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Criticality of dipolar fluids: Liquid-vapor condensation versus phase separation
in systems of living polymers
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We consider the strongly dipolar fluid as an equilibrium mixture of self-assembled chains as suggested by
the results of recent simulations. The free energy of the system is given by the sum of the free energy of an
ideal chain mixture and additional terms arising from the interactions. We discuss the inclusion of such terms,
namely, dipole-dipole interactions between monomers, hard core interactions between monomers and between
chains, and dispersive interactions between monomers and between chains. We calculate the phase diagrams
for several ratios of dispersive to dipolar interactiong éind the corresponding critical points. In agreement
with the simulation results we have found ordinary liquid-vapor coexistence for<Q.84. When\ is
decreased still further, the theory predicts that coexistence obtains for a fluid of chains. The critical density
decreases and the mean chain length at the critical point increases exponentiaty0a3he reasons why
this coexistence between chained fluids was not observed in the simulations are discussed.
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PACS numbegs): 61.20.Gy, 75.50.Mm, 64.76p

Despite much theoretical and simulation work extending w2 o
over the past two decades, our understanding of the phase ¢gq=— 75 [3(p1 M1 (M2 M1 = g1 p2],  r12>0,
behavior of dipolar fluids is still incomplete. Recently, the BP)
phase diagrams of both dipolar hard sphef@§iS9 and ()

dipolar soft spheresDSS$ were investigated in detail by (yhere unit vectors are denoted by a hat and the symbols

computer simulation, and two characteristic features ohaye their usual meanifgnay be treated as an ideal mixture

strongly dipolar fluids were established) a ferroelectric  of equilibrium chains with free energy per bondksTS.

liquid phase at high densitidd], and (ii) a phase of self- g is the sum of the bond average energy and conformational

assembled weakly interacting chains at low densf@sNo  entropy and is given in terms of the temperature and reduced

ordinary liquid phase was found in these systéBisand it  dipole moment by 7],

has been shown that additional isotropic attractions are re-

quired in order that ordinary liquid-vapor condensation may SO=In(

occur[4]. 18
In recent theoretical worls—7], it was argued that chain 3 o

formation is a consequence of the very pronounced anisoWhereT* =kgTo"/u” is the reduced temperature. The free

ropy of the dipole-dipole interaction, and in particular of the €"€rgy Per unit volume of the system of non-interacting

strong coupling between the orientations of a pair of dipole$"iNS is{7]

and that of the interdipole vector: two parallel dipoles will % %

repel each other if placed side by side, but attract each other Bf= 2 pn(In py—1)— 2 pn(N—1)Sy, (3

if head-to-tail. The latter geometry is the most favorable, N=1 N=1

with an energy minimum twice as deep as that_of the ne).(tilvhereﬁ’:l/kBT andpy is the density of chains of length

most-favorable configuration, namely, two antiparallel dI-(N monomers Except for the dependence 8f on T, this

poles. For sufficiently large dipole moments, this differencefree energy is analogous to that used to describe a’ system of

gives rise to very anisotropic short-range correlations

living polymers [8]. A straightforward calculation of the
whence chaining. g poly (8] g

In the last of these studiég] the behavior of the strongly mean chain lengtiN of the equilibrium distribution yields

dipolar fluid was described by assuming that the chains can L 1

be treated by the standard methods of polymer theory. There ==+ \/Z + peX, (4)

it was shown that a fluid of hard spheres of diametewith

embedded dipoles of strengjh interacting via the dipole-  gnq thus at a given temperatuf@, the chains dissociate

dipole potential (N_—>1) asp—0, while at fixedp, the chains dissociate a8
increases. The mean chain length varies continuously and a
calculation of d2g8f/dp? shows that the system of ideal

