]=kx— B, (32)

wherek= k(@). The functionk and® satisfy the analog of
Eq. (30), in which S should be replaced by. Since botho
andk are functions ofx/t=dw/dk=W(w), the real group
velocity again appears as the velocity of propagation of the
SP complex frequency and the SP complex wave number.

IV. EXACT SOLUTION FOR A GAUSSIAN WAVE
PACKET IN AN ABSORBING MEDIUM
WITH A QUADRATIC COMPLEX DEPENDENCE (k)

lations for large values dfcan be found in one of two wings o=(a—ip)k? (33
of the WP but not in its center. Such behavior will be dem- ) ) ) .
onstrated in Sec. IV. in a dispersive absorbing medium, wheteand 8 are non-

It can be easily checked that the SP vallesk and n_egative_ parame'ters. In accordance with &g, the partial
w(]Z)zZB can be expressed through the partial derivatives ofj ifferential equation corresponding to E@3) has the form

the SP phase functiod defined in Eq(29): au J%u
L[U]EE_(iOH_'B)W:O' (34)

k=dSlox, ®=—aSlt. (30)

The two popular particular forms of Eq34) are the
Schralinger equation =0) and the heat conduction equa-
K g5 K o tion (a«=0). The complex law of dispersion given by Eq.
—+—=—+W(k) —=0, (31) (33 when both parametersand are nonzero describes the
gt oax dt IX whistler waves propagating in the terrestrial magnetosphere

_ o o~ along the geomagnetic field ling5]. The parametera and
which clearly indicates that the real group velocWy(k) is B for whistlers are determined by

the velocity of propagation of the complex wave numker
Equations(30) and (31) are generalizations of the equations a=czwce/w§e, B=av.lwee. (35
obtained by Whitham for purely dispersive homogeneous
media[3]. For an absorbing medium Eg80) and (31) are Herec is the vacuum light velocityw,. is the electron
complex. gyrofrequencyw. is the electron plasma frequency, and

It should be noted that for nonabsorbing media the analogs the mean collision frequency of electrons. Similar waves
of the continuity equatioi31) appears also in the ray theory with a complex quadratic law of dispersion termed helicons
of quasiharmonic signals propagating in inhomogeneous meare known in semiconductors and metals in the presence of
dia, including two- and three-dimensional probled. an external magnetic field6]. For the helicons propagating

Therefore,'lz and o satisfy the continuity equation
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along the magnetic field the parameters of the dispersiowhere

equation(33) can be calculated from the same formulas)

as for whistlers. HED) (1+7IN?)[E—€m(T)]? T 39
When the initial distributioru(x,0)=f(x) is a Gaussian T AN+ 7/N2+ (ar/N)2 + 1+ 7/N2

WP given by the real part of Eq11), the solution of the L 7IN)*+ (ar/N)] i

Cauchy problem for the law of dispersion given by E83)

has the form and
— u(x,t) En(T)=2ar/(1+ 7/IN?) (40)
C
and
! f ) k k2t)
=—— cogkx—
A7 ). Cotkxa 6(£,7)=9(£,7)— (1),
XeX[:[—,Bkzt—A_z(k—kc)z]dk. (36) §(1+T/N2)_aT+a§2’T/(4N4)
This integral allows an exact analytical representation B (1+7/N*)*+a*r/N* 7
[17,18 as a function of parametess t, a, B, k., and A. 1 ar
Introducing the dimensionless quantities -
¢=5 arctaré N (41)

E=kx, 7m=pk%, N=kJA, a=alB, (37

Eqg. (38) can be recast as a function of two dimensionless In the casea>1 the functiond(¢,) represents the fast

variablesé and r containing two dimensionless parametirs varying spatlal and temporal oscn_latlpns, Whigr) is th_e
slow varying phase of these oscillations. In the particular

anda: caseB=0 the right-hand side of Eq38) is reduced to the
u(é,7)=E(&,7)cod 6(€,7)], solution for a Gaussian WP in a nonabsorbing media8j.
The transition to the limit8—0 means that in Eq¥38)—

exd —¢(§,7)] (41) a—=, 7—0 andar— ak?t. The result of this limiting

(39)

&)= ri7IND 2T a2 AN case is

_exl — AX(x—2ak) 2/4(1+ a?A%2) |cod (Ko — ak2t+ aAX2t/4)/(1+ a®A%?) — Larctarf A ?t) |
u= .

