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Maximum angle of stability in wet and dry spherical granular media
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We demonstrate that stability criteria can be used to calculate the maximum angle of se@bildy a
granular medium composed of spherical particles in three dimensions and circular disks in two dimensions.
The predicted angles are in good agreement with the experimental results. Furthermore, we determine the
dependence of,,, on cohesive forces, applying the results to wet granular material by calculating the depen-
dence off,,, on the liquid content of the material. We have also studied wet granular media experimentally and
find good agreement between the theory and our experimental ré S1l63-651X97)50512-5

PACS numbes): 83.70.Fn, 05.96:m, 46.10+2z, 68.45-v

Granular materials display a variety of behavior that dis-configuration of the two supporting particles underneath it
tinguishes them from other forms of matter. Unlike solids,[9]. To quantify the stability criteria we define the local slope
granular media conform to the shape of a container and wilbf the sandpilef as being the tangent to the two supporting
flow if the container is tilted sufficiently. Unlike liquids, spheres. Ifg is small, the newly added particle is stable,
however, a granular material is stable when its container isvhile if ¢ is larger than a critical valué., it is unstable and
tilted slightly as long as the top surface is at a slope less thawill roll down, starting an avalanche on the surface. For
the angle of maximal stabilityy,,. When the slope is in- disks with equal radii, simple geometrical considerations in-
creased abové,,, grains begin to flow and an avalanche of dicate §.=30°.
particles occurs, the angle of the pile decreasing to the angle This argument can be generalized to 3D, but the geometry
of reposed, . However, instead of uniform motion through- is more complicated: we have to study the arrangement of
out the sample, all of the motion occurs in a relatively thinthree spherical particles supporting a fourth sphere. To sim-
(10 graing boundary layer at the surfa¢]. plify the presentation we consider spheres with equal radii,

Experimental measurements of the angle of rej@sel] but generalizing to an arbitrary size distribution is straight-
reveal thaté, depends strongly on the shape and surfacdorward. Again, the local slope of the sandpflés defined as
roughness of the grains. The typical measured valuéfis  the angle between the tangent plane to the spheres and the
=22° for smooth spheres, bét can attain 64° for materials horizontal plane(see Fig. 2. For =0 the top sphere is
containing rough, irregular particles. Cohesion betweerstable, being supported by the three base spheres. Increasing
grains can also dramatically change the physical properties, the top sphere remains in equilibrium f&<6.(¢),
of a granular material, including, and 6, [5]. Such cohe- whered.(¢) depends on the relative orientation of the base
sion is commonly caused by the presence of a liquid in thespheres, quantified by the angle(see Fig. 2
material that forms interstitial bridges resulting in attractive  Without any cohesive or frictional forces, the top sphere
forces between grains. is stable only while the gravitational force vector points

While many experimental measurements &fand 6,,  within the projection of the base triangle on the horizontal
have been made for different materials, few theoretical replane. This criterion gives the maximum angle of stability as
sults are available regarding the numerical values of thesa function of ¢,
angles. The most detailed theoretical predictions are pro-
vided by molecular dynamics studig&-8], which have pro- 1
foundly improved our understanding @ , but have not 9c(¢)=af0taf‘-2\/§ —

) . cog 7/3— )
provided a simple way to calcula# or 6,,.

In this paper we demonstrate that stability criteria can be
used to calculate,,, of spherical particles in three dimen-
sions (3D) and circular discs in two dimensior{&D). The
predicted angles are in good agreement with the experimen-
tal results. Furthermore, we determine the dependenég, of
on cohesive forces, applying the results to wet granular ma-
terial for which we have determined the dependencd,of
on liquid content. We have also studied wet granular media
experimentally, and we find good agreement between the
theory and our experimental results. (a) (b)

Stability criteria The basic idea of our approach is best
illustrated in 2D. Consider a randomly packed sandpile of F|G. 1. (a) Schematic illustration of the surface of a two-
disks with equal radii, as shown in Fig. 1. If we add onedimensional sandpile arfth) the local surface configuration when a
more particle to the pile on a randomly chosen local surfaceew particle(filled circle) is added to the pile. The stability of the
minimum (see Fig. ], its stability will depend entirely on the newly added particle depends on the local slope of the surface.
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TABLE I. Comparison between the theoretical and experimental
results for smooth noncohesive particles.

' , D Material 0, 0m 0. (theory Reference
2 Disks 24-1° 33° 30° 10
‘ 2 Plastic disks 30° 30° 11
5 3 Glass beads 292° 23.4° 18
4 3 Glass beads 232° 23.4° 19
(a) (b) 3 Glass beads 225° 23.4° 19
3 Polystyrene beads 221° 23.4° this work
FIG. 2. (@ In three dimensions a newly added parti¢tep 3 Glass beads 26°  28.6° 23.4° 3

spherg is supported by three surface particles. The local slope;