*Permanent address: Institute of Crystallography, Russian Acadkhains is stable at allhonzerg densities and temperatures.
emy of Sciences, Leninski Prospekt 59, 117 333 Moscow, RussiaAt p=0 andT* =0, however,N diverges while the second
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and third derivatives of Eq(3) vanish; consequently the dure can only be applied to weak dipolar fluids, since it
limit (p—0,T* —0) is identified with a polymerization tran- overestimates the effective isotropic attractions, neglects the
sition [7]. anisotropic short range correlations, and gives results that
In this paper we investigate the possibility of liquid-vapor disagree qualitatively with simulations: no chains are formed
condensation in systems of DHSs with and without addi-and liquid-vapor condensation obtains for all reduced dipole
tional isotropic attractions. The phase diagram of a similamoments. This approximation also fails for the relatively
model(DSSs+ Lennard-Jones interactionwas studied, for weaker “residual” potential. In fact, the inclusion of such a
a range of isotropic to dipolar interactions, using computeterm in our free energy destroys the chains at all tempera-
simulation[4]. Our theory reproduces the simulation resultstures. The problem can be traced to the exponential depen-
for the line of liquid-vapor critical points of the model. In dence of the second virial coefficient ¢f°, on the reduced
addition, we show that the critical line extends to lower ra-dipole moment.
tios of isotropic to dipolar interactions than reported in the Following a suggestion by Woodward and Nordhdéi
simulation, as a line of critical points of interactitgquilib-  we calculated the effective isotropic potentisl:«(rq,) as
rium) chains. Finally, our theory provides a description of

how the critical line terminates, as the isotropic interactions 1
are turned off. P eXF[_:Bd’eff(rlZ)]:f dQlf dQZ(AfT)zexp(—,ng{,%s),
Let us start by rewriting the dipole-dipole potential as )
u? where [dQ;=[3"d¢; [T sin #dé . This is, in fact[9], an
$aa=—5[—2 oS B, COS b,+sin 0, sin 6, cog ¢1— ¢,)], excess free energy, since it is the sum of the interaction
M2 energy of two dipoles(calculated by integratingeyy

®

+

“r2dr Bebere(r). ©

) weighted by the Boltzmann facoand the entropy loss of

where (;,¢,) and (6,,4,) are the polar and azimuthal the intera}cting dipole pair. By carrying out three of the inte-

angles of the dipole moments in the intermolecular frame ofrations in Eq(7), the effective potential becomes

reference. The contribution to the free energy of the lowest 1 13 (n Bu? sin 0

minimum of the potential, corresponding to head to tail Bdess(r)=—log __ZJ sin?—(—s)d

alignment of the DHSs, is included in the free energy of the 2 BuJo r

fluid of free chains, viaS,;. The second minimum, whose . . .

value is one half of the lowest one and which corresponds to W€ remark thaip.(r) is an effective potential between

a configuration of antiparallel dipoles, is determined by theonemerssince the effect okyq on chain formation has

second term of the right-hand side of E§). We shall as- been accounted for, _prewously, in the b_onc_i free energy.

sume that the second minimum gives rise, after averagingNUS: the corresponding free energy density, in a mean field

over all orientations, to an isotropic effective potential that2PProximation, is

contributes for chain dissociation and, if strong enough, 1

yields liquid-vapor condensation. A similar idea was pro- ded(pl):_pif

posed originally by Van Roi[6] in his study of chain for- 27y

mation versus condensation in associating fluids. He has ) ) . ) )

shown that it is the ratio of isotropic to anisotropic interac- | "€ high temzperature approximation to the integral in @y.

tions that determines whether the system condenses or forns ~ (1/187*%) . It can be shown that this overestimates Eq.

chains. However, his results cannot be applied to the DH$Y) at all temperatures. For simplicity we have used the ana-

fluid, since the connection with the underlying model inter-Iytical approximation for the integral in our calculations of

actions is missing in his analysis. the phase diagrams. o
The dependence of the bond free ener8y) (on the di- The contribution of the excluded_ volume of chains is

polar strength was previously identifigz]. In what follows, _much ha_rder to calculat_e. F_or large dipole moments the local

we derive the isotropic effective potential for the strongly INtersection of two chains is the same as that of two rods,

dipolar fluid. The first step is to define a “residual” dipolar Since the chains are locally rigid. Let us introduce the rela-

potential by “subtracting” the lowest minimurtalready in-  tively rigid chain segment of lengtr. If N is the total

cluded inSy) from the full dipole-dipole potential. The “re- Number of spheres in a chain, then each chain conbéiris”

sidual” potential has a minimum av{= 6,=m/2 ,¢,— b, such rigid segments. The excess free energy of a system of