[1+ a?A 27" (42)

In the opposite limiting casen(=0) Eq.(38) becomesthe t—o the envelope width increases ag. Thus, the
solution of the Cauchy problem for the heat conductionasymptotic behavior of the envelope for: « is determined
equation with the initial condition in the form of a Gaussian by the wave absorption.

WP (i) The spatial maximum of the WP enveloge: X (1)
= ¢m/Ke propagates with the velocity

_ A2y 12 A2+ 48K% keX
U= BAT) T exn = T gan | 1 ga%t ) Ve Dm_2eke Wik )
(43 m dt  (1+BA%)% (1+BA%)%
In the limit A—o, for G(x,t)=CU with C=A/(2\/7), As is seen from Eq44), in the presence of absorption the

Eq. (43) results in a well-known formula for the Green func- velocity of the envelope maximum differs from the real part
tion of the Cauchy problem for the heat conduction equatiorof the group velocityW, (k;) calculated for the initial carrier
(see, for example, Ref20]). wave numbek;. Only fort=0 do these two velocities co-

The analysis of the exact solution given by E@8)—(41)  incide. The envelope center is decelerating and its velocity
when both parameters and 8 are nonvanishing shows the V(t) tends to zero as tf whent—. The evolution of the
following features of WP: WP envelope is shown in Fig. 1.

(i) As follows from Egs.(38) and (39), the form of the (i) WhenN?>1, i.e., the characteristic number of spatial
WP envelope determined by the functi&(é,7) remains oscillations inside the WP is sufficiently large, the denomi-
Gaussian for all times. The magnitude of the envelope’sator of the ratio in right-hand side of E(B8) is a slowly
maximum (at the pointé=¢,,) decays exponentially for  varying function oft in comparison with the functions
<1/(BA?) and undergoes a power decay according tt 1/ exp(—) and co¥. In this case it is reasonable to define the
att—o. The width of the envelope increases with time andlocal complex wave numbek* and the local complex fre-
behaves as a linear function of time fo=1/(8A%). For  quencyw* as
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FIG. 1. The spatial envelope of the WP determined by E88) and (39) with a=200, N=7 as a function of the dimensionless
coordinatex= Ax for various values of the dimensionless time variabie,Bkgt: (@ 7=0, (b) 7=1,(c) 7=5. In(c) H is the point in which
the real part of the local wave number is equal to the initial carrier wave nukqgbemd the local group velocity is real.
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The quantityk; characterizes an inverse wavelength of
the spatial oscillations in the vicinity of the poink,(),
while the quantityk® represents an inverse length of the
exponential decay of these oscillations in space in the vicin-
ity of the same point. The quantities’ and — o have
analogous meaning with respect to the WP behavior in time.
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FIG. 2. The spatial oscillations within the Gaussian envelop
calculated from the exact solution with= 200, Nz?ﬁnd 7=1.
The dimensionless coordinate and time are defined=adx and
T= Bkﬁt.

For large values of, the local wave numbek* and the

local frequencyw* approach the SP valudsand, respec-
tively:

K*(x,t) = Kk(x/t), @*(x,t)—=@(x/t)
(t—oo, |X/t|<cons}, (46)
wherek and@ are given by

~  (atip)x - o~ (a+iB)x?
o TP e

(47)

As is seen from Eq(47), the complex quantitieE and®
are constant along the straight-line ray$=C. These rays

coordinate and time are determined>asAx and 7= gk2t. The
straight lineI" shown for«,=1 is a Hamiltonian ray transferring
€the initial carrier wave number. The values of the paramieteior
curves 1-6 are 2.4, 1.6, 1, 0.5, 0, and.5, respectively.

wavelengths appear far>0, so thatk} — = when x—

+ o, The filling of the WP is not symmetric with respect to
its center: any fixed poir® from the right wing of the WP is
characterized by shorter waves than the symmetric g@int
at the left wing(see Fig. 2 The family of trajectoriek;
=const in ,t) plane described by E¢48) is shown in Fig.
3. As is seen from this figure, for small timessufficiently
large values ofk| propagate from the wings to the central
part of the WP and after reaching the turning points where
dx/dt=0 they propagate back to the wings, so thattfere
the velocity of propagation of a given value kif tends to
the real group velocityV* = W(k} +iBk; / a).