denoted by, is the angle between the plane tangent to the thrego, s function becomes available, that could be used to
supporting sphere and the horizontal plarle. The angle is increase&dcmate corrections to the mean field resit and explic-
by rotating the inclined plane around the axigb) Top view of the itly evaluate bothd, and 6,,.
four spheres. The orientation of the triangle defined by the three "o optained mean field predictions fég agree rather
supporting pa_rticles !s characterized b’y the angleelated to the well, however, with experimental measurementsépfand
angle shown in the figure as= /3~ ¢, where 0= g=<m/3. 6, both for disks in 2D and spheres in 3D. The pertinent
experiments are summarized in Table |. Referdri€d pro-
Since the coordination of the base triangle, described byjides 6,,=33° in 2D, only slightly larger than our prediction
¢, is random on a pile, one expects that the critical angle oy _=30°. Similarly, the dynamical angl®#=30° given by
a randomly packed pile will be given by the averafj€s$),  the rotating drum experiment for low rotation speed in Ref.
i.e., 0= (3/m) [§7°0:(4)d . After performing this integral [11] coincides with our result. As Table | indicates, in 3D,
numerically we obtairg,=23.4°. with one exceptiong,=22°, indeed only slightly smaller
Beads used in actual experiments always have some mihan our prediction of,=23.4°.This difference betweef,
croscopic surface roughness. If we consider that the particleand the experimental values is consistent with the experi-
after loosing its static stability, is still immobile until it over- mentally observed difference betweénand 6,, for spheri-
comes a static rolling friction force between itself and thecal particleq12].
supporting particleg. will be increased by a correction pro-  The slightly higher value reported by Ré8] can be at-
portional to arctang), whereu is the coefficient of rolling  tributed to friction. However, we can identify another
friction. mechanism that could increase the experimental values of
The question now arises as to whether we can assafiate ¢,,: we have assumed so far that in 3D the three supporting
with either 6, or 6,,. Our calculated value of; corresponds particles are close packed, i.e., they touch each other. Upon a
to the angle at which an ideal pile becomes unstable, whergetailed inspection of the surface of a granular pile one can
by ideal pile we mean that all its surface beads have the samghserve that this rarely happens: typically, only two of the
local slope, and that the orientation of the base trianglessupporting particles touch each other, while the third particle
defined by, is completely random and uniformly distrib- of the base triangle is further away, having only one or no
uted. In a real sandpile, there is always some surface rougleontact at all with the other two supporting spheres, thus
ness, and the local slopes vary along the surface. Consgncreasingé.. Such correctionsan be includednto our
quently, the local surface configuration is defined by the totatalculation by studying the statistics of the base configura-
slope, 1= 0,,+ 66, where 6,, is the average slope of the tions in real sandpile, and using these statistics to recalculate
pile, and 60 is the local variation of the slope generated bythe .. Finally, experiments witmonsphericaparticles give
the surface roughness. In this pictigis the angle at which  typically much larger values fod,, and 6, . This effect is
we have the first local configuration satisfying expected, since, for example, stacked pentagons have con-
Omt+ 66> 6.(¢). For a finite pile, where each local configu- figurations that will stay stable for much larger slopes,
ration has a certain probability to appeéy, is random, and thereby increasingé,,. Indeed, experiments find that
its variance and average value is defined by the randomnegs=37° and 6,,=45° for pentagons in 20010], while
in 56 (controlled by the surface roughngssd in¢. Fora 9, =33+ 2° for real sand in 3D, constituted by nonspherical
stationary pile one expects some nontrivial coupled distribuparticles[2].
tion P(86,¢), which could be determined experimentally.  Cohesive forces.In the following we extend our results
This distribution justbeforean avalanche provide&,, and to the case when cohesive forces act between the particles
right after the avalanche provideg, . In calculatingd, by  [13]. We have performed experiments to investigate the tran-
averaging over all values ap, we have assumed thé) ¢ sition from dry to wetted granular media by measuring the
and 56 are decoupled(ii) ¢ is uniformly distributed be- angle of repose of spherical polystyrene be&dimmeter
tween 0 ands/3, and (i) the pile is not rough, i.e., the 0.8=0.2 mm by the draining crater method with aperture
distribution of 50 is a & function. These assumptions are diameter of 2.5 cnf2]. These measurements were also con-
equivalent to neglecting fluctuations in the pile, and tiigs  ducted after small quantities of oil were added to the spheres
represents anean fieldapproximation for¢,,. The distribu-  with liquid contentt;, varying from zero to a maximum
tion P(66,¢) could be determined either experimentally or average coating thickness of 28 r(fiour orders of magni-
using molecular-dynamics simulations, and if an empirical fittude less than the radius of the bead3etails of these ex-
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FIG. 3. The dependence 6f (in degreeson the cohesive force FIG. 4. Experimental measurement f as a function of oil
as predicted by Eq2). Here F/G is the fraction between the co- content for two types of oil. Note the dramatic increase,irwith
hesive force and the weight of the top sphere. only a nanometer scale coating of oil. The solid curve is a fit of our

model to the data where the only fitting parameter is the volume of
periments will be published elsewhds]. When no oil was  oil in the intergrain bridges.
added to the spheres, we four(t;;-o)=22°, in good
agreement with previous measuremeste Table)l As Fig. , ) T\ .
4 shows,f, increased very rapidly withy, . The dependence Sin?B,+ sir’ B+ COSZ< 60— E) sirf¢
of 6, ontq is nearly linear up to the regime where clumping cosy,= , ; )
occurs, preventing an accurate determinatiod,of15]. 2 sinB; sing,

In the presence of cohesive forces acting between thﬁ/ith i—
beads, there are several forces acting on the top sphere:
weight, normal repulsive and cohesive forces at each contag
with another sphere, and frictional forces. The maximal
angle of stability is given by the condition of force equilib-
rium, and it is the solution of the equation

1,2,3,a1=— 7/2, ay,= 7/6, andaz= 7/3 (see Fig.