=), and, because it is a polar potential in a nonpolar phasd!ard rods with density . may be approximated bjL0]

its integral over all orientations must vanish. With these re-

strictions we are led to an obvious choice for the “residual” Bfrodszl 2 4=3n, (Vexc) (10)

dipolar potential, namely HC 8p/(1_ 7,)2 excl/»

2 wherep . is the density of rods(ve,c) is the average over

$td =3 SN 01 SiN 6, COS b1~ ¢5). ®  orientations of the excluded volume of two rods, angd
= (wl6)/ a?p, is the packing fraction of rods of length
In general, the isotropic attractive contribution to the freewith //o spheresp, is related to the total density of the
energy is obtained using a low density/high temperature apsystemp by p=p,(/ /o) and, for an isotropic distribution
proximation. This was done by Groh and Dietrichl] for  of rods, (veyc) =27/ 0%+ (7/2)/?c. In the limit of long
the full potentialéyq but, as remarked ifi7,13], this proce- rods (> o), Eq.(10) becomes
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(o= S p =37 3 o 11
Bfuc(p)= gpm— gh cslp), (11 05 N

where »= (7/6) o°p is the packing fraction of the hard-
sphere fluid. 0.4

Since we want to compare our theory with the simulations ' 0.75
of [4], we must add to the DHS potential a Lennard-Jones A
(LI) tail, ¢ 5(r)=—eo(o/r)®. We define=eyo%/u? as _

the ratio of the dispersion to the dipolar interacti¢pAs

The simplest effective potential between two rods of
/lo spheres interacting through a LJ tail igf(r)
=(/10)?¢_,(r), wherer is the distance between the centers
of the rods. This effective potential must be integrated out-
side the exclude volume of two rodg]. Considering again
chains as a concatenation of rigid rods afit o, the contri-

bution to the free energy, of the LJ tail of spheres in chains, 0-1
becomes /
1 8\ 0.0
h
Blaisp)=—50°p* gr - (12) 0.0 02k 04 0.6

As we want to recover the free energy of a simple fluid £ 1. phase diagrams of the generalized Stockmayer(fuiid
whenp=p;, we must add to Eqg11) and(12) monomer- |ineg), calculated for the indicated values ®f The dashed line is
monomer contributions not yet accounted for through thene line of critical points. The dot marks the transition to the chain
contributions of the effective interactions of spheres inregime. Below this temperature the critical points correspond to a
chains(note that some chains have a length pfillis easy to  mean chain lengtiN.>2 and coexistence obtains between two
check that we must add to the excluded volume free energyphases of chains. When the attractive interactions are turned off, the

line of critical points tends to the polimerization transition, where

m 5 4771—3715 5 the mean chain length becomes infinite. The triangles are the esti-
Bfus(p) = §P1 (1- )2 = gﬁfcs(Pl)v (13 mates of the critical points for the indicated values )offrom
N GEMC simulations of4].