The straight-line trajectory” corresponding t&; =k is
exceptional since it represents the genuine Hamiltonian
ray,along which the constant valk& =k, propagates with
the real constant group velocity, i.eX, /dt=W(k*) where
the complex numbek* = (1+i B/ a)k. is constant. This ray

are the asymptotic lines for the curvilinear trajectories, alongs described by

*

which one of the quantitiek; ki ,0) ,w{* is constant.

(iv) The trajectoriek; = const determined by the first of
Egs.(45) and by Eq.(41) are as follows:
x=X(t)
2kA[(1+ BA%)%+ a?A%2](KF k) — (1+ BA%L)}
- aAt '
(48)

The exact solution presented here shows that only at

=0 is the real part of the local wave numbr spatially
uniform and equal to the carrier wave numlker For any

smallt>0 the WP acquires an inhomogeneous filling: any

x=Xy(t)=2(k./a)[ BIA%+ (a®+ BA)t]. (49

On the straight lind" both real and imaginary parts of the
local wave numbek* remain constant for all timesnlike
other trajectories shown in Fig. 3, along which oy is
constant whilek® varies. Any curvilinear trajectory, for
which k' differs from the carrier wave numbeék., ap-
proaches some straight-line Hamiltonian ray for large times
t>t, where

|1 —ke /K |
Y= (25 B A 50

given value of the wavelength can be found within the WP.

In the far-distance parts of the WP wings, very short local

(v) The trajectoriek; = const are given by
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4 , , : , As is seen from Fig. 4, the positive valueskdf, i.e., the
T 6/ 5 4/ /3 9 local values of the inverse attenuation length of the WP en-
1 velope in the positive direction, propagate to the right wing
3 ] of the WP with the velocities that increase wikii . The

negative values ok’ propagate to the left wing, excluding
some initial range of the valuds’ <0, for which the trajec-
2 F 1 tories ki =const possess the turning points. If the relative
deviations of the quantities’ andk’ from their values on
the straight-line rayG, i.e., the numerators in Eq&3) and
1 L 4 (50), are of one and the same order and if, in additign,
<a, then the time z is much longer than the timig, . This
means that along the curvilinear trajectories transferring the
0 ! . L . . constant values of; the difference of the real parts of the

0 50 100 150 200 250 300 local wave number and the SP wave number becomes neg-
ligible much faster than the difference of their imaginary

arts.
The obtained solution allows one to investigate two main

ol

FIG. 4. The space-time trajectories along which the imaginar

part of the local wave numbég* is constant calculated for various . s
values of the paramete:ri=ki*/|kc with a= 200, N=7. The dimen-  St2ges of the WP evolution, the short-tittieitial) stage and

sionless coordinate and time are definedxasAx and 7= Bk2t. the long-time(asymptotig stage. The initial stage is charac-
The curveM corresponding to;=0 is the trajectory of the enve- te_nz_ed by the instant appearance of all possible wavelengths
lope’s maximum. The straight linE corresponding tax; =0.005 is within the WP envelope. The new local waves with the val-
the same Hamiltonian ray as in Fig. 3. The values of the paramete#€s ofky different from the carrier wave numbkg appear

k* for curves 1-6 are 0.024, 0.012, 0.005-0).012, and-0.024,  at exponentially small wings of the envelope, propagate to

respectively. the domain wheré} ~k. until some critical timet=t, and
then go away from this domain as is seen in Fig. 3. It must
. 2akct+2KX[A ™2+ 28t + (a2 + B2) A2t2] be noted that we are dealing with a linear partial differential
x=X(t)= 1+ BA% . equation, therefore, spectral components cannot be created or

destroyed. However, different spectral components are dif-
ferently affected by attenuation, and thus the relative signifi-
cance of various spectral components can vary in space and
time. For |k} |>k. the critical timet,, is given by

(51)