. Here G is the weight of one grainf is the cohesive
rce, andf is the friction anglg f =arctanf)].

The expression2) can be used to calculaté, in the
presence of cohesive forces, and thus to describe quantita-
tively the transition from dry to wet granular media. But for
this we first need to calculate the magnitude of the liquid-
induced cohesive forcg, and its dependence on the thick-
ness of the liquid layet;, . The force between two particles
2) connected by a liquid bridge,

G sinB, { siny, N siny,

F ' sin(y,+y,)\ tan(g,— 1) tan(Bs—1)

)_00382,

where F=2nrocosy— mr2Ap, (6)

/3 consists of a surface tension term acting at the wetting pe-
c0sB; =— [ \/2co¥— sin( ¢+ a;)sind], (3)  rimeter 271 and a term arising from the capillary pressure
3 Ap=o[(1lp,)—1lp4] in the liquid[see Fig. 8a)]. Hereo is
the surface free energy of the liquid-vapor interfaegand
Sir? B, + Sir B, + Sirf 6 sir p» are the radii of curvature of the liquid bridge. The angle
cosy, = _ _ , (4) is related to the wetting angley,,, by the relation
2 sinB; sinB; = (ml2)— ,,— arcsin(/R), whereR is the radius of curva-

(=2

(b)

FIG. 5. A schematic of the liquid bridge at the particle-particle contact reg@sphere-sphere contact, assuming ideal, smooth spheres,
(b) cone-plane contact, for grains that are microscopically rough.
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ture of the solid surface. The strength of the cohesive forcaince the surface of the beads is rough, considerable quanti-
depends on the geometry of the contact between the twties of liquid are in the “valleys” of the bead’s landscape.
spheres. As a first approximation, one is tempted to consideéro proceed, we assume that the volume of the liquid bridges
an ideal sphere-sphere cont@Etg. 5a)]. However, in the V44 is an unknown parameter, and we calculate it fitting
case where the spheres are in direct physical corftaati)l the theoretical curve to the experimental res[dfd. Indeed,
decrease as the liquid content in the bridges increigls  as is shown in Fig. 4, usinyyigge= 3% 10" md for the
Since one expecibased on Eq(2)] that with increasing~ maximumtyq, the fit to the experiment is excellent, repro-
the angle 6, also increases, ideal sphere-sphere contaaiucing not only the long asymptotic linear part, but also the
would imply that increasing the liquid content decreaggs  deviation from linearity for smalt; .

and consequently the repose angié$], contradicting the It is important to note that this is@ne parametefit, that
experimental result of Fig. 4. This apparent paradox is refixes only one pointthat with maximumt;,) to the experi-
solved by incorporating the surface roughness of the indimental results, the rest of the curve being completely deter-
vidual particles, which prevents ideal sphere-sphere contaciined by this single parameter. Our fitted value\Gfigge
Indeed, the surface of real granular particles is rough, and thehould be compared with the average volume of liquid on a
contact is better approximated as a cone-plane figpe Fig. bead’s surface 0¥/=5.5x 10" 4 m?, indicating that the ac-
5(b)]. The beads used in the experiment have a surfactial volume of a liquid bridge is a factor of 1000 smaller
roughness= um, much larger than the average oil thicknessthan the average liquid content on a bead, i.e., a high fraction
on the beads. Thus, at the length-scale set;byhe surface of the liquid is “passive,” not contributing to the cohesive

of the beads is very rough, supporting the applicability of theforces between the beads. This is expected since the contact

cone-plane contact. regions between the beads are small relative to their total
In the cone-plane case the adhesive force increases monioead surface area.
tonically with the liquid content, a§=g(5)vtl,ﬁ;,ge, where In conclusion, by considering the stability of the surface

the angles is defined in Fig. &), Vyigqeis the volume of the  of a granular pile, we have presented the first analytical cal-

liquid bridge and the functiog depends only o [16]. We  culation of the critical angle in a granular medium and iden-

have taken the half-angles of the cones in the interval 40tified its relation to the repose angle and the maximum angle

< 6<60°. Since the functiog(s) does not vary strongly in  of stability. We have included the effects of cohesive forces,

this interval, we used its average value in our calculations. and we find good agreement with experimental data for both
To fit to the experimental results, we must calculate thedry and wet material.

volume of a liquid bridge, which in turn will give the cohe-

sive forceF. We could estimate/qge assuming that the R. A. and A.-L. B. were partially supported by the NSF-

liguid uniformly coats the surface of the beads; howeverCAREER Grant No. NSF/DMR 97-01998.
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