where ;= (70°/6) py, and to the isotropic attractive term, | ceywen and Smif4] obtained liquid-vapor coexistence
curves for a range ok, down to a threshold of dispersion
interactions corresponding t0=0.3. When coexistence was
found, the coexisting liquid and vapor phases were observed
) L to be in the simple fluid regime, i.e., no chains were seen in
The free energy of the system of interactieguilibrium 6 simulation boxes. When the dispersion interactions were
chains is thus the sum of EqS), (9), and(11)—(14). After  ¢,her reduced, the authors could not find an ordinary liquid
minimizing with respect tg,y, to find the equilibrium den- phase and chains appeared to self-assemble, preempting
sity distribution, it is straightforward to write the second andliquid-vapor condensation.
third derivatives of the free energy with respect daand For systems with.=1 the agreement between the results
show that they can vanish at finite densities and tempergss oyr calculations and the simulated coexistence curve is
tures, yielding a line of critical points as a function ®f  fairly good. For other values of our results exhibit critical
Finally, by equating the pressure and chemical potential iRemperatures and densities that are slightly higher than those
the two phases, we can calculate the phase diagram for eaghng in the simulation. Nevertheless, the trends observed by
value ofA. _ _ . the computer simulations are captured semiquantitatively by
We note that the terms that account for interchain interyhe theoretical results. The threshold value\pfequired for
actions are strongly oversimplified. As far as comparisonyginary coexistence between monomer-rich phases obtained

with computer simulations is concerned, we are interested ifh tpe simulation(\=0.3), is very similar to our theoretical

the limit where the onset of chain formation occurs close to__.. . : — .
P . . Co estimate: the value of the average chain lerigtht the criti-
the liquid-vapor condensation, and in this limit the free en-

ergy is dominated by the terms corresponding to monomerc@l point (N¢) is less than 2 down ta=0.34.
monomer interactions. However, the theoretical critical line continues down to

Our results are summarized in Fig. 1, which closely re-A=0, as the critical point of a fluid of chains. Below this
sembles the simulation results [f] for a similar model. In crmcal point th_e_ fluid separates into two fluids of chains with
the simulations the gibbs ensemble Monte Ca@eEMC)  different densities and average chain lengths. We note that
method was used to calculate the liquid-vapor coexistencthe value ofN, grows exponentially with decreasingand
curve for each value of. When\=1 the simulated model T} , and thus these critical points may be difficult to observe
corresponds to the Stockmayer fluid which is known to exdn a conventional simulation owing to finite size effects.
hibit a liquid phase and a liquid-vapor critical point. van Since the critical density decreases exponentialy with de-

m 1 3 2477)\
Bfgis(p1)=— 50 P1gTw - (14
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45 In the theoretical works of Van Rdif] and Osipowet al.
[7], it has been argued that there is a competition between
4.0 chain formation and liquid vapor-condensation: when isotro-
pic attractions between monomers are strong enough to in-
3.5 hibit chain formation, the clustering of the patrticles is driven
by the usual energy-entropy mechanism. However, in the
3.0 present work we have found condensation for all finite val-
ues of \. This is due to the inclusion of chain attractions
25 which promote condensation of chained fluids. We note that
log;o N, while for the DHS fluid the effective isotropic attractions
2.0 between chains are negligible, this is not so when the mono-
mers interact through a van der Waals attraction. In fact, the
1.5 dependence of the critical density arobtained in the simu-
lations of[4] cannot be reproduced unless chaining and van
1.0 der Waals interactions between chains are taken into ac-
count.
0.5 In our analysis we have only considered isotropic fluid
phases. Whether these phases are globally stable requires a
0.0 study of their stability with respect to ordered phafesro-
00 02 04, 06 08 10 electric liquid, solid that are expected to appear at suffi-

ciently high densities and dipole momeftl1-13. This
FIG. 2. logy of the mean chain length at the critical point as a analysis is beyond the scope of this paper but we expect the
function of A, chained liquid to be globally stable over a very narrow re-

creasing\ these points may be undetectable in simulations af'o" of temperatures, or not at all,

moderate and low values . J. M. Tavares acknowledges support of the Portuguese
WhenA=0, our model represents the DHS fluid. The at-Government in the form of Grant No. PRAXIS XXI/BD/
traction between monomers due to the “residual” dipole-2818/94. J. M. Tavares and M. M. Telo da Gama have been
dipole potential(9) is, however, too low to make condensa- partially supported by the Portuguese Government under
tion possiblgeven taking, as we did, an overestimated valueGrant No. PRAXIS XXI/2/2.1/FIS/181/94. M. A. Osipov ac-
of the integral in Eq(9)]. The critical behavior of the DHS ' knowledges support of the Portuguese Government in the
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