The family of curvesk =const is shown in Fig. 4. This
family contains, in particular, the trajectol of the spatial

maximum of the WP envelope sinég =0 alongM. The te~A"%(a?+ %) 12 (54)
curve M intersects various trajectoriés = const shown in _ o . _

tinuously with time and tends to zero ais>=. Determining the d_ispersive properties of a _medium and this stage exists
the coordinate of the envelope maximum from Exf) with @ISO in the absence of absorptiofi<0).
k* =0 and inserting this value of in the left-hand side of _The asymptotic stage%t.) corresponds to the WP pat-

Eq. (48) allows determining the central wave number(t) tern that can be obtainr:edlby tlhe SPImethod. In thae!:mit
—K* (X(1),1). This results in >t and |x/t|<const, the local complex wave num

and the local complex frequeney* tend to the SP valuds
and . In the caseB<<«a, which is of interest for studying
the propagation of the whistler and helicon WP’s, the critical
time t,, is of order of the time scale 1#A?) of a wave,
This formula can be also obtained from the condition foryyhose length is of order of the initial width of the WP. For
maximum of the absolute value of the spectral function ofg>-t_ each small part of the WP can be characterized by the
the WP ink spacdsee the i”t?gfaf.‘d in the right-hand si.de of complex quantitﬂz, which keeps a constant value along the
Eq. (36)]. Formula(52) was given in[4] where the lowering ray x/t=W(IZ) whose sIopgN(IZ) is the real group velocity.

of the central wave number with time due to the differential _. - . .
absorption was shown. Since along the ray/t=W(k) the SP value of the eikonal is

Kin(t) =K. /(1+ BA2L). (52)

The exceptional straight-line trajectoFyshown in Fig. 3 complex,
and described by Eq49) is also included in the family == :
given by Eq.(51) slince alongl" the value ofk{" is constant S=kx=wt=(Q+iAL,
. H * H ~
and equalk B/ a. Any trajectory for whichki® differs from O=W2(K)ald(a?+ B?), A=pQia, (55)

keBla, for large timest>t,, approaches the straight line
Hamiltonian ray, whose slope is equal to the real group veg

. * . : X ) he time-dependent behavior of any local portion of the WP
locity W(ak{"/B+ik{"). The timet is determined by

that could be observed in the frame of reference moving with
the real group velocityV(k) should be seen as an exponen-
tially decaying oscillation described by the leading factor

|1— ak/ Bk
te= exp(S) of the asymptotic solution given by E¢24). The

AT (53)
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nonexponential factor in Eq24) varies slowly along the 0.07 : : :
straight line x/t=W(k) and behaves as . Since the E (a)
damping rateA is proportional to the frequencf, this re- /\
sults in a nonuniform damping of various parts of the WP, sc ¢ _gg | \
that the high-frequency wings are subjected to the stronge: \
suppression in the process of propagation.

As is seen from the asymptotic formul@47), for any 0.05F | \ g
fixed value ofx, the SP wave number and the SP frequency /
tend to zero whemn— . When the timég increases, the tail / \
part of the signal reaching a given poit const-0 is char- 0.04 1 \ .
acterized by continuous lowering of both the local group (
velocity W=x/t and the local frequency that approaches the / \
SP frequencys =W?/4a. Forx=const-0 the exact solution ~ 0.03 [- I \ .
(38) considered as a function of time represents a tempore / \
signal filled with the oscillations whose local frequency de- |
creases with time. The form of the temporal envelope is no 0-02 /
Gaussian and it is not symmetric even in the absence c
absorption. The temporal WP described by the exact solutiol
(38) for two various values ok are shown in Figs. @) and 0.01 /
5(b). The lowering of the local frequency of the oscillations /
within the temporal envelope is demonstrated in Fig. 6. / . . — T

Direct calculation of the local complex frequenaey*
from Eqgs.(45) and(39)—(41) shows that both real and imagi-
nary parts ofo* remain constant for all timeslong the
Hamiltonian rayl” defined by Eq(49). The relation between
o* andk* alongI" follows exactly the dispersion equation «10~5
(33) as it would be for the case of the elementary exponentia 4 T . r . . . .
solution presented by E@3). Unlike the local frequency on E - (b)
the rayl’, the local frequency at the point of the maximum of 35k / \
the temporal envelope decreases with time along the max ™ / \
mum trajectory. This property is similar to the lowering of
the local wave number at the maximum of the Gaussian spe 3 | .
tial WP envelope; see E@52). G

V. DISCUSSION AND CONCLUSIONS

The main objective of this work is to examine the role and  , L / \ i
significance of the real group velocity in the WP propagation
in an absorbing homogeneous medium. In an absorbing me /
dium the group velocity vectdWV is, generally, complex and 1.5
it represents some mathematical subject derived from a con
plex dispersion equation. In spite of the fact that such a com
plex vector does not admit a physical interpretation, it can be
employed for calculations of some important physical char-
acteristics of WP in an absorbing medium. Thus, the velocity .5 g
of the spatial[4,9] and temporal4,10] envelopes can be
determined in terms of both real and imaginary parts of the ,,/ , , [ , , |
vectorW at the maximum. On the other hand, for an absorb- %% 7 8 9 10 11 12 13 14
ing medium, one can point out the exponential waves of the
form (3), for which vectoW is real due to the SpeCIaI_ch0|ce FIG. 5. The temporal envelope of the signal determined by Egs.
of the complex wave vectdr [5,11,12. A,S is shown in the (38) and(39) with a=200,N=7 as a function of the dimensionless
present paper, such a real group velocity does have a phySjme = gk2 for various values of the dimensionless distance
cal meaning that comes to light when the asymptotic behavs = Ax: (a) x=100, (b) x=500. In Fig. 5b) G is the point in which
ior of the WP is investigated. the local frequencyw* provides the real value of the local group
An application of the SP method to calculating the velocity.
asymptotic form of the Fourier integrals, describing the spa-
tial one-dimensional WP in an absorbing media, leads to thgng (26), respectively. Employing the SP method for study-
condition for the real group velocity in the S=k. When  ing the asymptotic stage of the WP evolution is not restricted
the dispersion equation is complex, the SP wave nurkber to the case of weak absorption and the SP method can be
also is complex and it completely determines the asymptoti@pplied also to the systems for which the absorption effects
forms of the WP and of the Green function as well, E@%)  dominate. For example, this method results in the correct
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jectoryI is as follows: as is seen from E.1), for t=0 the

0.08 | _ ' ' ' filling of the Gaussian WP by the spatial oscillations is uni-
u form: kI (x,t=0)=k,, while the imaginary part of the local
0.06 | ] wave numberk® changes monotonically from-o at x=
—o to ® at x=o passing through the zero valkg =0 at
0.04 [ 1 the envelope maximumx&0). Therefore, in the domain 0
<x<o one can find a poink=X, at whichk’ = gk¥/a.
002 I l N This relationship betweeky andk’ provides a real group
' I ﬂ velocity W at x=X. The obtained solution indicates that in a
ﬁ( i w _ homogeneous medium the initial carrier wave number may
o[ W’l”“"ﬁé’{‘t H 1 s propagate with the real group velocity at all times if the
IU* requirement Inv=0 is satisfied at some point of the WP
-0.02 [ 3? . profile att=0. For arbitrary complex dispersion equation the
point with ImW=0 may or may not exist within the initial
L i WP profile. Thus, for a Gaussian WP propagating in a me-
-0.04 dium that is described by the heat conduction equation, the
initial group velocity is complex for all values of if k.
-0.06 | ] #0. In this and similar cases the real group velocity is re-
vealed only on the asymptotic stage of the WP evolution.
. . ! T The results of the present work can be compared with
-0.08 1 1.5 2 2.5 3

those obtained by Muschietti and DJwdh|, who applied the
SP method to the analysis of the characteristics of the WP
FIG. 6. The temporal oscillations within the temporal_envelopeenvelope’s maximunisuch as variations of the central ve-
calculated from the exact solution with=200,N=7, andx=Ax |ocity and the central wave numbeFor the whistler WP in
=100. The dimensionless time variable is defined-agk.t. a collisional plasma these features of the WP center are re-
expression for the asymptotics of the Green function for thé:)roduced by .the exact solution given n Sec. IV of.the
. o . =~ present paper; see Eqg44) and(52). According to Muschi-
heat cqndugtlon equation, in which the SP wave nurklier o onq Dum[4], studying the real trajectory of the envelope
purely imaginary. _ _ maximum raises the possibility for alternative ray tracing
The important feature of the asymptotic behavior of they in,,t employment of the rays belonging to the complex
WP demonstratfed in Sec. ll is the fact t_hat despite the preszq g 1 this connection it is worthwhile to note that for an
ence of absorption, the real group velocity appears as a l0cay,sing medium the real trajectory of the WP center is not
characteristic of any small section of a WP through the IocaE Hamiltonian ray. On the other hand, the rays along which

complex SP wave number, which de_pending on the ratiqhe SP wave number is propagated, for example, the rays
x/t=W only. This leads to the generalization of the Conceptserving as asymptotic lines for the trajectoris=const,

of the group velocityW(k) established by Whitharf8] for  ,qj,ding the straight-line raf’ (see Fig. 3 of the present
nonabsorbing media as the velocity of propagation of thepape), are genuine Hamiltonian rays belonging to reat)
constant wave numbd. This role of the real group velocity \yorld.
has been found to be universal and applicable to the absorb- The Ve|0city of the enve|0pe peak is an important charac-
ing media, unlike the sometimes conventional concept of thgeristic of the WP. However, in an absorbing medium a peak
group velocity as the velocity of the envelope maximumyelocity is not a group velocity due to the fact that the wave
[19], which fails in the presence of absorption. group is marked by its wave number or frequency and these
The analysis of the exact solution for a Gaussian WRyuantities change with time at the center of the WP. For
propagating in a medium with the quadratic complex law ofjarge times the group of oscillations with the carrier wave
dispersion performed in Sec. IV has shown quite nontrivialnumberkC can be found far away from the WP center. Such
features of the trajectories in the,{) plane, on which the 3 pehavior is displayed even for a weak absorption. This is
real part of the local wave numbkf remains constant. Asis seen from the comparison of the trajectdvly of the WP
seen in Fig. 3, fork] #k., wherek, is the initial carrier peak and the Hamiltonian rdy (Fig. 4). The same phenom-
wave number, the trajectoriels’ =const possess turning enon is reflected by the position of the pokitin Fig. 1(c)
points and for large times they approach the straight-lineshowing the distance (for a fixedt) where the carrier wave
Hamiltonian rays characterized by the real values of thewumber can be observed.
group velocity. It has been found that the trajectdiyon To estimate the influence of damping on the typical whis-
which k¥ =k is a Hamiltonian ray. Thus, for all times the tler WP propagating in the Earth’'s magnetosphere we used
carrier wave numbek, propagates with constant real group the following parameters: the carrier wavelengtt,
velocity. This property is not related to the asymptotic be-=2m/k.=2000 m, the width of the initial Gaussian enve-
havior of the WP: here the real local group velocity is mani-lope 2h=8900 m, the electron plasma frequenay,e

fested from the very beginning#£0). This result is of cru- =1.8 MHz (this value corresponds to the electron density
cial importance for the recognition of the role that the realn,=1000 cmi®), the electron gyrofrequency wce
group velocity may play in the propagation of WP. =0.26 MHz (this value corresponds to a magnetic fiéd

The explanation of the existence of the straight-line tra-=0.015 G, and the collision frequency.=1.3 kHz. These
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parameters provide the valuds=7, a=200 used in calcu- ing media will appear as the important physical characteristic
lations of the characteristics of the WP shown in Figs. 1-60f the WP and signals, which are intended for the propaga-

The distance between the spatial envelope maximum antion of some prescribed carrier frequency. Such a situation
the position of the carrier wave number marked by péint occurs, for example, when a carrier frequency has to be de-
in Fig. 1(c) is close to 60 km and, according to E§2), the tected by the narrow band receiver at a large distance from
lowering of the central wave number is 9%. For the temporathe source, and the relevant part of the propagating signal

signal envelope shown in Fig(y, which was calculated for leaves the envelope peak due to the differential absorption.
the dimensional distance=1100 km, the time shift between
the envelope maximum and the pottcorresponding to the ACKNOWLEDGMENT
carrier frequency)=7.1 kHz is close to 0.002 s. Compared

to the carrier frequency), the frequency at the envelope  Thanks are extended to Professor Michael Mond of the

maximum drops by 30%. Department of Mechanical Engineering, Ben-Gurion Univer-
We may conclude that the real group velocity in absorb-sity, for valuable discussions related to this article.
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